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Z4-symmetric perturbations to the XY model from functional renormalization

Andrzej Chlebicki ,1,* Carlos A. Sánchez-Villalobos ,2 Pawel Jakubczyk ,1 and Nicolás Wschebor 2

1Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
2Instituto de Física, Facultad de Ingeniería, Universidad de la República, J.H.y Reissig 565, 11300 Montevideo, Uruguay

(Received 7 April 2022; accepted 7 December 2022; published 27 December 2022)

We employ the second order of the derivative expansion of the nonperturbative renormalization group to
study cubic (Z4-symmetric) perturbations to the classical XY model in dimensionality d ∈ [2, 4]. In d = 3 we
provide accurate estimates of the eigenvalue y4 corresponding to the leading irrelevant perturbation and follow
the evolution of the physical picture upon reducing spatial dimensionality from d = 3 towards d = 2, where
we approximately recover the onset of the Kosterlitz-Thouless physics. We analyze the interplay between the
leading irrelevant eigenvalues related to O(2)-symmetric and Z4-symmetric perturbations and their approximate
collapse for d → 2. We compare and discuss different implementations of the derivative expansion in cases
involving one and two invariants of the corresponding symmetry group.
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I. INTRODUCTION

Cubic symmetry-breaking fields occur in lattice systems,
where the ions are arranged into a crystal structure charac-
terized by a (hyper)cubic symmetry. Prominent examples are
the XY or Heisenberg magnets [1,2]. From the point of view
of the renormalization group (RG) the cubic (Z4-symmetric
in the case of XY magnets) perturbation was, to our knowl-
edge, first addressed by Aharony [3] within the ε = 4 − d
expansion. Such a perturbation can be relevant, marginal, or
irrelevant at the O(N )-symmetric RG fixed point, depending
on spatial dimensionality d and the number of field compo-
nents N [4]. For low dimensionalities [d < dc(N )], the O(N )
symmetric fixed point is unstable with respect to the cubic
perturbation and the phase transition is controlled by a differ-
ent fixed point displaying only cubic symmetry. For d large
[d > dc(N )] the cubic perturbation is irrelevant in the sense
of the renormalization group. However, in this situation, the
cubic anisotropy constitutes a so-called dangerously irrelevant
operator; the presence of such a perturbation, however small,
modifies the critical exponents governing the dominant scal-
ing close to the transition. In the present case, the physical
reason for this is that the discrete anisotropies gap the Gold-
stone mode in the ordered phase and give rise to an additional
length scale, divergent at the phase transition. This leads in
particular to the dependence of the critical exponents on the
side from which the phase transition is approached [5,6]. For
the XY model (N = 2) the cubic perturbation is dangerously
irrelevant for d = 3 as well as for d = 4 − ε, and marginal
for d = 2. A natural expectation (confirmed by the results of
the present paper) is that it remains dangerously irrelevant for
d ∈ ]2, 4[.

Additionally, the cubic perturbation induces significant
corrections to scaling due to very small value of the corre-
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sponding scaling dimension. Indeed, in the three-dimensional
O(2) model the Z4 anisotropy is irrelevant, but the associated
scaling dimension takes the value |y4| ≈ 0.1 [4,7,8], whereas
the first isotropic correction is characterized by the exponent
ω ≈ 0.8 [9].

For a time it remained controversial, whether the cubic
anisotropy is relevant at the Heisenberg fixed point in d = 3
[i.e,. at which side of the line dc(N ) the point (d = 3, N = 3)
is situated]. This issue seems to have very recently been
completely settled [10] by the numerical conformal bootstrap
approach, which (numerically) proves the weakly relevant
character of the cubic anisotropy at the O(3) fixed point. This
is in agreement with the predictions of the perturbative RG up
to six-loop order [4], but not earlier, lower-level calculations.
The precise shape of the line dc(N ) for d ∈ [2, 4] is in general
not easy to compute reliably. It is known [11,12] to pass
through the points (N, d ) = (2, 2), as well as close vicinity
of (N, d ) = (3, 3) and (N, d ) = (4, 4) [13].

The point (d = 2, N = 2) lies on the line dc(N ) and in
dimensionality d = 2 the cubic perturbation stabilizes the
long-range order destroying the Kosterlitz-Thouless (KT)
phase [11]. Exactly at the temperature of the KT transi-
tion, the corresponding coupling h4 becomes marginal, which
leads to formation of a line of fixed points intersecting with
the KT line of fixed points at the temperature of the KT
transition and h4 = 0. The continuous transition controlled
by the anisotropic line of fixed points is characterized by
nonuniversal critical exponents [11,12]. The XY model with
Z4-symmetric anisotropies is of high relevance in many ex-
perimental contexts (see Ref. [14] for a useful review).

In the present paper we address the cubic perturbations
to the XY model from the point of view of nonperturbative
renormalization group (NPRG). In very recent years there has
been remarkable progress [15] in implementing this method-
ology for high-precision calculations of the critical properties
of the isotropic O(N ) models in d = 3. The NPRG approach
also continues to deliver new insights inaccessible within the
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perturbative paradigms. Of our primary interest in this work
is the leading irrelevant perturbation to the O(2)-symmetric
fixed point and its evolution upon continuously evolving
dimensionality from three towards two, where the correspond-
ing eigenvalue vanishes. The NPRG constitutes a unique
approach potent to capture the entire range of d ∈ [2, 4]. This,
however, requires a substantial methodological advancement
as compared to the pure O(N )-symmetric systems, since the
effective action depends on two invariants and the analysis
must start off from a two-dimensional field space. As we
demonstrate in this article, NPRG is able to reach precise and
accurate results in d = 3 together with a proper qualitative
description of the Z4 model down to d = 2.

The outline of the paper is as follows: In Sec. II we present
the framework of functional RG and the derivative expansion
(DE) scheme employed in our analysis. In Sec. III we lay out
the results for the three-dimensional situation (Sec. IIIA) and
reducing dimensionality towards two (Sec. IIIB). We compare
the results obtained from different truncations of the DE ap-
plied by us. In Sec. IV we provide a discussion of different
implementations of the DE (the so-called “ansatz” and “strict”
versions). We point out the differences, which appear rele-
vant for d close to two. Section V contains a summary and
conclusions.

II. MODEL AND METHODOLOGY

We consider the canonical O(2)-symmetric φ4 model per-
turbed by a Z4-symmetric operator. A prototype effective
action (or Hamiltonian) analyzed by us takes the form

S =
∫

dd x

{
1

2
[∇φ(x)]2 + λ

8

[
φ(x)2 − φ2

0

]2 + h4

2
φ2

1φ
2
2

}
,

(1)
where λ is the standard quartic coupling, φ = (φ1, φ2) repre-
sents the order parameter field and h4 describes the strength
of the anisotropic perturbation. The above action is defined on
a coarse-grained length scale 1/� and serves as an effective
model representing the same universality class as more micro-
scopic models, typically defined on a lattice. An example of
such a microscopic model, introduced in Ref. [11], is given by
the Hamiltonian

H = −J̃
∑
〈i, j〉

cos(θi − θ j ) + h̃4

∑
i

cos(4θi ), (2)

where i labels the sites of a lattice,
∑

〈i, j〉 denotes summation
over nearest neighbor pairs, while θi describes the orientation
of a two-dimensional spinlike degree of freedom associated
to each lattice site, relative to a given axis. The action given
by Eq. (1) is invariant under the two independent symmetry
transformations:

φ1 ←→ −φ1, φ1 ←→ φ2. (3)

It is well established that at the Wilson-Fisher fixed point in
d = 3, the quantity h4 couples to a dangerously irrelevant
perturbation characterized by a relatively small eigenvalue
y4 ≈ −0.1 [4,7,8]. In particular, |y4| is small as compared to
the absolute value of the leading irrelevant eigenvalue related
to an O(2)-symmetric perturbation ω ≈ 0.8 [9]. On the other
hand, the quantity y4 vanishes upon reducing dimensionality

towards d = 2 [11]. As already mentioned, the presence of
the dangerously irrelevant perturbation gives rise to the dif-
ferences between the critical exponents depending on the side
from which the transition is approached. The magnitudes of
these differences are controlled by the value of y4. In particu-
lar, one finds [6]

ν ′ = ν(1 + |y4|/2),

γ + = ν(2 − η),

γT = γ + + ν|y4|,

γL = γ + + ν|y4|4 − d

2
, (4)

where γT , γL are the critical exponents for the transverse and
longitudinal susceptibilities in the low-temperature phase, γ +
controls the susceptibility divergence when the critical point
is approached from the high-temperature phase, while η is the
anomalous dimension. The quantities ν and ν ′ denote the crit-
ical exponents for the longitudinal and transverse correlation
lengths. Equation (4) is valid for y4 < 0, i.e., whenever the
anisotropy is irrelevant and therefore is expected to hold for
d ∈ ]2, 4[ for the model defined by Eq. (1). The modification
of the scaling laws as compared to the pure O(N ) case arises
due to the presence of two large length scales associated to the
two directions in the field space. These lengths are determined
by the RG scales where the RG flow diverges from the XY
and the low-temperature fixed points, respectively [6]. In the
absence of anisotropies, the latter scale is always infinite. In
d = 4, the coupling h4 becomes marginal and it can be treated
perturbatively when d = 4 − ε and ε 	 1.

There are not many independent accurate estimates of the
quantity y4 in dimensionality d = 3 (see Sec. III A for more
details) and the earlier NPRG predictions yield values which
disagree with those obtained from perturbative RG by a factor
larger than 2 [6,16]. In addition, we are not aware of any ear-
lier implemented theoretical framework capable of capturing
the continuous interpolation of y4 between d = 3 and d = 2
and delivering a comparison with leading eigenvalues related
to O(2)-symmetric perturbations. The present paper aims at
filling this gap.

Independent of the above, the model defined by Eq. (1)
displays rich and interesting crossover behavior related to the
interplay between three different fixed points in d = 3. On
the other hand, in d = 2 it exhibits [11] a line of fixed points
extending towards positive and negative values of h4, merging
with the KT line at h4 = 0. For a qualitative resolution of this
picture within a simple truncation of NPRG, see Ref. [16]. For
large anisotropies (|h4| > λ) the system displays a fluctuation-
induced first-order transition [4].

We address the model defined by Eq. (1) within the one-
particle-irreducible variant of NPRG, relying on the Wetterich
equation [17–19]

k∂k�k[φ] = 1
2 Tr

[
k∂kRk

(
�

(2)
k [φ] + Rk

)−1]
. (5)

This describes the renormalization flow of the effective aver-
age action �k[φ]—a scale-dependent functional of the order
parameter field φ. The flow is initiated at a microscopic scale
(k = �) with the effective action equal to the microscopic
action �� = S . As the scale k decreases, the effective action
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smoothly evolves towards the Gibbs free energy F , which
is reached in the limit of vanishing cutoff scale �k→0 = F .
In Eq. (5) the quantity �

(2)
k [φ] denotes the second (func-

tional) derivative of �k[φ] with respect to the field φ, Rk

is the momentum cutoff function added to the inverse prop-
agator, which damps fluctuations with momentum q below
the scale k, and the trace Tr sums over momenta and the
field components. In the present context we specify N = 2
so that the field φ = (φ1, φ2) contains two cartesian compo-
nents. The framework based on the Wetterich equation has
since long been successfully applied in a diversity of physical
contexts [see Refs. [15,20–25] for reviews]. However, only
very recently has it been promoted to a computational tool
capable of delivering high-precision numerical estimates of
the universal properties of the O(N ) models in d = 3 [26–29].
This precision is associated with the existence of a small
parameter (which is estimated to lie between 1/9 and 1/4) that
controls the size of successive orders of the most commonly
employed approximation in this context, the derivative ex-
pansion. Within the context of pure O(N ) models, the NPRG
methodology has also recently revealed a new family of per-
turbatively inaccessible fixed points [30,31] and reopened the
question concerning the analyticity of the critical exponents
[32] when viewed as functions of d and N . These findings
may appear quite unexpected bearing in mind that the O(N )
models are among the most broadly recognized and well-
studied systems exhibiting critical behavior. In other statistical
physics contexts, the NPRG approach led, inter alia to the
resolution of the puzzle concerning dimensional reduction
and its breakdown in the random field Ising model [33] as
well as to important insights into the Kardar-Parisi-Zhang
problem in dimensionalities d > 1 [34,35]. It also constitutes
a remarkably suitable tool for addressing physical situations
involving rich crossover behavior (see, e.g., Refs. [6,36–42]).

We point out that for the pure O(N ) models the framework
resting upon Eq. (5) is capable of addressing the entire range
of physically relevant values of d and N with a single set of
flow equations derived within the DE scheme.

The DE constitutes a fertile approximation scheme, which
allows for casting Eq. (5) onto a closed set of numerically
tractable partial (integro)differential equations. It amounts to
expanding the effective action �k in powers of gradient oper-
ators around the homogeneous field configuration, but at the
same time refraining from any expansion in the field φ. For the
isotropic O(N ) model in d = 3, the DE was implemented up
to order ∂4 [28,29,43], and for the Ising case, even up to order
∂6 [26]. For an earlier study of the Ising universality class at
order ∂4 see Ref. [44].

In the present work, we employ the second-order derivative
expansion (DE2) retaining all the symmetry-allowed terms
of order up to O(∂2). In the isotropic model (h4 = 0), the
effective action is parameterized by three flowing functions
of the O(2) invariant ρ = φ(x)2

2 , with the ansatz

�ISO =
∫

dd x

[
Uk (ρ) + Z ISO

k (ρ)

2
(∇φ)2 + Yk (ρ)

2
(∇ρ)2

]
.

(6)

By plugging Eq. (6) into Eq. (5) and evaluating at a uniform
field configuration, one may project the flow of ∂k�k[φ] onto

three partial differential equations governing the flow of the
set of functions,

F ISO
k (ρ) = {

Uk (ρ), Z ISO
k (ρ),Yk (ρ)

}
, (7)

which constitutes the basis for the numerical analysis. This
still poses a relatively complex enterprise involving numerical
solutions of complicated nonlinear partial (integro) differen-
tial equations. Further simplifications are often possible (see,
e.g., Refs. [45–51]), for instance, by disregarding the flow of
Z ISO

k (ρ), Yk (ρ)—the so-called local potential approximation
(LPA); by downgrading Z ISO

k (ρ), Yk (ρ) to Z ISO
k and Yk (i.e.,

treating them as flowing but ρ-independent couplings)—the
so-called LPA′ approximation; or by performing expansion of
the flowing functions in ρ. This certainly occurs at the cost of
accuracy of the results and poor (or disregarded) error control.

For the present case involving the Z4 anisotropy, the sys-
tem is not O(2)-symmetric, and we promote the DE2 ansatz
to the following form:

�F =
∫

dd x

{
Uk (ρ, θ ) + Zk (ρ, θ )

2
(∇φ)2

+ Tk (ρ, θ )φ1φ2∇φ1∇φ2

+ (
φ2

1 − φ2
2

)Wk (ρ, θ )

4

[
(∇φ1)2 − (∇φ2)2

]}
, (8)

where

φ1 =
√

2ρ cos θ, (9)

φ2 =
√

2ρ sin θ, (10)

and the subscript F in �F stands for “full.” The functions
Uk (ρ, θ ), Zk (ρ, θ ), Tk (ρ, θ ), and Wk (ρ, θ ) are periodic in θ

with period π
2 and even upon reflection with respect to π

4 . The
above ansatz is the most general Z4-symmetric form retaining
derivatives up to order ∂2 (i.e., of order ∼q2 when written in
momentum space). The severe increase of complexity of the
problem as compared to the O(2)-symmetric case is evident:
the flowing functions depend now on two field variables [(φ1,
φ2) or (ρ, θ )], and, in the numerical treatment to follow, must
in general be considered on a two-dimensional field grid. The
O(2) symmetry is restored in �F when all the parametrizing
functions are θ independent and additionally

Tk (ρ, θ ) → Yk (ρ), (11)

Wk (ρ, θ ) → Yk (ρ), (12)

Zk (ρ, θ ) → Z ISO
k (ρ) + ρYk (ρ). (13)

It is important to note, that the integrand in the effective
action is a smooth function of the field components φ1 and
φ2, which imposes constraints. In the polar parametrization
via ρ and θ , the continuity of � implies that ∂θF |ρ=0 = 0, the
parametrizing functions are θ independent at the origin.

We point out here that the previous NPRG studies of
discrete anisotropies [6,16,52,53] implemented field expan-

sions (in both ρ and the Z4 invariant τ = φ2
1φ2

2
2 ) and did not

systematically account for the momentum dependencies (for
example, by disregarding the quantities Tk and Wk). They

064135-3



ANDRZEJ CHLEBICKI et al. PHYSICAL REVIEW E 106, 064135 (2022)

largely underestimate the value of y4 in d = 3, while in d = 2
they do not fully capture the KT line of fixed points and the
marginal character of y4, but instead yield a positive value of
y4 for d � 2.5. Note also that, at h4 = 0, for the KT transition
as well as the corresponding low-T phase to be well captured
within the present NPRG framework [41,54–60], it is neces-
sary to retain the field dependencies.

In the analysis to follow, we shall pursue two comple-
mentary paths. In the first approach, we will address the
parametrization defined by Eq. (8) directly, which leads to
flow equations for the functions

FF
k (ρ, θ ) = {Uk (ρ, θ ), Zk (ρ, θ ), Tk (ρ, θ ),Wk (ρ, θ )}. (14)

We project out the flow equations for FF
k (ρ, θ ) by plugging

the ansatz of Eq. (8) into the Wetterich equation [Eq. (5)]. To
the best of our knowledge, this is the first NPRG study fully

systematically implementing a DE2 level truncation where the
functions parametrizing the flowing effective action depend in
an essential way on two fields and none of the dependencies
are expanded. For studies of other physical situations involv-
ing the nontruncated effective potential with two invariants,
see Refs. [61,62].

In an alternative procedure, we first express the action

using the O(2) and Z4 invariants, ρ = 1
2φ2 and τ = φ2

1φ2
2

2
respectively [in particular Uk (ρ, θ ) → Uk (ρ, τ )], and then
expand in τ , retaining the functional form of all ρ de-
pendencies, such that the limit τ → 0 coincides with the
well-studied isotropic O(N ) case. Up to the linear order in
the expansion in τ , which we will consider in the anal-
ysis to follow, the effective action ansatz in this scheme
reads

�E =
∫

dd x

{
Uk (ρ) + τU 1

k (ρ) + Zσ,k (ρ) + τZ1
σ,k (ρ)

2
(∇φ)2 − Zσ,k (ρ) − Zπ,k (ρ) + τ

[
Z1

σ,k (ρ) − Z1
π,k (ρ)

]
4ρ

× [
φ2

1 (∇φ2)2 + φ2
2 (∇φ1)2

] + Tk (ρ)φ1φ2∇φ1∇φ2

}
. (15)

The index E in �E stands for “expanded.” The action �E

reduces to the O(2)-symmetric form �ISO if the functions
U 1

k (ρ), Z1
σ,k (ρ), and Z1

π,k (ρ) vanish identically and addi-

tionally Tk (ρ) ≡ Zσ,k (ρ)−Zπ,k (ρ)
2ρ

≡ Yk (ρ). The smoothness of

�E imposes the constraints Zσ,k (0) = Zπ,k (0) and Z1
σ,k (0) =

Z1
π,k (0). We introduce

FE
k (ρ) = {

Uk (ρ),U 1
k (ρ), Zσ,k (ρ), Z1

σ,k (ρ), Zπ,k (ρ),

Z1
π,k (ρ), Tk (ρ)

}
(16)

as the set of functions parametrizing the flowing effective
action in the τ -expanded truncation. For the expanded version
(the second approach) we use the variables (ρ, τ ) which allow
to easily implement the symmetries and preserve the regular-
ity of the effective action. In the case of the full ansatz (the
first approach) the use of the variables (ρ, τ ) would give rise
to complicated boundary conditions. In view of this we imple-
ment the variables (ρ, θ ), for which the boundary conditions
are simpler.

The two approximations are complementary and yield very
similar results in d = 3, as we demonstrate below. Differences
appear upon varying d towards two. The nonexpanded variant

of the calculation, requiring a two-dimensional field grid, is
clearly more demanding numerically. Both variants of the ap-
proximation give the proper critical exponents in d = 4 − ε,
up to corrections of order ε2.

A. Flow equations

The derivation of the flow equations is a conceptually
straightforward generalization of the procedure applied pre-
viously for the O(N ) models. Implementing the preimposed
ansatz, one starts off by evaluating the matrix of second
derivatives at a spatially uniform field configuration

�
(2)
X,α1,α2

(p2) = δ2�X

δφα1 (p)δφα2 (−p)

∣∣∣∣
Uniform

(17)

with X ∈ {F, E} and α1, α2 ∈ {1, 2}. In contrast to the pure
O(N ) model, �

(2)
X contains also components off-diagonal in

the field index. The obtained result is subsequently supple-
mented with the cutoff Rk (q)δα1,α2 and inverted. Plugging the
resulting formula into the right-hand side of Eq. (5), one
obtains the flow equation for the effective potential Uk (ρ, θ ),
which is given in Eq. (18):

k∂kUk (ρ, θ ) = βU
k (ρ, θ ) = 1

2

∫
dd q

(2π )d
k∂kRk (q)

2Rk (q) + �
(2)
11 (q2) + �

(2)
22 (q2)[

Rk (q) + �
(2)
11 (q2)

][
Rk (q) + �

(2)
22 (q2)

] − �
(2)
12 (q2)2 ,

�
(2)
11 (q2) = q2[Z (ρ, θ ) + cos(2θ )ρW (ρ, θ )] + U (1,0)(ρ, θ ) + 2ρ cos2(θ )U (2,0)(ρ, θ )

+ sin2(θ )U (0,2)(ρ, θ ) + sin(2θ )[U (0,1)(ρ, θ ) − 2ρU (1,1)(ρ, θ )]

2ρ
,

�
(2)
22 (q2) = q2[Z (ρ, θ ) − cos(2θ )ρW (ρ, θ )] + U (1,0)(ρ, θ ) + 2ρ sin2(θ )U (2,0)(ρ, θ )
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+ cos2(θ )U (0,2)(ρ, θ ) − sin(2θ )[U (0,1)(ρ, θ ) − 2ρU (1,1)(ρ, θ )]

2ρ
,

�
(2)
12 (q2) = q2ρT (ρ, θ ) − sin(2θ )[U (0,2)(ρ, θ ) − 4ρ2U (2,0)(ρ, θ )]

4ρ
− cos(2θ )[U (0,1)(ρ, θ ) − 2ρU (1,1)(ρ, θ )]

2ρ
. (18)

For clarity, we suppressed the k dependence in the parametriz-
ing functions and their derivatives. At leading (zeroth) order
of the DE, the local potential approximation [Zk (ρ, θ ) = 1,
Wk (ρ, θ ) = Tk (ρ, θ ) = 0], the flow of gradient terms in �X is
disregarded such that the flow equation for Uk (ρ, θ ) is closed.
In the �E scheme we additionally perform an expansion of the
flow equation for Uk (ρ, τ ) in the τ direction, while in the �F

scheme, Eq. (18) is studied without further approximations.
In each of the schemes, when going to the level of DE2,

the flow of Uk (ρ, θ ) must be supplemented by the flow equa-
tions parametrizing the momentum-dependent components of
the propagators. These are obtained by first taking the second
(functional) derivative of Eq. (5), which yields the flow of the
two-point function �

(2)
X,α1,α2

(p2). The resulting expressions are
subsequently expanded in (external) momentum up to order
p2, which projects out the flow equations for the functions
Zk (ρ, θ ), Tk (ρ, θ ), Wk (ρ, θ ) used in the �F scheme. Additional
expansion in τ yields the flow equations in the �E scheme.

The derivation procedure is quite mechanical, but the re-
sulting expressions appear very lengthy and rather useless for
a human reader. We refrain from quoting them in the text.
They are available online at Ref. [63].

B. Fixed points

The obtained flow equations are subsequently brought
to a scale-invariant form admitting the possibility of fixed-
point behavior. This parallelizes the previous treatment of
the isotropic O(N ) models and is achieved by rescaling the
invariants and the parametrizing functions by the running
scale raised to the power of the canonical dimension, e.g.,
ρ̃ = ρk−dρ . The dimensions of the invariants and functions are
as follows:

dρ = d − 2 + ηk, dτ = 2d − 4 + 2ηk, dθ = 0, (19)

dU = d, dZ = dZσ
= dZπ

= −ηk,

dW = dY = dT = 2 − d − 2ηk,

dU 1 = 4 − d + 2ηk, dZ1
σ

= dZ1
π

= 4 − 2d − 3ηk .

Above, ηk is the running anomalous dimension defined
as a logarithmic derivative of the scaling factor ηk =
−k∂k log(Zk ). To close the set of equations we define the scal-
ing factor Zk by imposing the condition Z (ρη )/Zk = Z̃ (ρ̃η ) ≡
1 for an arbitrary constant ρ̃η. It is also convenient to introduce
the “renormalization time” t = log(k/�) [∂t = k∂k], which
allows to express the flow equations in a form invariant upon
RG time translations. After rescaling, Eq. (18) takes the form

∂tŨt (ρ̃, θ ) = −dŨt (ρ̃, θ ) + (d − 2 + ηk )ρ̃Ũ ′
t (ρ̃, θ )

+β̃U
t (ρ̃, θ ), (20)

with β̃U
t (ρ̃, θ ) = k−dU βU

k (ρ, θ ).

In the numerical treatment, the parametrizing functions are
represented by their values on a finite grid of points in the field
space. The grid is two-dimensional within the �F scheme,
and one-dimensional within the �E approximation. In the θ

direction, the grid contains 21 points. The size of the grid in
the ρ̃ direction depends on the dimension, ranging from 40
points in d = 3 to 120 in d = 2, as the structure of the fixed
point becomes more complex the lower the dimension. To
ensure cubic symmetry of �F, we have to impose FF

k (ρ, θ )
to be a periodic function of θ with period π/2 and even
upon reflection with respect to π/4. We implement this by
considering the θ grid on an interval [0, π/4]. The periodicity
and reflection-symmetry conditions additionally allow us to
approximate derivatives with central finite differences instead
of forward (backward) finite differences even at the boundary
of the θ grid.

The derivatives occurring in the equations are approxi-
mated with finite differences and integrals with finite sums.
In such a way we cast the set of integro-differential equa-
tions onto a huge set of algebraic equations which can be
solved numerically.

The presently studied universal quantities are extracted
from the structure of the flow equations around the fixed point.
First, we find the fixed point by solving the equation

∂tF∗
ISO = 0, (21)

using Newton’s method. In the present paper, we are only
interested in the structure of the flow in the vicinity of the
O(2)-symmetric fixed points. Therefore, we need only to
solve a significantly simpler equation for �ISO. This alone
is enough to find the anomalous dimension η. For the other
exponents we introduce the stability matrix

Mi,ρ̃; j,ρ̃ ′ := ∂ (∂t F̃i(ρ̃ ))

∂F̃ j (ρ̃ ′)

∣∣∣∣∣
F∗

, (22)

which represents the linear expansion of the flow equa-
tions around the fixed point F∗. The symbol F̃i(ρ̃) denotes the
value of the ith function in the vector F̃ evaluated at the point
ρ̃ [or (ρ̃, θ ) on a two-dimensional grid]. From this matrix
we remove the rows and columns corresponding to values
fixed by external constraints, e.g., we remove the row and
column corresponding to Z̃ (ρ̃η ) because its value is fixed to
1 to extract the anomalous dimension.

The eigenvalues of the stability matrix are related to the
critical exponents; e1 = 1

ν
; the leading (and only positive)

eigenvalue is the inverse of the correlation length exponent,
while the lower eigenvalues define the correction to scaling
exponents ωi = |ei+1| [9]. The stability matrix is not symmet-
ric, and therefore its eigenvalues may in general be complex.
The complex eigenvalues always appear as conjugate pairs: λ

and λ̄.
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Throughout the analysis we implement two cutoff func-
tions:

Wetterich RW
k (q) = αZkq2

eq2/k2 − 1
,

Exponential RE
k (q) = αZkk2e−q2/k2

(23)

with a variable parameter α. In accord with the principle of
minimal sensitivity (PMS) [27,64] we associate the physical
values of the computed quantities with values obtained at α

such that the quantity in question is locally stationary with
respect to variation of α. We verified that, once the values of
α are fixed by implementing the PMS procedure, both cutoffs
yield almost identical results. For that reason, all the presented
figures include only data obtained with the Wetterich cutoff.

III. RESULTS

The neighborhood of d = 4 is well described by per-
turbative means. As already mentioned, in this regime, the
approximations implemented by us are exact up to corrections
of order ε2. We therefore focus here on the range d ∈ [2, 3].

We implement the procedure described above in Sec. II,
treating d = 3 and d < 3 separately. In the former case
(Sec. III A), we aim at providing numerically accurate esti-
mates of the leading irrelevant eigenvalues, applying the error
estimate methodology developed in Refs. [28,29] and summa-
rized in Sec. III C. For d < 3 (Sec. III B) we aim at capturing
the approach of the subleading eigenvalues towards zero and
the emergence of the KT physics as well as nonuniversal
critical behavior at h4 �= 0. We compare the two truncations
described above (the �F and �E schemes) and point out that
while in d = 3 their predictions are practically equivalent,
important differences appear at lower d .

A. Dimensionality d = 3

In Fig. 1 we plot the leading stability matrix eigenvalues
obtained at order DE2 within the �F and �E schemes as func-
tion of the cutoff parameter α. The former are exhibited with
lines, the latter with points. The two sets of data practically
coincide and their variation as function of α is hardly visible
in the plot scale. The eigenvalues may be divided into those
related to the isotropic component of the theory [i.e. existent
also in the isotropic case; Eq. (6)] and those appearing only
in the Z4-symmetric setup. Members of the former category
are supplied with the superscript “iso,” the latter with “aniso.”
The eigenvectors corresponding to the eigenvalues labeled as
“iso” preserve the O(2) symmetry, those labeled with “aniso”
do not. In accord with the expectations, the leading irrelevant
exponent y4 = eaniso

1 arises due to anisotropy and is situated
significantly closer to zero as compared to the leading irrel-
evant isotropic eigenvalue eiso

2 . The quantities eiso
1 and eiso

2
determine the correlation length exponent ν as well as the
correction to scaling exponent ω of the isotropic O(2) model.
The present values of these quantities coincide with those
obtained previously at the level of DE2 in Refs. [28,32]. While
the first few leading eigenvalues are real, some of the more
irrelevant eigenvalues obtained by us contain an imaginary
component. In all figures of the present paper, we plot only
the real part of eigenvalues; the pairs of complex eigenvalues

FIG. 1. The leading stability matrix eigenvalues obtained at or-
der DE2 displayed as function of the cutoff parameter α in d = 3.
The results obtained within the �F and �E schemes are exhibited
with lines and points, respectively. The relevant eigenvalue eiso

1 de-
termines the correlation length exponent ν. The leading irrelevant
eigenvalue y4 = eaniso

1 emerges due to the anisotropy; the dominant
irrelevant isotropic eigenvalue eiso

2 is significantly farther from zero
as compared to eaniso

1 . The results obtained within the two schemes
practically coincide.

are distinguished by a double subscript of the data series label,
e.g., eiso

3,4. Among the quantities exhibited in Fig. 1 all are real
except eiso

3,4, which contain a small imaginary component.
In Fig. 2 we plot the dominant irrelevant eigenvalue y4 =

eaniso
1 obtained at zeroth (LPA) and first (DE2) approximation

levels within the �E and �F schemes. There is practically no
difference between the results found from these two schemes.
Note that at LPA level y4 changes sign as a function of α,

FIG. 2. The dependence of y4 on the cutoff parameter α, compar-
ing the LPA and DE2 approximation levels in the full and τ -expanded
schemes in d = 3. The vertical dashed lines indicate the PMS values
corresponding to the four sets of data. The bold line indicates our
final estimate of y4 = −0.111 at the level of DE2 and is accompanied
by the error bars (horizontal dashed lines).
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TABLE I. Comparison of the values of y4 obtained within dif-
ferent theoretical and simulation approaches including perturbation
theory (PT), Monte Carlo (MC) simulations, and large charge expan-
sion (LCE). Note a substantial spread of the values, in particular the
differences between the LCE and MC/PT predictions.

PT (6 loop) (Ref. [4]) −0.103(8)
MC (Refs. [7,8]) −0.108(6)
LCE (Ref. [65]) −0.128(6)
MC/RG (Ref. [66]) −0.114(2)
LPA′ (Ref. [6]) −0.042
DE2 (This work) −0.111(12)

while its PMS value is (in its modulus) underestimated by
a factor of order 4 with respect to the anticipated range of
values. In contrast, the values obtained at order DE2 remain
well separated from zero for all values of α. The final es-
timate of y4 at order DE2 (together with the error bars) is
obtained by means of the procedure summarized in Sec. III C.
We postpone the discussion of these methodological aspects
to Sec. III C. We note here that our present error estimate
methodology is very conservative. In Table I we present a
comparison between our result and the values obtained from
a diversity of approaches including perturbation theory (at six
loops), MC simulations, and large charge expansion, as well
as earlier NPRG results. We observe a substantial spread of
the reported values, considering the available error estimates.

We finally point out that an accurate parametrization
of the momentum dependencies is crucial for an accurate

computation of y4 within the NPRG methodology. While our
results obtained at order DE2 are of accuracy comparable to
the other approaches listed in Table I, one may expect that
(if performed) a calculation reaching the order DE4 would
deliver numbers even more accurate.

B. Dimensionality d < 3

The NPRG methodology allows for treating the dimension-
ality d as a continuously variable parameter. In the present
study it creates the possibility of smoothly interpolating be-
tween d = 3 and d = 2, two situations involving completely
different physics of critical phenomena. We therefore gradu-
ally depart from d = 3 and follow the evolution of the stability
matrix eigenvalues as d is decreased. Our results concerning
the DE2 level PMS values of the stability matrix eigenvalues
as obtained within the two NPRG truncations are summarized
in Fig. 3. In both schemes we succeeded in covering the entire
range d ∈ [2, 3]. Even though we are able to find fixed points
in d = 2, the PMS criterion for fixing the dependence on α of
the various critical exponents can not be applied in that dimen-
sion. In that dimension, the criterion for fixing α proposed in
the literature is different [56] due to the physical existence of
a line of fixed points. For this reason we present the results for
dimensions strictly larger than d = 2, approaching this value
from above. As discussed in Sec. III A, in the vicinity of d = 3
our results obtained within the two truncation schemes may be
treated as practically identical. Significant differences appear
for d � 2.5, where crossing of eigenvalues occurs within the
�E approach, but not in �F .

FIG. 3. Comparison between the leading PMS stability matrix eigenvalues obtained within the �F and �E schemes, varying dimensionality
between d = 3 and d = 2. (a) Evolution of the PMS results for the leading stability matrix eigenvalues upon varying d as obtained within the
�F scheme. Down to d ≈ 2.5 the eigenvalues obtained within the �F scheme are very close to those resulting from the �E scheme (compare
Fig. 4). Differences arise in the range d ∈ [2.0, 2.5]. In contrast to the �E case, there are no eigenvalues’ crossings. For d → 2+ the eigenvalues
eaniso

1 and eiso
1 approach zero in a singular fashion. (b) Evolution of the PMS results for the leading stability matrix eigenvalues upon varying

d as obtained within the �E scheme. The relevant eigenvalue eiso
1 monotonously approaches zero for d → 2+, marking the onset of the KT

physics characterized by the essential singularity of the correlation length. The leading anisotropic eigenvalue eaniso
1 becomes very close to

zero as d → 2+ indicating the appearance of symmetry-breaking phase transitions characterized by non-universal critical exponents [11]. Its
dependence on d is non-monotonous. The eigenvalues eaniso

2 and eaniso
3 acquire an imaginary component below d ≈ 2.5 and are mutual complex

conjugate below d ≈ 2.5. For d → 2+ they become very close to zero. Note the crossings between the eigenvalues, absent in the �F calculation
and presumably appearing as a truncation artefact.
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As concerns the relevant eigenvalue eiso
1 , we recover the

monotonous approach towards zero as d → 2+ which indi-
cates the onset of the KT physics and the essential singularity
of the correlation length [67]. Interestingly, the leading irrele-
vant eigenvalue eaniso

1 = y4 initially increases in its absolute
value as d is reduced below d = 3. This happens within
both the calculations performed by us and is also robust with
respect to cutoff variation. Such behavior indicates (since
y4 vanishes in d = 2) that the dependence of the leading
anisotropic eigenvalue, y4 on d cannot be monotonous. The
scenario is slightly different in the two schemes. Within the
�E approach [see Fig. 3(b)] y4 = eaniso

1 exhibits a minimum
at d ≈ 2.2 and approaches zero upon reducing d = 2, which
indicates the appearance of symmetry-breaking phase transi-
tions characterized by nonuniversal critical exponents [11].
Note the crossing of eigenvalues which occurs in the �E ap-
proach but not in the �F one. We additionally note that, within
the �E approach, the eigenvalues eaniso

2 and eaniso
3 acquire an

imaginary component below d ≈ 2.5 and are mutually com-
plex conjugate below d ≈ 2.5. For d → 2+ they also become
very close to zero. In the �F approach [see Fig. 3(a)] the
anisotropic eigenvalue eaniso

1 has a very sharp drop below d ∼
2.03 which points towards reaching a value near zero in d = 2
in a strongly singular way. Indeed, in the lowest dimension
where we were able to apply the PMS procedure, d = 2.01,
we reach the relatively large value −0.25 but the value of eaniso

1
at d = 2.03 is as large as −0.4.1 It must be said in any case
that given the large uncertainties in those dimensions (see the
next section), we can safely say that the obtained eignenvalue
is compatible with zero.

The accuracy control of our approach is much better in
d = 3 than in the vicinity of d = 2 (see Sec. IV for further
discussion). In the present calculation this manifests itself
with the differences appearing in the results obtained within
the two truncation schemes. We point out, however, that the
present NPRG implementation captures the subtle effects aris-
ing in d = 2 due to the appearance of marginal operators,
and the role of vortices, controlling the KT transition. This,
together with the accurate resolution of y4 in the vicinity of
d = 3, constitutes a significant improvement as compared to
the previous NPRG studies of this system. We observe that
the behavior of y4 as function of d is nonmonotonous and
exhibits a minimum slightly above d = 2 (the precise turning
point depending on the truncation). In both the �E and the �F

schemes y4 exhibits an apparent approach towards zero for
d → 2.

In Fig. 4 we demonstrate the dependence of the leading
anisotropic eigenvalues on α, comparing the results from
the �F and �E schemes for a sequence of values of d .
While the two data sets practically coincide in the vicinity of
d = 3, quantitative differences occur below d ≈ 2.5, while for
d ≈ 2.2 the entire picture is substantially different due to the
eigenvalues’ crossing occurring in the �E scheme. In Fig. 4(e)
we present the plot corresponding to d = 2.01, since for d =
2.0 there is no clear PMS value and a different optimization
procedure needs to be implemented [56].

1We actually verified in d = 2 that y4 goes to zero in a value of α

where η ∼= 1/4.

C. Error estimates methodology

The procedure that we employed to calculate DE error bars
was proposed and explained in detail previously in Ref. [28].
It has been successfully tested for the calculation of critical
exponents in that reference and for universal amplitude ratios
in Ref. [29] [in both cases for O(N ) models in d = 3]. We
refer to those references for more details and limit ourselves
here, in order to make the reading minimally self-contained,
to reviewing the main ideas.

The key element for estimating error bars in the DE
framework is that successive orders of this approximation are
suppressed2 by a small parameter of the order of 1/9 to 1/4
[26]. Due to this fact, if we call Q(s) the raw estimate of a
certain quantity Q at order s of the DE, a pessimistic generic
estimate of the error made within the DE at that order is

�genQ(s) = |Q(s) − Q(s−2)|
4

. (24)

Put another way, we can estimate the standard error at a
given order by taking the difference between the estimate
at that order with the precedent and dividing by 4. This is
a conservative estimate of the reduction of the uncertainty
of successive orders of the DE. It is worth mentioning that
this procedure provides only an estimate of the error bar for
second and higher orders of the DE.

In many cases, however, this estimate is excessively pes-
simistic. In particular, it has been observed that certain critical
exponents show in successive orders of the DE an oscillatory
behavior that progressively approaches the best estimates in
the literature. In such cases, the raw estimate at a given order
of the DE should be seen as a bound (upper or lower depend-
ing on the case) to the critical exponent under analysis. In this
understanding, the values of the previously stated confidence
interval that do not satisfy the bound should be discarded and
the corresponding confidence interval is divided by a factor of
two (and consequently also the central value is shifted slightly
in the direction of the previous order of the DE):

�imprQ(s) = �genQ(s)/2, (25)

Q(s)
impr = Q(s) ± �imprQ(s). (26)

In the previous formula the sign is set by shifting the central
value towards the estimate of the previous order. This proce-
dure was also successfully tested in Ref. [28] giving always
precise and accurate results.

In the present work we analyze in detail the behavior of the
critical exponent y4 which, as in many other cases, seems to
show an alternating behavior and in which the estimate of each
order of the DE seems to be a bound (upper in the case of the
LPA and lower to the order DE2). Assuming the alternating
behavior, we adopt the improved estimation procedure men-
tioned in the previous paragraph and represented graphically
in Fig. 2.

As discussed in Sec. III A the results obtained in this way
for y4 in d = 3 turn out to be in very good agreement with

2Strictly speaking this observations takes place only once one
chooses as an estimate at a given order of the DE the value obtained
from the PMS procedure.
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FIG. 4. The leading stability matrix eigenvalues related to the anisotropy obtained at order DE2 displayed as function of the cutoff
parameter α for a sequence of values of d . The results obtained within the �F and �E schemes are exhibited with lines and points, respectively.
The values obtained within the two schemes practically coincide in d = 3, but the differences increase when lowering d . For d = 2.2 the
leading irrelevant eigenvalue y4 corresponds to eaniso

1 within the �F scheme and to eaniso
2,3 within the �E scheme [compare also Fig. 3(b)]. For d

approaching 2, the PMS value of y4 = eaniso
1 becomes very close to zero. In (d) and (e) some eigenvalues are real and different near the PMS

but cross and become complex conjugates far from the PMS. This results in some bifurcations in the curves in those panels.

estimates from other methods. Although the precision
achieved by us is slightly lower than the best estimates in
the literature, it should be noted that at least some of the
errors reported in the literature must be underestimated since,
as previously pointed out, the reported results are incompat-
ible with each other. It should be noted that the improved
procedure for estimating the central value and the confidence
interval gives a result that seems to improve the central value.
In fact, it is likely that our estimation of error bars is slightly
pessimistic, but, following the criterion adopted in Ref. [28]
we have preferred to limit ourselves to conservative error bars.

When lowering the dimension by going to d < 3 the esti-
mated error bars tend to increase significantly. Finally, when
reaching the vicinity of d = 2 the current procedure does
not allow us to give a controlled error bar estimate since the
dominant order of the DE (the LPA) does not exhibit a fixed
point, and therefore we have only the central value estimate
coming from the DE2 order. It should be noted however that,
as pointed out in Sec. III B, the values for various critical
exponents obtained in one of the DE2 versions (see below)
show a qualitative behavior very similar to the expected one
[11].
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TABLE II. Comparison of the values of y4 obtained within dif-
ferent versions of the DE2 in d = 3. The field truncation refers to
full field content in ρ and θ [see Eq. (8)] or a partial expansion by
keeping the full dependence in ρ but expanding in the invariant τ

[see Eq. (15)].

Version Field truncation Regulator y4

Ansatz Full Wetterich −0.111 ± 0.012
Ansatz Full Exponential −0.112 ± 0.012
Strict Full Wetterich −0.113 ± 0.012
Strict Full Exponential −0.114 ± 0.012
Ansatz Expanded Wetterich −0.114 ± 0.012
Strict Expanded Wetterich −0.114 ± 0.012

IV. ANSATZ VS STRICT DE

In this section we address a point that was left aside in
the methodological discussion of the Sec. III C. In the liter-
ature there are two different ways of implementing the DE.
The resulting equations are not the same and therefore it is
necessary to analyze to what extent the results they give are
equivalent. In this section we address this point to order DE2
in the XY model for all dimensions from d = 3 to d = 2 for
both isotropic exponents and for Z4-symmetric perturbations.

The most commonly implemented version of the DE which
we will refer to as “ansatz version” corresponds to simply
extracting all vertices and propagators directly from the ansatz
of the DE to a given order. For example, in the present work,
at order DE2, we simply differentiate Eq. (6) or (8) an appro-
priate number of times to obtain propagators and vertices with
three and four legs (the only ones needed to this order of the
DE).

A slightly different version of the DE was recently pro-
posed in Ref. [26]. According to the logic developed in that
reference it can be expected that all terms at a given order of
momenta expansion in a given flow equation have the same
order of magnitude. There could be exceptions to this generic
estimate but these should have a complementary origin (such
as the existence of a symmetry or some limit in which the
equations are simplified, e.g., by the existence of a critical
dimension). In this understanding, when studying a given flow
equation, terms with a number of momenta equal to other
terms already neglected by the mere imposition of the ansatz
can be neglected. For example, in the study of the two-point
function there appear terms that include vertices with four legs
(tadpole contribution) added to terms involving the product
of two vertices with three legs (bubble contribution). If one
works at order DE2, the terms with four momenta are dis-
carded by the ansatz in terms that involve a four-leg vertex.
In consequence, the terms with four momenta appearing in
the product of two vertices with three legs can be consistently
neglected as well. This is the actual version of the DE that was
implemented at high order of the DE in Refs. [26,28,29], and
we denote it here as the “strict” version of the DE.

Both versions of the DE have their advantages and disad-
vantages. From the point of view of aesthetics and simplicity
of presentation it is clear that the ansatz version is more
convenient. Moreover, coming from an ansatz that is taken
in the same way for all vertices, all relations coming from
symmetries or relations between response functions and cor-

FIG. 5. The dependence of exponent η on the implementation
of the DE as a function of d . Lines represent raw values from the
ansatz and strict versions of the DE2. Marked regions represent DE2
confidence intervals for each implementation.

relation functions, are automatically satisfied. On the other
hand, the resulting flow equations are more complicated. The
difference in the computational complexity is very small at
order DE2 for the O(N ) models and moderate when including
Z4 perturbations. However, when analyzing the order DE4
(and even more at order DE6) the difference in the size of
equations becomes huge and in those cases the simplification
of the expressions coming from the “strict” version becomes
an invaluable help.

The existence of these two versions of the DE generates,
however, a difficulty because we must be sure that when im-
plementing one or the other the results are equivalent (within
the corresponding error bars). The comparison between these
two versions of the DE was previously performed in d = 3
to order DE2 for the O(N ) models and to order DE4 for the
N = 1 case [28]. In Ref. [43] a field-expanded version of the
ansatz version is employed at order DE4 for the O(N ) models
and offers results compatible with those previously obtained
in the strict version without field expansion. In all these cases
it is observed that the difference between the two versions of
the DE is considerably smaller than the error bars estimated to
a given order. These comparisons allow us to conclude that, at
least for the purpose of studying universal properties at d = 3,
the two procedures are essentially equivalent.

In the present section we extend these previous studies
concerning the comparison between the ansatz and the strict
versions of the DE. For this purpose, we compare both ver-
sions for the critical Z4 model at DE2 order and for the first
time we perform the comparison not only for dimension 3 but
also lower.

The observation to be strongly emphasized is that both
versions of the DE are fully compatible at d = 3 for all the an-
alyzed quantities (ν, η, y4 in particular). Note that throughout
the text we have reported the results coming from the ansatz
version (except in the present section when explicitly stated).
It is therefore worth discussing here how our estimate of y4

depends on the implementation of the DE. In Table II we carry
out this comparison analyzing, in addition, the dependency
on the family of regulators used, as well as on having used a
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FIG. 6. The dependence of exponent eiso
1 = 1/ν on the imple-

mentation of the DE as a function of d . Lines represent raw values
from the ansatz and strict versions of the DE2. Marked regions
represent DE2 confidence intervals for each implementation.

truncated version in the fields [see Eq. (15)] or with a complete
dependency on ρ and θ [see Eq. (8)]. It is clearly observed that
in d = 3 the difference between the strict or ansatz version
of the DE is well below the margin of error. As stated in
Ref. [28] a similar behavior is observed at order DE2 for
the isotropic exponents η and ν. Moreover, in that dimension,
the truncation in the anisotropic invariant [when the order is
indicated in Eq. (15)] or the choice of the regulator family3

also has effects below the margin of error.
We note however that the situation is much less favor-

able when analyzing dimensions lower than three. As already
discussed in Sec. III B when d decreases the quality of the
different approximations performed deteriorates. Several in-
dependent indications seem to show this. First, the results
of the τ -expanded version �E [see Eq. (15)] begin to differ
more and more from those obtained from the one with full
field content �F [see Eq. (8)]. In particular, some eigenvalues
of the stability matrix cross in the �E version and not in the
�F version. Second, the difference between two consecutive
orders of the DE becomes very large. In fact, below d ∼ 2.5
the value of y4 in the leading order of the DE (the LPA)
changes sign, contrary to what is observed at order DE2.
This is the origin of the very large confidence intervals of
the DE for these dimensions that can be seen in Figs. 5–7.
In those figures, raw values, marked with lines represent the
results coming from ansatz and strict versions of the DE. In
Fig. 7 we employ the �F version of the calculation because, as
mentioned before, both versions have significant differences
for anisotropic eigenvalues below d ∼ 2.5. In low dimensions,
some exponents do not even show an alternating behavior, so
we employ in those cases the pessimistic estimate of error
bars. In this context it is to be expected (and properly found,
as shown in Figs. 5–7) that the results from the ansatz version
and the strict version differ increasingly. These differences
should be attributed to higher estimated error bars of the DE

3One must, however, stress that the dependence on the regulator is
higher without imposing the PMS criterion.

FIG. 7. The dependence of exponent eaniso
1 = y4 on the imple-

mentation of the DE as a function of d . Lines represent raw values
from the ansatz and strict versions of the DE2. Marked regions
represent DE2 confidence intervals for each implementation.

in low dimensions. This difficulty becomes extreme as we
approach d → 2 where the LPA no longer shows a fixed point.
In that case our procedure of calculating the error bars directly
becomes meaningless. Indeed, in Figs. 5–7 the error bars are
not represented below d = 2.1 (d = 2.2 in anisotropic case)
because we loose control of the LPA approximation in those
dimensions. Let us note that putting aside the y4 exponent in
a small range of dimensions, estimates coming from the strict
and the ansatz versions are fully compatible within error bars.
Accordingly, the rise of discrepancy is just a manifestation
of the fact that higher orders of the DE have a much larger
contribution below d ∼ 2.5.

Despite the facts discussed in the previous paragraph, it
should be noted that the results obtained in the ansatz version
of DE2 turn out to describe both qualitatively and, to some
extent also quantitatively, the expected behavior of the KT
transition (including the perturbations with anisotropy Z4)
when d → 2, in contrast to what happens in the strict ver-
sion. In particular, a sudden drop in the eigenvalue eiso

1 = 1/ν

around d = 2.2 is correctly observed in the ansatz version and
below this dimension 1/ν approaches zero. This difference
in the quality of the results obtained in low dimension may
indicate a possible preference among both versions of the DE
when approaching dimension 2. This requires further clarify-
ing study.

Although at the moment we do not have a conclusive
explanation, we permit ourselves here to conjecture a possi-
ble reason for this substantial difference in quality between
the two versions of the DE at d = 2. As mentioned before,
the ansatz version has the property of exactly preserving the
generalized response-fluctuation relations, as well as the Ward
identities for the O(2) symmetry.4 The strict version, by treat-
ing each vertex independently, only satisfies these relations

4Ward identities and response-fluctuation relations depend only on
the existence of an ansatz with symmetry from which all vertices are
extracted; it does not require that the ansatz is an accurate description
of the physics.
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up to higher-order terms in the momentum expansion. Such
relationships are key in the study of the broken phase in the
presence of continuous symmetry. Although, strictly speak-
ing, at d = 2 there is no broken phase in the O(2)-symmetric
case, at d = 2 + ε the broken phase does exist and the tran-
sition fixed point approaches the low-temperature fixed point
as ε → 0. In fact, the ansatz version of DE2 is able to exactly
describe the behavior at d = 2 + ε for N > 2 at order O(ε).
Although there is a nonanalytical behavior at d = N = 2 [32],
it is expected that this closeness to an exact result improves
the quality of the approximation also for N = 2 in the two-
dimensional limit. The resolution of this point calls for an
extension of the present study to the DE4 order.

V. SUMMARY AND OUTLOOK

The derivative expansion of the nonperturbative RG has
in very recent years been shown to provide a computational
tool capable of delivering accurate and highly precise results
with controllable error estimates for the universal proper-
ties of the O(N ) models in d = 3. In the present paper we
have extended this approach to a situation involving a dis-
crete Z4-symmetric perturbation, dangerously irrelevant at
the isotropic O(2)-symmetric fixed point. An accurate treat-
ment of such a situation within nonperturbative RG requires
substantial methodological advancements as compared to the
isotropic case, since the functions parametrizing the flowing
effective action depend in an essential way on two field vari-
ables. Systematically implementing the DE up to order ∂2, in
d = 3 we have provided an estimate of the leading eigenvalue
y4 related to the discrete anisotropy. We have demonstrated
that an expansion in the Z4 invariant τ = 1

2φ1φ2 yields results
practically equivalent to those obtained within the complete
DE2 approach in that dimension. This is however no longer
the case for lower d . We have analyzed the dependence of y4

on dimensionality and shown its nonmonotonous character.
We finally demonstrated the approach of y4 towards zero
for d → 2+, which marks the onset of nonuniversal critical
behavior. Previous NPRG studies, while providing correct
resolution of the interplay between the different fixed points

and the rich and interesting crossover behavior of the system,
did not deliver the accurate eigenvalues describing the cubic
perturbation (neither in d = 3, nor in d = 2). Our present
study demonstrates how this is achieved via a systematic
implementation of the derivative expansion. We discussed
and compared the different implementations of the DE (the
“ansatz” and the “strict” version). While in the vicinity of
d = 3 these give practically identical results, substantial dif-
ferences occur in lower d even if the results continue to
agree within error bars. In particular, for d → 2+, only the
“ansatz” version correctly accounts for the divergence of the
correlation length exponent accompanying the onset of the KT
physics. This discrepancy calls for further clarifying studies,
necessary going beyond the DE2 truncation level. The present
work also points to the fertility of the methodology developed
recently in Refs. [26–29] in situations reaching beyond the
paradigm of isotropic O(N ) models. It would be very inter-
esting to extend the present study to the DE4 trucation level.
We expect that in d = 3 this would allow for obtaining the
value of y4 with an accuracy better than in previous studies
performed so far. On the other hand, in d = 2 we anticipate
that the DE4 calculation might be capable of capturing the KT
physics fully accurately and in any case would provide a strin-
gent test of the NPRG error estimate methodology developed
recently. This would additionally shed light on the differences
between the ansatz and strict variants of the DE approximation
scheme.
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