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A dimer on a periodic potential is a simple system that exhibits a surprisingly rich dynamics. This system
is conservative, but it is nonlinear and nonintegrable. In a previous work, we evidenced the autoparametric
excitation of the relative motion by the center of mass in two limiting cases (very small or very large initial
energy, compared to the external potential depth). We extend these results for arbitrary initial energy. The relevant
control parameters are the dimer initial energy and the stiffness of the link between the two particles. In this
parameter plane, we build a behavior map which classifies the available dynamical regimes of the dimer. The
parameters plane can be separated into domains in which the dimer particles are either trapped in adjacent
potential wells, slide along the potential, or exhibit more complex motions in which the particles jumps to
farthest well or in which the center-of-mass motion is neither monotonous nor periodic. We discuss the thresholds
between these domains.
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I. INTRODUCTION

Two point particles interacting with an external periodic
potential and moving on a line are a toy model of an adatoms
cluster moving on a surface [1–3]. Because of the underlying
periodic potential, the normal modes of the dimer, center-of-
mass motion, and relative motion are coupled nonlinearly so
that this seemingly simple system exhibits a surprisingly rich
dynamics.

Indeed, in such a conservative system, a resonant energy
exchange between two oscillatory modes is possible. Relevant
examples are coupled Duffing oscillators [4–7], the swinging
spring which may evidence resonant behavior. when the fre-
quencies of the elastic and pendular oscillations are in the ratio
2:1 [8,9], and quasiperiodic oscillations observed in accretion
disks of massive neutron stars or black holes [10–13]. Such
resonances are called autoparametric because there is no ex-
ternal forcing.

These resonances in a nonlinear conservative system are
usually difficult to analyze [14]. In a previous paper [15] we
have studied a dimer in a periodic potential in two limiting
cases, when the initial energy and the stiffness are small
enough for the dimer particles to remain trapped in adjacent
potential wells and conversely when the initial energy and
the stiffness are high enough for the external potential to be
a small perturbation, so that the dimer basically slides along
the potential with small relative oscillations of the particles. In
both cases a small natural parameter appears that allows a per-
turbative approach. Nevertheless, the dynamics of the dimer
is much richer, and we extend our previous work with nu-
merical simulations in which we explore the two-dimensional
parameter space defined by the stiffness of the harmonic in-
teraction between the particles and by the initial energy of the
dimer. Surprisingly enough, we observe that many features
of our perturbation analysis may be extended to parameter

regions in which they should not be accurate. In particular,
the autoparametric resonance thresholds are valid on a very
large parameter range. We also exhibit new regimes, which are
out of reach of our perturbative approach, in which the dimer
particles may either jump to nonadjacent potential wells or in
which the center of mass motion may be a nonmonotonous
sliding along the external potential. All these behavior may be
summarized in a behavior map with a quite simple structure.

In Sec. II we describe our system, giving an energetic
analysis of this conservative system useful to apprehend
and classify its main behavior. We also provide a dynami-
cal analysis which reminds the main results of our previous
perturbative approach. In Sec. III we recall the main character-
istics of the parametric instability. We summarize the various
behavior available to the system for a given initial energy and
a given stiffness in a behavior map. In the next sections, we put
the focus on the trapped motions (Sec. IV), the sliding motions
(Sec. V), and eventually the jumping motions (Sec. VI). In
Sec. VII we summarize our work.

II. A DIMER IN A PERIODIC POTENTIAL

We consider a dimer in an external periodic potential of
period a,

Uext (x1, x2) = U0

(
2 − cos

2πx1

a
− cos

2πx2

a

)
, (1)

where xi is the spatial coordinate of the ith particle (i = 1, 2)
and 2U0 is the potential barrier per particle. The interaction
between the particles is described by a harmonic potential of
stiffness k for which we assume that the equilibrium length,
a, is the same as the period of the external potential,

Uel (x1, x2) = k

2
(x2 − x1 − a)2. (2)
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FIG. 1. Potential energy surface for two different stiffnesses. The red dots are the set of maxima {(2p + 1)π, 0}. (a) K = 0.0792 < KS .
The black dots are the set of saddle points given by Eq. (10). (b) KR > K = 0.3958 > KS . The black dots are the set of saddle points given by
Eq. (9).

The equations of motion are

mẍ1 = k(x2 − x1 − a) − (2πU0/a) sin(2πx1/a), (3)

mẍ2 = k(x1 − x2 + a) − (2πU0/a) sin(2πx2/a), (4)

where m is the mass of each particle and ẍi ≡ d2xi/dt2.
We rescale the variables using a/2π as the unit length and

U0 as the unit energy, so that
√

ma2/4π2U0 is the unit time
and K = ka2/4π2U0 is the dimensionless stiffness. In these
units, U0 = 1 but we keep writing it in order to follow the role
of the external potential. We introduce the normal modes as

x ≡ x1 + x2

2
− π, y ≡ x2 − x1

2
− π, (5)

in dimensionless units, where x is the center-of-mass co-
ordinate and y is the relative coordinate (RC). With these
variables, the equations of motion become

ẍ = −U0 sin x cos y, (6)

ÿ = −2Ky − U0 cos x sin y. (7)

A. Energetic analysis

The dimer in a periodic potential is a conservative system
with potential energy

E (x, y) = 2U0(1 − cos x cos y) + 2Ky2. (8)

Since U0 is the energy scale, the two relevant parameters in
this energetic analysis are the stiffness K and the mechanical
energy E0 of the dimer. A plot of the potential energy surface
as a function of x and y is shown in Fig. 1. An instantaneous
state of the dimer is characterized by (x(t ), y(t )). In order to
identify the various dimer behavior that may be encountered,
it is convenient to analyze the trajectories of (x(t ), y(t )) above
the potential energy surface according to the values of (E0, K ).

The potential energy surface has local minima E0 = 0 at
the points (xp = 2pπ, yp = 0), where p is an integer. Let us
consider a dimer in the well centered on the minimun (0,0)
and follow its behavior when its initial energy is increased. For
a rigid dimer, K > KR = U0/2, the only other critical points
of the potential energy surface are [xp = (2p + 1)π, yp = 0],
with p an integer, and they are saddle points with energy 4U0.

This dimer remains inside its energy well as long as its initial
mechanical energy E0 is smaller than 4U0. When E0 > 4U0,
the system may get out of its well and drifts over the un-
derlying potential with a center-of-mass motion |x(t )| > π

without large deformation that is for RC such that |y(t )| < π .
When K < KR, the points [xp = (2p + 1)π, yp = 0] are local
maxima and another set of saddle points exists. For U0/π <

K < U0/2, these critical points are

xp = (2p + 1)π,
2K

U0
y∗

= sin y∗ E∗ = 2U0

(
1 + cos y∗ + y∗ sin y∗

2

)
< 4U0,

(9)

where p is an integer and E∗ is the relevant energy. For these
stiffnesses, an energy E∗ is necessary to escape the potential
well. Last, for a softer dimer, K < KS = U0/π , the set of
points [xp = (2p + 1)π, yp = 0] and {xp = (2p + 1)π, y∗ ∈
[π/2, π ]} both become local maxima, and there is another set
of saddle points of smaller energy,

xp = ± arccos

(
2K

U0

yp

sin yp

)
, yp = (2p + 1)

π

2
. (10)

with p an integer. The energy of these saddle points with p =
0 is ES (K ) = 2U0 + Kπ2/2 < U0(2 + π/2) < 4U0. Such a
soft dimer may escape its initial potential energy well for an
even lower energy than in the previous cases.

This simple energetic analysis allows the identification of
three regimes. When (x(t ), y(t )) remains in their initial well,
we will speak of a trapped dimer configuration. When the
center-of-mass trajectory x(t ) evidences a monotonous time
evolution, while the dimer undergoes small deformations with
a RC such that |y(t )| < π , we will speak of a sliding dimer
configuration. When the center of mass x(t ) extends on several
wells with irregular and/or reversible hopping (hence |x(t )| >

π ) and/or when the dimer evidences a strong distorsion with
a RC such that |y(t )| > π , we will speak of a jumping dimer
configuration.

These various configurations are illustrated in Figs. 2 and
3 which display the orthogonal projection of the dimer trajec-
tory (x(t ), y(t )) on the relevant potential energy surface (the
actual dimer trajectory takes place in a constant mechanical
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FIG. 2. Left panel: Potential energy surface (the energy increases
from dark blue to yellow) with the orthogonal projection of the dimer
trajectory on it (the time increases from pink to yellow). Right panel:
Center-of-mass amplitude x(t ) (cyan) and RC amplitude y(t ) (red)
as a function of time. Top plots: Trapped dimer, E0/4U0 = 0.5 and
K = 0.25KS . Bottom plots: Sliding dimer, E0/4U0 = 1.2 and K =
1.75KS . See text for details.

energy plane). The top plots of Fig. 2 evidences an example
of trapped dimer configuration. Its mechanical energy is both
less than 4U0 and than ES (K ). The center-of-mass and RC
trajectories remain confined in the initial potential well. The
bottom plots of Fig. 2 evidences a sliding dimer configuration
for which the relevant mechanical energy is greater than 4U0.
The center-of-mass trajectory is then a monotonous function
of time that extends over several periods of the underlying
periodic potential, whereas the RC trajectory exhibits a slow
modulation with an amplitude that is much less than π .

In Fig. 3 we provide two examples of jumping configu-
rations. In the top plots the dimer mechanical energy is less
than 4U0 but greater than ES (K ) and K < U0/π . The dimer
is thus energetically able to escape its initial potential energy
well by the saddle point (10) as shown by the center-of-mass
and RC trajectories. In the bottom plots, the dimer mechanical
energy is greater than 4U0, and the center-of-mass motion is
of much larger amplitude than the RC motion. In contrast with
the bottom plots of Fig. 2, the center-of-mass trajectory is not
a monotonous function of time.

B. Dynamical analysis

1. Perturbative approach

Beyond this energetic analysis, it is the opportunity of
the parametric amplification of the RC by the center-of-mass

FIG. 3. Illustrations of the jumping regime. The color code is the
same as in Fig. 2. Top plots: E0/4U0 = 0.7 and K = 0.45 KS . Bottom
plots: E0/4U0 = 1.05 and K = 1.2 KS . See text for details.

motion as a consequence from their coupling which mainly
determines the dynamics of x and y. Despite its apparent
simplicity, the system of Eqs. (6) and (7) is not integrable and
one must resort to approximations in order to find analytical
expressions of x and y. In Ref. [15] we provide a rigorous
analysis in two limiting cases. The key point was to exhibit
a small parameter ε and to built a perturbation expansion in
powers of ε that includes nonlinear effects in a consistent
fashion.

For a trapped dimer, we set ε2 = E0/4U0 and we assume
|ε| � 1. Physically, this ensures that the dimer cannot
escape the well in which it is initially set since in this
case E0 < ES (K ). The center-of-mass amplitude x and
the RC amplitude y are assumed to be of order O(ε).
Using a perturbation expansion, we obtain the amplitude
equations for both motions, valid at order ε3. These amplitude
equations evidence an autoparametric instability [12], that is,
a parametric amplification of the RC motion by the center-of-
mass motion, when the stiffness of the dimer interaction is of
order K = O(ε2). A complete solution then may be found:

x(t ) = 2εa cos(�0t + φ), y(t ) = 2εb cos(�0t + ψ ).

(11)

The frequency �0 = √
U0 is equal to one in our units. The

relevant dynamical variables are the amplitudes a and b
and the phase difference θ = 2(φ − ψ ) are found to be
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slowly varying functions of time with dynamics given by the
amplitude equations as

∂a

∂s
= ab2

4
sin θ, (12)

∂b

∂s
= −a2b

2
sin θ, (13)

∂θ

∂s
= 2K̃ + 1

2
(b2 − a2)(1 + cos θ ), (14)

where we set K ≡ ε2K̃ with K̃ of order one. The slow
timescale s was found to be of order ε2t . The autoparametric
amplification of the RC by the center-of-mass motion
happens for stiffnesses such that 0 < K � KI (ε), where
KI (ε) = ε2/2 = E0/8U0.

The other limiting case studied in Ref. [15] is the sliding
dimer, when the initial kinetic energy of the center of mass
is such that the periodic potential is a small perturbation. In
this configuration we assumed |ε−1| � 1. Physically, this is
tantamount to assume that the dimer initial kinetic energy is
much larger than the depth of the potential well. Then the
dimer motion is basically a monotonous translation of the
center of mass with small oscillations of particles around their
equilibrium distance. Assuming x = O(1) and y = O(ε−1)
the amplitudes of the normal modes were found to be

x(t ) = V0t + c sin V0t, y(t ) = 2

ε
b cos

(√
2Kt + ψ

)
, (15)

where V0 = √
E0 − 2U0 is simply the average center-of-mass

velocity when it slides far above the periodic potential which
then appears as an uniform potential of average value 2U0. In
the sliding regime, E0 � U0, and thus V0 = √

E0(1 − U0/E0).
E0 is the kinetic energy given initially to the center of mass,
so that the constant c is such that E0 = vx(t = 0)2 = V 2

0 (1 +
c)2. Since c is a small correction, we get c = U0/E0 = 1/4ε2.
The amplitude b and phase ψ are slowly varying functions
that depends on the slow timescale s = ε−2t . A parametric
resonance of the RC induced by the center-of-mass motion
can happen if the dimer stiffness is strong enough. In our units
the instability tongue is given by [16]

K<
I ≡ E0

8U0
− 1

2
� K � K>

I ≡ E0

8U0
. (16)

2. Beyond the perturbative approach

The theoretical analysis of Ref. [15] is based on per-
turbation expansions that require a small parameter. By
construction, its validity range is thus a priori restricted.
In the trapped regime, we assume small stiffness and small
motions, and in the sliding regime we assume monotonous
center-of-mass motion, small RC, and a large stiffness. How-
ever, our previous numerical results suggest that the actual
range of validity might be less restricted than expected. For
instance, in the trapped regime, the phase portrait of the
amplitude equations (12), (13), and (14) evidences an excel-
lent agreement with the numerical simulations for ε ≈ 0.224
(that is, E0/4U0 ≈ 0.050). In the sliding regime, an excellent
agreement between the simulations and the predictions of
the amplitude equation is observed for ε−1 = 0.35 (that is,

E0/4U0 ≈ 8.16), and we have to take ε−1 = 0.63 (E0/4U0 ≈
2.52) to observe significant discrepancies.

The simulations of Ref. [15] were designed to test the
validity of our theoretical analysis, and consistently they were
limited to small values of the relevant perturbative parameter.
A necessary condition for the validity of the perturbation ex-
pansions, whether in the case of a trapped dimer or in the case
of a sliding dimer, is the smallness of the RC amplitude. One
of the purposes of the present work is to extend the parameter
range outside the requirements of the perturbation expansions.
Large values of the relevant perturbative parameter are needed
to evidence significant quantitative discrepancies, and most
qualitative features are observed up to the largest available
values. For instance, in the trapped regime, the frontier be-
tween parametrically stable and unstable systems extends on
the whole range 0 � E0/4U0 � 1. Moreover, we identify in
what follows the parameter ranges in which the jumping takes
place.

III. OVERVIEW OF DIMER MOTION

In this section, we summarize the dimer motion observed in
our simulations in the relevant parameter space {K, E0/4U0}.
We numerically integrate the system (6) and (7) using the
Verlet algorightm [17], with a time step of 7.7 × 10−3 in
dimensionless units. We explore the range 0 � K � 0.633
on the abscissa and 0 � E0/4U0 � 2 on the ordinate. The
resolution on the abscissa axis is 1.40 × 10−5 for E0 � 4U0

and 1.60 × 10−5 for E0 � 4U0. The resolution on the ordi-
nate axis is 2.00 × 10−3. The whole results are provided by
535 000 numerical simulations, of duration 	t = 3.07 × 103

in dimensionless time. The analysis of such an amount of
simulations requires some automatic analysis process, in par-
ticular to identify the parametric instability threshold. This
process is discussed in Sec. III A. The behavior map is dis-
played and discussed in Sec. III B.

A. Identification of the parametric instability

The main characteristic of the parametric resonance of the
RC is the exponential growth of its amplitude, which is not
easy to detect since it is only a transient. To overcome this
difficulty, we have performed a numerically efficient process
that provides a clear evidence when the dimer gets inside its
domain of instability. Indeed, when the initial phase difference
between the center-of-mass and RC motions is well chosen,
the initial behavior of the RC motion is radically different on
both sides of the instability boundary.

Our automatic process consists in ascertaining the initial
variation of the RC amplitude y(t ) as a function of time. Let us
first consider the trapped case. In our simulations process, we
seek the possibility of parametric instability of the RC then the
initial energy E0 is almost entirely given to the center of mass.
In order to apply the same method in all simulations even for
the sliding case, this initial energy is injected as the kinetic
energy of the center of mass. A very small perturbation of the
RC triggers the instability (the relevant energy is 10−3E0).

In the trapped configuration the initial phase difference
θ (t = 0) ≡ θ0 indicates whether this disturbance is kinetic
(θ0 = 0) or elastic (θ0 = π ). If this perturbation is such that
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 4. RC amplitudes y(t ) as a function of time for an initial phase θ0 = π [(a)–(d)] and θ0 = 0 [(e)–(h)]. For plots (a) and (b) and then (e)
and (f) we set ε = √

E0/4U0 = 0.60 and for plots (c) and (d) and then (g) and (h) we set ε = 0.95. In plots (a), (c), (e), and (g) the stiffnesses
are such that K = KI (ε) − δK (ε) with δK (ε) = KI (ε)/20, and consistently y(t ) evidences a parametrically unstable behavior. In plots (b), (d),
(f), and (h) the stiffnesses are such that K = KI (ε) + δK (ε), and consistently y(t ) evidences a stable behavior. The black dashed lines indicate
the square root of the initial energy of the RC.

θ0 = 0, then we observe that the RC amplitude y(t ) initially
increases when the system is in the parametric instability do-
main whereas it decreases when the system is parametrically
stable. In contrast, if the disturbance energy is a potential
elastic energy (θ0 = π ), then the RC y(t ) increases on both
side of the transition border. This is consistent with our model
for small values of ε. Indeed, with initial conditions a0 	= 0,
b0 � a0, and θ0, a linear stability analysis of Eqs. (12) to
(14) provides the initial evolution of b(t ). If θ0 = 0, then
we get δθ̇ 
 2K̃ − 1. Therefore, b will begin to decrease if
K̃ > 1/2 and then sin θ > 0 and to increase if K̃ < 1/2 so that
sin θ < 0. In contrast, for θ0 = π we get δθ̇ = 2K̃ � 0, so θ

and b(t ) will begins to increase, with sin θ < 0, regardless of
the value of the stiffness.

These changes of behavior along the instability boundary
are consistent with the perturbative analysis. Indeed, at the
instability boundary K̃ = 1/2, there is a fixed point a = 1,
b = 0, and θ0 = 0 of the amplitude equations. However, this
effect is not restricted to small values of E0/4U0 and takes
place for values of ε that are far away from the perturbative
method requirements. This is evidenced in Fig. 4, which dis-
plays clear changes of initial evolution of y when θ0 = 0 and
when θ0 = π for the rather large value ε = 0.95. Therefore,
we use this method to automatically identify the parametric
instability boundaries in the whole range 0 � ε � 1.

In the sliding configuration the initial phase ψ (t = 0) ≡
ψ0 indicates whether the initial disturbance is provided by ki-
netic energy (ψ0 = π/2) or potential elastic energy (ψ0 = 0).
In this configuration, two parametric instability boundaries
have to be identified. In order to use the same kind of auto-
matic determination of the boundaries, the most appropriate
initial phase ψ0 has to be chosen for each of them. As in the
previous case, we use our previous perturbative analysis out
of its validity range. The assignment procedure is detailed in
Appendix C.

B. Behavior map

The dimer motion observed in our simulations are summa-
rized in the behavior map shown in Fig. 5, which indicates the
state of the dimer as a function of the control parameters. At

first glance, we can assign domains in the plane {E0/4U0, K}
to the three kinds of configurations (trapped, sliding, jumping)
described in Sec. II A.

Below the transition line KI (ε) (orange line in Fig. 5),
the dark blue area corresponds to parametrically stable RC
oscillations. Above this line, we find an area where the RC
oscillations are parametrically unstable (light blue). This is
consistent with the perturbative analysis of Sec. II B 1 about
the autoparametric instability of the dimer, but it is quite
remarkable that the threshold KI (ε) extends to the whole range
of ε, even when the perturbation expansion requirements are
not a priori fulfilled.

FIG. 5. Map of dimer behavior. This map is established for an
initial energy of the RC 0.001E0, the initial phase difference is θ0 = 0
(i.e., ψ0 = π/2 in the case E0 � 4U0 and ψ0 = 0 in the case E0 �
4U0). The dark blue areas represent a parametrically stable RC. The
light blue areas represent a parametrically unstable RC. The green
area represents a jumping motion of the system. The orange line is
the instability threshold KI , the yellow line is the instability threshold
K<

I , and the magenta line the instability threshold K>
I . The white

curve represents the minimal necessary energy for a given stiffness to
observe a jumping motion. The white vertical dashed lines indicate
the stiffnesses KS and KR. The center-of-mass and RC motions are
plotted in Fig. 13 for energy EI

0 , in Fig. 15 for energy EII
0 , and in

Fig. 14 for energy EIII
0 .
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For E0 < 4U0 (ε2 < 1), let us describe the dimer motion
when we increase the initial energy of the dimer at a given
stiffness K < U0/2. At low initial energy the dimer motion
is stable, then as the initial energy increases the RC motion
becomes parametrically unstable and eventually at larger ini-
tial energy the dimer motion reaches the jumping regime (the
green area). The straight white line ε2 = 1/2 + Kπ2/8U0,
which corresponds to the energy of the saddle point of Eq. (10)
for 0 � K � U0/π , and the white curve E∗(y∗), which is an
implicit function of K and corresponds to the energy of the
saddle point of Eq. (9) for U0/π � K � U0/2, have been
plotted. As shown in Sec. II A, an initial energy above these
limits allows large motion of the dimer. For K > 0.1, the
agreement between the predictions of our energetic analysis
is excellent because the jumping regime consistently happens
above these theoretical limiting curves. However, at smaller
stiffness, there is a surprising domain with K < U0/π and
ε2 > 1/2 + Kπ2/8U0 in which the dimer is not in the jump-
ing regime as expected but remains trapped. This is not an
artifact of our automatic analysis of the simulations data. To
verify this point, we show in Fig. 13 the dimer trajectories
registered for the constant initial energy EI

0 and for stiffnesses
that increases from K1 to K6. This figure is discussed further
in Sec. VI, but we already remark that it confirms the identifi-
cation of the various areas in the behavior map.

When E0 > 4U0 (ε2 > 1), the dimer motion may exhibit
stable sliding, with one-way translation of the center of mass
and small oscillations of the RC, parametrically unstable slid-
ing with large oscillations of the RC and an oscillatory motion
of the center of mass overlaid on its one-way translation, or
a jumping behavior with nonmonotonous translation of the
center of mass and large oscillations of the RC. We have
plotted on the map the transition lines of the parametric in-
stability K<

I and K>
I deduced from the perturbative analysis.

The behavior map in Fig. 5 is restricted to rather small values
1 � E0/4U0 � 2, so that the relevance of the perturbation
expansion is questionable. Along the border K<

I , for a given
energy E0, the dimer behavior changes from a stable ampli-
tude oscillation to a jumping regime when K increases. This is
confirmed by the direct observation of the dimer trajectories,
as shown in Fig. 14, where we plot the dimer trajectories
registered for the constant initial energy EII

0 and for stiffnesses
that increases from K7 < K8 < K9. The upper trajectories for
K = K7 [slightly lower than K<

I (EIII
0 )] clearly display a para-

metrically stable motion, whereas the middle trajectories for
a stiffness K = K8 [slighty greater than K<

I (EIII
0 )] clearly

displays a jumping motion.
The border K>

I , at these small values of the parameter
E0/4U0, is rather irrelevant to describe the parametric insta-
bility of the RC. This is shown in Fig. 15, where we plot the
dimer trajectories registered for the constant initial energy EII

0
and for stiffnesses K10 < K11 < K12. There is no difference in
the trajectories for K11 and K12 which are on opposite sides of
the transition line K>

I (EII
0 ).

In the stable domain K < K<
I , a very thin domain with

unstable RC motion is seen (thin cyan line in the upper left
corner of Fig. 5). In this domain, the RC motion evidence
characteristics that are similar to a parametric resonance. We
interpret this behavior as a nonlinear effect that induces a
parametric amplification of the RC motion when its frequency
(
√

2K) is equal to V0/4. Such an effect has been described in

Refs. [18,19], and we discuss the link between these papers
and our system in Appendix B. In the Supplemental Material
of this paper [20] we display some RC trajectories and their
Fourier transform which evidence such a parametric ampli-
fication. The most convincing evidence is that the frequency
of the RC motion is found to be V0/4, in agreement with the
theoretical analysis [18,19]. Let us add that the identification
of such a thin domain in the map of Fig. 5 confirms the
practical efficiency of the automatic process used to identify
the resonances.

IV. TRAPPED REGIME

Let us describe now in more detail the trajectories observed
in the trapped regime. In each simulation described in this
section the center-of-mass motion and the RC are oscillatory,
with an amplitude that is smaller than a period of the external
potential.

In Fig. 6 we give examples of the RC motion, y(t ), when
we follow the transition line for the parametric instability,
KI (ε). We consider three values of ε, namely ε = 0.1 which
is consistent with the perturbative analysis, and ε = 0.4 and
ε = 0.7, which are significantly larger. In the upper panel the
stiffness is far away from the transition line, and we observe
a small RC amplitude, with a smaller slow modulation. We
are very far from the autoparametric amplification limit, so
that the energy exchange between the center-of-mass motion
and the RC are inefficient. In the center panel, the stiffness
is much closer to the transition line but still above. The RC
amplitude is still small, numerically very close to its value in
the upper panel, but two features foreshadow the parametric
resonance. The modulation of the RC amplitude is propor-
tionately higher, and the modulation timescale is much slower
than in the previous case. These beats result from the approx-
imate tuning of the frequencies of the center of mass and RC
[21]. In the bottom panel, the stiffness is below the parametric
instability transition line. Whatever the initial energy injected
in the system, the simulation data evidence the autoparamet-
ric amplification of the RC. When compared to the previous
cases, the RC amplitude is found to be an order of magnitude
larger, the modulation is of much higher relative amplitude,
and the characteristic modulation timescale is much slower.
Moreover, the modulation of the RC amplitude is clearly
not sinusoidal. The RC exhibits a slow periodic modulation,
which physically traces back to the periodic transfer of energy
between the center-of-mass motion and the RC. This periodic
energy transfer is characteristic of autoparametric amplifica-
tion in a conservative system [12,14,15].

We focus on this energy transfer in Fig. 7, where we
plot the center-of-mass motion x(t ) (top, left plot), the RC
y(t ) (top, right plot), and the parametric resonance tongue
(bottom). The duration of the plots is limited to one period
of slow modulation. We have verifyed the energy conserva-
tion in the simulations, and consequently a decrease of the
center-of-mass motion amplitude x(t ) is observed when the
RC amplitude y(t ) increases. Taking advantage of these very
slow modulation timescales (note that the fast oscillations are
not resolved), we can define instantaneous frequencies �x

and �y for the dimer fast oscillations. The RC amplitude
is parametrically amplified by more than 50, but it remains
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FIG. 6. RC amplitude y(t ) as a function of time (pay attention
to the abcissae scale) in the parametrically stable cases (upper and
center panels) and parametrically unstable case (lower panel). From
top to bottom for each panel: ε = 0.10, ε = 0.40, and ε = 0.70.
Upper panel: K = 1.00 ε2; middle panel: K = 0.57 ε2; lower panel:
K = 0.43 ε2. The dimer is parametrically unstable for KI � ε2/2.

much less than the external potential period. Therefore, the
RC may be described in first approximation by an effective
Mathieu equation (see Appendix A), which allows us to de-
scribe the stability chart for parametric amplification in the
plane (�y/�x, h), as seen in the bottom plot of Fig. 7. The
points numbered from 1 to 6 are indicated on the center-of-
mass motion plot, and they are shown in the stability chart
for their relevant fast oscillation frequency ratio �y/�x and
their corresponding forcing amplitude h. As can be seen, the

parametric amplification stops when the parameters �y/�x

and h reach the parametric instability boundary. The direction
of energy transfer is then reversed until the system returns to
its initial position, and so on. It appears that when the system
is within the parametric instability tongue, even if the relevant
parameters change on a slow timescale, the autoparametric
resonance ensures that this conservative system cannot exit
the instability tongue.

In order to verify the relevance of the parametric forcing
of the RC by the center-of-mass motion, we plot in Fig. 8 the
evolution of the Fourier spectra of x(t ) and y(t ) for ε = 0.4
when the stiffness K (ε) decreases from a value far above the
transition line KI (ε) (the top four plots in Fig. 8) toward a
value that is just below this transition line, so that the system
is parametrically unstable (the bottom plot of Fig. 8). The
center-of-mass motion does not depend on the stiffness, and
consistently the relevant peak �x in the Fourier spectrum
(cyan solid curve) is basically the same in all plots. The
frequency spectrum for the RC (red solid curve) exhibits a
peak at a higher frequency �y than for the center-of-mass
motion, which consistently decreases with the stiffness. In the
intermediate stiffness range (plots 2 to 4 from top to bottom)
the slow modulation of the RC by the center-of-mass motion
is reflected in the emergence of a low frequency peak due
to the nonlinearities, roughly �y − 2�x (note that another
peak at �y + 2�x may be seen if we extend the abscissa
axis). Eventually, when the parametric instability threshold is
reached, these three peaks merge in a large peak with several
harmonics. When the system is parametrically unstable, the
fast oscillations frequencies of the oscillators x and y are
perfectly tuned and both spectrum display a single peak en-
riched by harmonics. This frequencies merging evidences the
parametric instability.

The numerical data so far show that the transition line
KI (ε), which is calculated perturbatively for small ε, has a
much larger validity range, up to ε → 1. In order to strengthen
this observation, we compare the simulations data to other
predictions deduced from the perturbative analysis. In prac-
tice, we compare the amplitude extrema of the motions x(t )
and y(t ) and their slow modulation period T given by our
perturbative analysis to our numerical simulations.

As seen in Fig. 7 the center-of-mass and the RC amplitudes
exhibit a minimum xmin and a maximum ymax, respectively.
These extrema are derived in Ref. [15] and when recast in our
units they read

x2
min = 8K, y2

max = E0 − 8K. (17)

These expressions are derived for a parametrically unstable
system. In the parametrically stable domain (K > ε2/2) there
is basically no energy transfer between the two oscillations
modes and the oscillation amplitudes do not depend on K . In
contrast, in the parametrically unstable domain, both extrema
strongly depend on K . In the left panel of Fig. 9 we plot the
amplitude extrema deduced from the simulations data as a
function of K (symbols) and compare them to Eq. (17) (solid
line), for several values of ε. This agreement is excellent for
ε � 0.4 and it requires a large value, ε = 0.7, to evidence a
clear discrepancy.

An analytic expression of the slow modulation period
for a parametrically unstable system is easily found from
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FIG. 7. Upper panel: Amplitudes of the center-of-mass motion (cyan) and RC (red) as a function of time for ε = 0.2 and K = KI (ε)/5.
The black dashed line indicates the minimum amplitude of the center-of-mass motion, Eq. (17). Lower plot: Instantaneous positions of the
system in the parametric instability tongue (green dotted lines). See Appendix A.

Eqs. (25) to (27) of Ref. [15]. In the right panel of Fig. 9
we compare the analytical expression of T (solid line) to the
numerical estimate (symbols) as a function of K for several
values of ε. This period may be also easily deduced from
the simulation data, since it is the time interval between two
amplitude extrema. In the parametrically stable domain, T is
the period of the beats between the center-of-mass motion

and the RC, and its growth is due to the frequencies merging
discussed before Another way to interpret the divergency of
the period T is by the critical slowing down at the parametric
instability threshold. The agreement between the simulations
data and the analytic predictions is excellent for ε � 0.4
and it requires a large value, ε = 0.7, to evidence a clear
discrepancy.

(a)

(b)

(c)

(d)

(e)

FIG. 8. Fourier transforms of the center-of-mass (cyan) and RC (red) amplitudes for ε = 0.4. The stiffness K is (a) 2.5KI (ε), (b) 1.5KI (ε),
(c) 1.1KI (ε), (d) 1.01KI (ε), and (e) 0.99KI (ε). The plot (e) corresponds to a parametrically unstable dimer, the plots (a)–(d) to a stable dimer.
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FIG. 9. Extrema (left panel) of center-of-mass (blue and cyan) and RC (red and magenta) amplitudes and periods (right panel) of their
energy transfer as a function of the stiffness K . From top to bottom: ε = 0.1; 0.4; 0.7. The solids lines are analytical predictions, the dots
simulations data. Left panel: Maxima (open circles) and minima (crosses) of the amplitudes. In all plots the orange dashed line represent the
frontiers of instability for the relevant ε [i.e., KI (ε)]. Left side of the orange dashed line: RC is parametrically unstable. Right side of the orange
dashed line: RC is stable.

The center-of-mass and the RC amplitudes, together with
their characterisctic modulation times both confirm that our
perturbative method is a good guide to analyze the features of
the trapped regime on a much wider range of ε than what may
be expected a priori.

V. SLIDING REGIME

This regime is reachable when E0 > 4U0, and the relevant
perturbative analysis assumes that ε−1 is a small parameter
(see Sec. II B 1). The center-of-mass trajectory is basically a

translation, but the underlying periodic potential induces some
oscillations around a straight trajectory. These oscillations are
the weaker the higher the kinetic energy of the center of mass.
As an example, we show in Fig. 10 two center-of-mass tra-
jectories. A quantitative comparison between the simulations
data and the theoretical analysis, Eq. (15), evidences an excel-
lent agreement for ε−1 = 0.40, which is to say that the validity
range of the perturbative analysis is roughly 0 < ε−1 � 0.4.
Some discrepancies are seen for ε−1 = 0.95, but even for this
very high value of the perturbation parameter the qualitative
features of the sliding regime are very well described.
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FIG. 10. Trajectories of the center of mass in the sliding regime
for K = 3KR/2. The dotted lines represent the numerical simulations.
The solid lines are the analytic results of Eq. (15). Red and cyan
curves: ε−1 = 0.4; blue and magenta curves: ε−1 = 0.95. Insets: We
highlight the modulation of the center-of-mass trajectory by sub-
tracting a linear fit for the numerical simulation (dashed line) and
compare it to the oscillating component of the center-of-mass motion
given by Eq. (15) (solid line).

In the sliding regime, from the results of the perturbative
analysis, we expect for the RC a parametric instability, for
a given parameter ε−1, when the stiffnesses K is such that
K<

I (ε−1) � K � K>
I (ε−1). In Fig. 11 we display the RC am-

plitude as a function of time very near the two instability
threshold K<

I and K>
I for an initial energy such that ε−1 =

0.4. In the parametrically unstable domain, the parametric
amplification is exhibited by the simulation data with an
amplification ratio that is almost 200 for K > K<

I (ε−1) and
200 for K < K>

I (ε−1), and the characteristic timescale for
this amplification is very slow. In the parametrically stable
domain, since we are close to the threshold, the character-
istic slow timescale beats are observed. In our conservative
autoparametric system, the RC in the parametrically unstable
domain is periodic, but the plots in Fig. 11 are limited to a
single period.

The autoparametric instability may also be illustrated in
the frequency domain. In the sliding regime, the basic motion
of the center of mass is a translation with average velocity
V0, as seen from Eq. (15). Assuming a small amplitude of
the RC motion, and injecting the basic center-of-mass motion
in Eq. (7), we get for y a Mathieu equation with a forcing
induced by the center-of-mass motion at frequency V0, and
hence a parametric instability at frequency V0/2. For a para-
metrically stable dimer, the characteristic frequency of the RC
is

√
2K . We plot in Fig. 12 the frequency spectrum of the

RC when K → K<
I (top panel) and K → K>

I (top panel). In
both panels the stiffness increases from top to bottom. When
K < K<

I the RC exhibits a frequency peak below the forcing
frequency V0/2. When K increases, this peak moves to the
left and another peak appears above V0/2. This latter is due to
the nonlinearities. Eventually, when K → K<

I the parametric
instability is reached and the RC motion synchronizes with the
parametric forcing frequency (see bottom plot of top panel). In
this case, because of the parametric amplification the RC mo-
tion becomes an oscillation with a large amplitude modulation

FIG. 11. Trajectories of the RC for ε−1 = 0.4 very close to the
thresholds of parametric instability K<

I (ε−1) and K>
I (ε−1). Upper

panel: ψ0 = 0; left plot: K = 0.993K<
I (ε−1) (stable); right plot: K =

1.007K<
I (ε−1) (unstable). Lower panel: ψ0 = π/2; left plot: K =

0.993K>
I (ε−1) (unstable); right plot: K = 1.007K>

I (ε−1) (stable).

(see the upper right plot in Fig. 11) and consistently its fre-
quency spectrum evidences many harmonics. When K > K>

I
the RC exhibits a frequency peak above the forcing frequency
V0/2. Reading the lower panel from bottom to top, we get the
same features as in the previous case. In the parametrically
unstable case (top plot of lower panel in Fig. 12) the frequency
spectrum is rather poor in harmonics, which is consistent with
the rather small parametric amplification of the RC in that case
(see the lower left plot in Fig. 11).

VI. JUMPING REGIME

Let us now consider the jumping regime, which means that
basically motion of the center of mass is neither oscillating
nor monotonic, and the particles are no more separated by a
single potential period.

For E0/4U0 < 1, a necessary condition to observe the
jumping regime is E0 > ES (K ), where the energy of the saddle
point is ES (K ) = 2U0 + Kπ2/2 for K < KS and ES (K ) = E∗
defined in Eq. (9) for KS < K < KI as discussed in Sec. II A.
When this condition is met, the dimer center of mass may
get out of its initial potential well and/or the RC amplitude
may extend on more than a single period of the external
potential. However, this condition is not sufficient as seen in
Sec. III B since there is a domain in Fig. 5 with E0 > ES (K )
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(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

FIG. 12. Fourier transforms of the relative motion at ε−1 = 0.4. Upper panel: ψ0 = 0. From top to bottom: K = 0.100 K<
I (ε−1),

0.333 K<
I (ε−1), 0.500 K<

I (ε−1), 0.993 K<
I (ε−1), and 1.007 K<

I (ε−1). Lower panel: ψ0 = π/2. From top to bottom: K = 0.993 K>
I (ε−1),

1.007 K>
I (ε−1), 1.500 K>

I (ε−1), 1.667 K>
I (ε−1), and 1.900 K>

I (ε−1). Cyan dashed line: V0/2. The insets are zooms on peaks of small
amplitude.

and a small stiffness (roughly K < 0.1) in which the system
evidences trapped motion. In order to clarify this observation,
we have selected several dimers with increasing stiffnesses
from K1 up to K6, with the same initial energy EI

0 . Following
our automatic detection process (see Appendix C), the dimers
with K1 and K2 are in a trapped regime, the dimers with K3,
K4, and K5 are in a jumping regime, and, last, the dimer with
K6 is in a trapped regime, as indicated in Fig. 5. This is
indeed confirmed by the plots of the center-of-mass motion
x(t )/2π and of the RC y(t )/2π displayed in Fig. 13. Note

that in the trapped regimes the dimer is always parametri-
cally unstable, which explains the large modulation of both
amplitudes.

The configurations K ∈ [K1, K6] correspond to a paramet-
rically unstable RC because ES (K ) is always greater than the
instability limit. The initial evolution of y are thus always
exponential but only the dimer for which the amplitude of
y reaches a critical value, roughly equal to π/2 may escape
suggesting that the dimer escapes through the vicinity of the
saddle points and not strictly through these points. This is
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FIG. 13. Trajectories of the RC (upper panel, red) and the center of mass (lower panel, cyan) at the vicinity and in the jumping
regime for ε = 0.85 (corresponding to the energy EI

0 in Fig. 5). From top to bottom in each panel: K1 = 0.10 KS (ε); K2 = 0.20 KS (ε); K3 =
0.33 KS (ε); K4 = 0.66 KS (ε); K5 = 0.99 KS (ε); K6 = 1.05 KS (ε) .

surprising since we could imagine that, for a given energy, this
access to the critical points could be facilitated by the increase
the y amplitude for small stiffness as its is the case for smaller
energy (see Fig. 9). Nevertheless, the main behavior observed
on both sides of this jumping regime (K1 and K2 on the left
side, K6 on the right side) look like those observed at lower
energy, as shown in Fig. 13.

These results suggest that the energetic condition is not suf-
ficient and that there are dynamical constraints which forbid
x and y to satisfy simultaneously the conditions required to
reach the saddle point.

When E0/4U0 > 1, the jumps consist of a nonmonotonic
motion of the center of mass, with a RC motion that does

not extend on more than a period of the external potential.
In Sec. V, we have described the parametric amplification of
the RC oscillations by the center-of-mass motion of a slid-
ing dimer. A very good agreement was found for ε−1 = 0.4,
which is not a very small value. Nevertheless, we must insist
on the fact that this is equivalent to E0/4U0 ≈ 6.25, which
means that the sliding regime described in Sec. V is outside
the energy range of the behavior map in Fig. 5. In what
follows, we focus on the range 1 � E0/4U0 � 2 in connection
with the Fig. 5, so that the perturbation parameter ε−1 ranges
in [1/

√
2, 1].

Let us first consider the transition line K>
I (ε−1). In the

energy range of Fig. 5, it separates a parametrically stable RC
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FIG. 14. Trajectories of the RC (upper panel) and the center of mass (lower panel) at the vicinity and in the jumping regime for ε−1 = 0.75
and ψ0 = 0 (corresponding to the energy EIII

0 in Fig. 5). From top to bottom in each panel: K7 = 0.95K<
I (ε−1); K8 = 1.01K<

I (ε−1); K9 =
1.2K<

I (ε−1). Note that the saturation of the RC amplitude and the first deviation of the center of mass from a monotonic trajectory for K8 and
K9 take place at the same time.

motion for K < K>
I (ε−1) from a jumping regime. This is at

odds with the perturbation expansion, which is not surprising
since ε−1 is not small. This is illustrated in Fig. 14, where
we plot y(t ) and x(t ) for a constant initial energy EIII

0 an
increasing values of the stiffness, K7 < K8 < K9. For the first
point, K7 < K>

I (ε−1), and the dimer motion is consistently
stable since the stiffness is below the parametric instability
threshold. For the two other points, the stiffness is above this
threshold, and the dimer motion are in the jumping regime,

with a nonmonotonous motion of the center of mass. For
the dimer with stiffness K8, which is only slightly above the
parametric instability threshold, we clearly see an exponen-
tial increase of the RC amplitude at the beginning of the
simulation.

Last, let us consider the transition line K<
I (ε−1) in Fig. 5

for E0/4U0 > 1. The expansion parameter ε−1 is larger than
0.85, so that a poor agreement with the analysis that assumes
ε−1 � 1 is not surprising. Our automatic detection process
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FIG. 15. Trajectories of the RC (upper panel) and the center of mass (lower panel) at the vicinity and in the jumping regime for ε−1 = 0.9
(corresponding to the energy EII

0 in Fig. 5). The initial energy of the RC motion is 10−3EII
0 and is randomly distributed between a kinetic part

and a potential part. From top to bottom in each panel: K10 = 0.800 K>
I (ε−1), K11 = 0.975 K>

I (ε−1), and K12 = 1.025 K>
I (ε−1).

(see Appendix C) predicts a somewhat blurred limit between
dimers in a jumping regime and dimers in a stable sliding
regime. This is confirmed by the plots of the relevant trajec-
tories displayed in Fig. 15. We fix an initial energy EII

0 such
that ε−1 = 0.90 and choose increasing stiffnesses from K10 to
K12. For the stiffness K10 the dimer motion are fully consistent
with a jumping regime. In contrast, for K11 and K12 the dimer
motion is such that the center-of-mass motion is a translation
and the RC a small oscillatory motion, that is a stable sliding
motion of the dimer.

VII. CONCLUSION

A dimer in a periodic potential is a simple system with a
complicated dynamics. It is conservative but not integrable. Its
motion are determined by its initial energy and the stiffness of
the interaction between the particles.

The systematic analysis of the dimer behavior through
numerical simulations for a wide range of stiffness K and
energy E0 allows us to dress a global overview of the sys-
tem although it is not necessary exhaustive. The numerical
observations such as the exponential growth of the RC and
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the merging of frequencies of the center of mass and RC
evidence the parametric instability of the RC for a soft spring
in the trapped configuration and a rigid spring in the sliding
configuration. We also show that the theoretical predictions
obtained within the frame of parameter ε such that ε � 1
can be extended for higher values with a good agreement.
In particular discrepancies may appear but the tendencies are
preserved concerning the extrema amplitude and the period of
the energy exchange in the trapped configuration. Moreover
in both cases the instability boundaries seem to stay valid
for ε up to 1, although for high values of ε the exponential
amplification is distorted.

In the behavior map, a jumping domain is evidenced, for
which the center of mass and RC follow irregular motions
over several wells of the potential energy surface. This regions
is strongly related to the parametric instability domain since it
requires a large deformation of the dimer to overcome the po-
tential energy barrier given by the energy of the saddle points
in the E0 < 4U0 configuration or to destabilize the center-of-
mass trajectory in the E0 > 4U0 configuration. In particular
the energetic analysis allows to delimit the jumping region in
the E0 < 4U0 configuration. However, it is not sufficient since
a domain in which the energetic analysis predicts a possible
exit of the initial well is not subjected to jumping motion.
This regular region is present for soft spring, in other words a
region for which the curvature of the potential energy surface
seen by the dimer is more homogeneous than for higher values
of the stiffness.

APPENDIX A: EFFECTIVE MATHIEU EQUATION

The equations of motion of x(t ) and y(t ) can be consid-
ered as effective nonlinear Mathieu equations. Assuming that
|x(t )| � 1 and |y(t )| � 1, and expanding the equations of
motions [Eqs. (6) and (7)] up to third order, we get

ẍ = −U0x + U0

2
y2x + U0

6
x3, (A1)

ÿ = −(2K + U0)y + U0

6
y3 + U0

2
yx2. (A2)

If we inject the expressions of x(t ) and y(t ) from Eq. (11) in
these equations, then we obtain

ẍ + �2
x

[
1 − ε2b2

�2
x

cos(2�yt + 2ψ )

]
x = 0, (A3)

ÿ + �2
y

[
1 − ε2a2

�2
y

cos(2�xt + 2φ)

]
y = 0, (A4)

where

�2
x = 1 − ε2b2 − ε2a2

2
, (A5)

�2
y = 2K + 1 − ε2a2 − ε2b2

2
, (A6)

Physically, Eq. (A4) describes the parametric forcing of the
RC by the center-of-mass motion, with a forcing amplitude
h = −ε2a2/�2

y and a frequency 2�x.

The condition to observe the main parametric resonance is
[22],

1 − h

4
� �x

�y
� 1 + h

4
. (A7)

In Fig. 7, the amplitudes a and b are found to be slowly
varying functions of time, as well as the parameters h, �x,
and �y. Let us assume that initial state of the system is such
that the forcing h is in the instability tongue of the Mathieu
equation. When the time goes on, instantaneous values of the
parameters h, �x, and �y may be calculated if we inject the
instantaneous values of the amplitudes a and b from the simu-
lations data in Eqs. (A5) and (A6). These calculations give the
representative points of the system in the plane (�y/�x, h)
displayed in the bottom plot of Fig. 7. This plot evidences
that when the initial parameters of the system satisfy the para-
metric instability condition (A7), then this condition remains
satisfied for ever.

Another interesting point is that the RC reaches its maxi-
mal amplitude when the system is on the instability boundary.
By introducing the extrema values of a and b given by
Eq. (17), ε2a|2min = 2K , ε2b|2max = E0/4U0 − 2K , and U0 = 1,
the frequencies are then:

�2
x = �2

y − E0/8, �2
y = 1 + 2K − E0/8. (A8)

This leads to the ratio �x/�y = 1 − E0/16�2
y =

1 − (εa0)2/4�2
y which corresponds to the condition

associated to the instability boundary 1 − h/4.

APPENDIX B: PARAMETRIC AMPLIFICATION IN THE
SLIDING REGIME

In this Appendix, we exhibit the link between our system
and the theoretical analysis of Refs. [18,19]. It is reasonable to
assume a very small relative displacement |y(t )| � 1, so that
Eq. (7) now reads

ÿ = −2Ky − U0 cos x

(
y − y3

6

)
, (B1)

valid up to order y3. The relevant expression of the coordinate
x(t ) in the sliding regime is Eq. (15). At leading order, it gives

ÿ = −[2K + U0 cos(V0t )]y + U0

6
cos(V0t )y3. (B2)

If we neglect the cubic term y3, then we recover a Mathieu
equation describing the parametric amplification of y with
a forcing frequency V0/2, from which we get the instability
threshold

U0 � 2
∣∣2K − U0/2E0 − −V 2

0

∣∣. (B3)

When E0 � U0 we obtain, as expected, E0 > 8K > E0 −
4U0.

It has been shown in Refs. [18,19] that the coupling of the
parametric excitation with the cubic term induces a parametric
amplification of y(t ) when the basic frequency of the RC√

2K = V0/4. In the Supplemental Material of this paper [20],
we display some trajectories y(t ) as a function of time that
evidence a parametric amplification. Moreover, the relevant
Fourier spectra evidence that the characteristic frequency of
the RC, when it is parametrically amplified, is V0/4.
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APPENDIX C: MAP LAYOUT

In this section we give more details on the establishment
of the behavior map. To each simulation point that makes up
the map, we assign one of three labels: parametrically stable,
parametrically unstable, or jumping. We first verify if we are
facing a jumping motion; if not, then we evaluate if the motion
is parametrically stable or unstable.

Concerning the jumping regime, the labeling process de-
pends on whether we are at E0 < 4U0 or E0 > 4U0. When
E0 < 4U0, the jumping regime is characterized by a time
TJ such that the center-of-mass position |x(TJ )| gets out its
initial potential well. If we identify a time TJ in the simula-
tions data (which means that it is less than the duration of a
simulation), then the corresponding simulation is qualified as
jumping.

When E0 > 4U0, this simple method becomes inefficient
because the center of mass never stays in a potential well. The
characteristic features of the jumping regime in this case are
a nonmonotonic behavior of the center-of-mass coordinate,
and an erratic motion of the RC. In practice, it is conve-
nient to use this erratic motion of the RC to include a given
simulation in the jumping regime. To this aim, we choose
somewhat arbitrarily a critical value yc = π/2 and we build a

symbolic trajectory yd (t ) such as yd (t ) = 0 if |y(t )|/yc < 1/2
and yd (t ) = 1 if |y(t )|/yc � 1/2. In the symbolic trajectory,
we record the indices that corresponds to changes from 0 to
1 and calculate the differences between successive indices.
For a regular periodic motion, there are only a few distinct
differences. In contrast, if the RC motion is erratic, then
there is a much larger set of distinct differences between the
indices. The search for abrupt changes was performed with
the MATLAB built-in function ischange. This method is
much quicker than trying to distinguish between a discrete
(regular motion) and a continuous (erratic motion) frequency
spectrum which is not numerically convenient. We confirm
the relevance of this automatic process by plotting the full
trajectories {x(t ), y(t )} in Figs. 13, 14, and 15.

If the simulation is not labeled as jumping, then the al-
gorithm verifies whether it corresponds to stable or unstable
motion of the RC. To this end, we consider the RC trajec-
tory, we extract its envelope, and eventually we determine
the initial variation of this envelope (i.e., the initial direction
of the energy transfer between center of mass and RC). If
the variation is negative, then the simulation corresponds to
a parametrically stable situation; if it is positive, then it corre-
sponds to an unstable situation.
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Evidence for a 2:3 resonance in Sco X-1 kHz QPOs, Astron.
Astrophys. 404, L21 (2003).
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