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Soft fundamental measure theory functional for the Weeks-Chandler-Andersen repulsive potential
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We introduce a soft fundamental measure theory functional for the purely repulsive Weeks-Chandler-Andersen
(WCA) fluid. This classical density functional could serve as a reference fluid for functionals created using
thermodynamic perturbation theory instead of the hard-sphere fluid. Our functional incorporates temperature-
dependent parameters describing the length scale and effective softness of the particle interaction, and which
reproduce the second virial coefficient of the WCA fluid. We find that this approach is comparable in accuracy
to the Barker-Henderson approach combined with the White Bear density functional for the hard-sphere fluid.

DOI: 10.1103/PhysRevE.106.064134

I. INTRODUCTION

The idea of liquids as composed of hard spheres dates
back over two millennia [1]. A hard-sphere fluid is charac-
terized by a repulsive interatomic potential that goes instantly
to infinity when two spheres come into contact. In the 20th
century, it came to be understood that atoms are inherently
soft with no abrupt border, but that their repulsion could still
be accurately described using a hard-sphere fluid provided
the diameter is chosen to be temperature dependent [2–4].
A temperature-dependent hard-sphere diameter reflects the
effect of collisions during which the centers of two spheres
come closer together at higher temperatures.

A hard-sphere fluid can be used as a reference fluid to
which an attractive potential can be added as a perturba-
tion [5]. A more realistic reference fluid would have a soft,
repulsive interatomic potential like that of the Lennard-Jones
potential between two neutral atoms. In the widely used
Barker-Henderson (BH) approach, an arbitrary soft, repulsive
potential can be constructed by mapping it at each temper-
ature to the potential exhibited between hard spheres with a
diameter appropriately sized for each temperature [3]. Weeks,
Chandler, and Andersen (WCA) constructed a soft-sphere ref-
erence fluid by separating the Lennard-Jones potential in such
as way as to recreate the soft, repulsive potential that repro-
duces the repulsive force of a Lennard-Jones interaction [6].
The soft, repulsive WCA potential is given by

VWCA(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6] + ε, 0 < r < 2R
0, otherwise,

(1)

where ε and σ are the usual Lennard-Jones parameters and R
is a single sphere radius which is related by σ = 25/6R.

The BH approach (where the hard-sphere diameter is
dependent on temperature only) lends itself for use with
fundamental measure theory [7,8] (FMT) from which the
thermodynamic properties of the fluid can be found. FMT is a
powerful classical density functional theory (DFT) developed
by Rosenfeld for the hard-sphere fluid. Tarazona improved on

the functional by introducing a tensor weight [9] to eliminate
the divergences that arise in highly inhomogeneous situations
like freezing. Due to its combination of computational effi-
ciency with accuracy, FMT has been used as the basis for a
wide variety of classical density functionals [10–15].

The hard-sphere fluid is well understood and has served
as the reference system of choice for the theory of liq-
uids [16–19] not only for the homogeneous fluid [20] but
also in the more challenging case of the inhomogeneous
fluid [21–24]. However, the hard-sphere fluid remains a non-
physical model, which can also be numerically inconvenient
due to its discontinuous potential and the requirement for delta
functions in computing weighted densities.

Working toward a more realistic model for liquids which
deals only with smoothly varying potentials, Schmidt de-
veloped soft fundamental measure theory (SFMT) [25,26],
which is a classical DFT that directly treats model fluids
with soft, repulsive potentials in a framework based on the
highly successful FMT developed for hard spheres. As in
FMT, SFMT uses a set of weighted densities to express the
free energy of the system as a functional of the number den-
sity n(r). Schmidt’s SFMT functional is constructed so as to
yield results consistent with the low-density limit of the virial
expansion and the limiting case of a zero-dimensional cavity
which are known exactly. SFMT has been used to describe
the behavior of a star polymer in solution [27–30], as well
as repulsive potentials applicable to atoms [26,30]. In his
2010 review of FMT, Roth points out that the most important
future developments in classical equilibrium DFT will involve
treating soft repulsions and attractions [31].

In this paper, we introduce a functional for a clas-
sical soft-sphere fluid based on SFMT that incorporates
temperature-dependent parameters which we use to recreate
the soft, repulsive potential of a WCA fluid. Since the WCA
potential reproduces the repulsive force of a Lennard-Jones
interaction, it is an ideal model for interatomic repulsion.
Our results, and those generated for the WCA fluid using the
hard-sphere BH approximation, are compared to Monte Carlo
(MC) simulations.
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II. METHODS

A. Soft fundamental measure theory

As in FMT, the excess Helmholtz free energy of Schmidt’s
SFMT (designed for soft spheres) is a functional of the num-
ber density n(r) written as an integral of free energy densities
�i(r),

Fex[n(r)] = kBT
∫

(�1(r) + �2(r) + �3(r))dr, (2)

which are functions of a set weighted densities {ni}:
�1 = −n0 ln (1 − n3), (3)

�2 = n1n2 − nV 1 · nV 2

1 − n3
, (4)

�3 = 1

24π (1 − n3)2

(
n2

3 − 3n2nV 2 · nV 2

+ 9

2

[
nV 2 · ←→n m2 · nV 2 − Tr

(←→n 3
m2

)])
. (5)

Here we have used the tensor version of �3 formulated by
Tarazona [9,32] to give improved results for the crystallization
of hard spheres. The weighted densities are given by

ni(r) =
∫

n(r′)wi(|r − r′|)dr′ (6)

and are defined as convolutions with weight functions similar
to those of Rosenfeld’s hard-sphere FMT [7]. As in FMT, the
SFMT weight functions are constructed so as to deconvolve
the Mayer function,

f (r) = e−βV (r) − 1, (7)

where β = 1/kBT . The SFMT weight functions differ from
those of FMT, however, and are given by

w1 = w2

4πr
, w0 = w2

4πr2
, (8)

wV 2 = w2
r
r
, wV 1 = w1

r
r
, (9)

←→wm2 = w2(r)

(
rr
r2

− I

3

)
, (10)

w3(r) =
∫ ∞

r
w2(r′)dr′. (11)

Schmidt proved that as in traditional hard-sphere FMT, SFMT
reproduces the exact functional in the low-density limit, pro-
vided the weight function w2 that defines n2 is related to the
slope of the Mayer function by a convolution with itself:

df (r)

dr
=

∫ ∞

−∞
dr′w2(r′)w2(r − r′). (12)

By finding a weight function w2(r) that satisfies Eq. (12), a
complete set of weight functions can be constructed since they
all relate to w2(r).

One way to satisfy Eq. (12) is to choose a pair potential
V (r) and deconvolve the Mayer function f (r) to solve for
w2(r). However, deconvolving the Mayer function for a realis-
tic potential is challenging. In the original papers introducing
SFMT, Schmidt exclusively studied models analytically in
which the potential is proportional to temperature [25,26].

While this proportionality is correct for purely entropic inter-
actions, such as the star polymer in solution studied in several
papers [25], this assumption is not applicable to energetic in-
teractions such as dominate the repulsion between molecules.

Another way to satisfy Eq. (12) is to construct a w2(r)
and solve for the pair potential to which that weight function
corresponds. This is the approach we use in this paper. We
use a weight function for w2(r) which has a Gaussian form as
introduced by Schmidt [26],

w2(r) =
√

2

�
√

π
e
−
(

r−α/2
�√

2

)2

, (13)

where � and α are parameters with dimensions of length. This
model, called the error function model or erf model, results in
analytically simple forms for the w3(r) weight function, the
Mayer function, and the pair potential:

w3(r) = 1

2

(
1 − erf

(
r − α/2

�√
2

))
, (14)

f (r) = 1

2

(
erf

(
r − α

�

)
− 1

)
, (15)

Verf (r) = −kBT ln

[
1

2

(
erf

(
r − α

�

)
+ 1

)]
. (16)

In the next section, we will modify the erf model to create a
functional that can be used to model a soft-sphere fluid like
the WCA fluid.

B. Soft FMT for the WCA fluid

As is evident from Eqs. (16) and (15), a potential energy
of interaction that is temperature independent, like that of the
WCA fluid, can only be modeled at one temperature using
the error function model. At other temperatures, the Mayer
function f (r) for the WCA potential takes on an entirely
different form than that produced by the erf potential and is
not analytically tractable.

To use the erf potential to approximately reproduce
the soft, repulsive, temperature-independent potential of the
WCA fluid at each temperature, we offset the original temper-
ature dependence of the erf potential by making the α and �

parameters temperature dependent. This is analogous to how
Barker and Henderson introduced a temperature-dependent
hard-sphere radius to use the entropically dominated hard-
sphere fluid to approximate a soft, repulsive potential. The α

parameter roughly measures the length scale of the interaction
and decreases with increasing temperature like the BH diam-
eter. The � parameter is a measure of the effective softness of
the interaction and increases with the temperature.

We obtain an expression for � by considering that as the
distance r between the centers of two spheres increases, the
potential drops from infinity to zero, and the Mayer function
changes from −1 to 0. The wider the distance over which
the Mayer function changes rapidly, the softer the potential
and the greater the width of the curve of the derivative of the
Mayer function plotted versus the distance r. Thus, we achieve
comparable softness by matching the widths of the derivatives
of the Mayer functions for the WCA and the erf potentials.
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The derivative of the Mayer function for the erf potential is
computed by putting w2(r), given by Eq. (13), into Eq. (12).
This gives

dferf(r)

dr
= 1

�
√

π
e−

(
r−α
�

)2

, (17)

with a width, or variance, given by �/
√

2. We then relate the
parameter � to the variance of the radius about the peak of
the derivative of the Mayer function for the WCA potential
f ′
WCA(r) computed at a given temperature,

�2

2
= 〈r2〉 − 〈r〉2, (18)

where

〈r〉 =
∫

f ′
WCA(r) r dr∫
f ′
WCA(r) dr

. (19)

To obtain an expression for α, we set the second virial
coefficient B2 of the WCA fluid computed using the WCA
potential given in Eq. (1) equal to the second virial coefficient
computed using the erf potential given in Eq. (16), and solve
for the parameter α at a given temperature. The second virial
coefficient is related to the Mayer function [which passes
through −1/2 at r = α in Eq. (15)] and is sensitive to the
length-scale of the interaction:

B2 = −1

2

∫
f (r) dr (20)

= −1

2

∫
(e−βV (r) − 1) dr. (21)

Matching the second virial coefficient to that of the WCA fluid
makes the first-order correction to the pressure equal to that of
a WCA fluid in the low-density limit, where it is not likely to
find more than two particles in close proximity at any point in
time.

P

kBT n
= 1 + nB2 + · · ·. (22)

The erf potential given in Eq. (16) with temperature-
dependent parameters α and � is plotted in Fig. 1 at three
different temperatures alongside the WCA potential. The
largest deviations are seen at very small distances, and thus
very high potential energies. The derivative of the Mayer
function corresponding to the WCA pair potential is shown
in Fig. 2, where it is compared to w2 given in Eq. (13) con-
volved with itself. Ideally, the curves would match for each
temperature, provided Eq. (12) is satisfied.

C. Freezing of the WCA fluid

In classical DFT, the equilibrium density n(r) is that which
minimizes the Helmholtz free energy for a fixed number
of particles N and volume V at a given temperature. Like
the hard-sphere fluid, the WCA fluid freezes into the face-
centered-cubic crystal structure. We represent n(r) for this
crystalline state as a sum of Gaussian functions, each centered

FIG. 1. The WCA potential (solid line curve) is shown along
with approximations to this potential at three different reduced tem-
peratures (T ∗ = kBT/ε) constructed using the erf potential (dashed
lines) with incorporated temperature-dependent parameters α and �.
The vertical dotted lines show the values of α at which Verf and VWCA

would ideally be matched, and the solid black vertical line represents
the distance at which the WCA force goes to zero. (Deviations near
the bottom of the curve increase with temperature.)

at a lattice point specified by Ri:

n(r) = (1 − fv )
∑

i

1

(
√

2πσg)3
e
−
(

|r−Ri|√
2 σg

)2

. (23)

FIG. 2. The derivative of the Mayer function for the WCA poten-
tial f ′

WCA (solid lines) and the convolution of w2 with itself (which
gives f ′

erf plotted with dashed lines) are shown at three different
temperatures. According to Eq. (12), these should be identical to
accurately reproduce the low-density behavior of the fluid. The ver-
tical dotted lines show values of α where the erf potential peaks,
and the solid vertical line shows where the WCA force and f ′

WCA

go to zero. The erf result extends slightly past the cutoff at which
f ′
WCA vanishes for all temperatures, but goes quickly to zero. At

lower temperatures, the curves become more peaked and approach
the cutoff as the system approaches hard-sphere behavior at which
they become Dirac delta functions.
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The density can be varied spatially by changing the width
of the Gaussians σg and the fraction of vacant lattice sites
fv while keeping the overall number density fixed. As the
Gaussian width gets large, the number density becomes homo-
geneous, as would be expected for a fluid. Varying the fraction
of vacancies while the overall number density is fixed changes
the size of the crystal cell. A very small fraction of vacancies
helps to avoid computational difficulties.

We use MC integration with importance sampling to com-
pute the weighted densities used in the Helmholtz free energy,
which is then minimized. The pressure can be found from a
finite difference approximation of the slope of the Helmholtz
free energy per atom with respect to volume per atom. The
pressure at the phase transition can be obtained from the
crossing point in a plot of the Gibbs free energy per atom
against pressure.

D. Comparison to Barker-Henderson hard sphere

The results from our soft-sphere SFMT method introduced
in this paper will be compared with those obtained using the
BH approximation. In the BH approach [3], a soft-sphere fluid
with a repulsive pair potential V (r) is approximated by a hard-
sphere fluid with a temperature-dependent diameter given by

dBH =
∫ ∞

0

(
1 − e−βV (r)

)
dr. (24)

The BH approach is based on hard spheres, and so it can be
used in conjunction with a hard-sphere functional.

We use the White Bear [11] functional with the BH di-
ameter to generate density and radial distributions of the
inhomogeneous WCA fluid. The White Bear functional is
a modified version of Rosenfeld’s FMT functional for hard
spheres which uses the same weight functions as FMT (which
differ from those of SFMT) and that are all based on a Dirac
delta function for w2 given by

w2(r) = δ(R − r), (25)

where R is the hard-sphere radius. The White Bear functional
uses the same �1 and �2 as in FMT [also given by Eqs. (3)
and (4)], but �3 is replaced with

�3 = (n3
2 − 3n2nV 2 · nV 2)

n3 + (1 − n3)2 ln(1 − n3)

36πn2
3(1 − n3)2 , (26)

which reduces to the Carnahan-Starling equation of state
rather than scaled-particle theory for homogeneous hard-
sphere systems.

III. RESULTS

In this section, the results of our SFMT method introduced
in this paper will be compared to those produced by the BH
approximation. We will also compare our results with MC
simulations of the WCA fluid.

A. Soft spheres in bulk

We begin by examining the equation of state of the bulk
fluid. Figure 3 shows the pressure as a function of volume for
a wide range of temperatures. A gray region between the solid

FIG. 3. Plot of the reduced pressure (Pσ 3/ε) versus the reduced
volume per atom (1/nσ 3) for the WCA fluid. Solid lines give our
SFMT results introduced in this work, and the gray region on the
left indicates the coexistence region predicted by our SFMT method.
Dashed lines show the results of our MC simulations (256 atoms).
Dotted lines represent the BH approximation where the BH freez-
ing and melting densities are derived using Eq. (24) together with
hard-sphere packing fractions η f = 0.494 and ηm = 0.545 [33]. BH
fluid pressures are from the Carnahan-Starling equation of state, and
BH crystal pressures are based on hard-sphere data from molecular
dynamics simulations [33,34].

and fluid phases indicates the coexistence region as predicted
by our SFMT method introduced in this paper. We find that
at high volumes (low densities), both methods (this paper and
BH) approach the correct MC pressures, as expected, although
at higher temperatures, our SMFT method approaches the
correct pressure more slowly than BH. As the volume de-
creases (density increases), both methods (this paper and BH)
show increasingly higher pressures than the MC simulations
when coming near the coexistence region. At freezing, the
pressures predicted by our SMFT method are higher than
those predicted by BH, and the difference between them in-
creases with temperature. In the solid crystalline region, the
results of our SMFT method exhibit higher pressures than the
MC simulations, while BH follows the MC simulations more
closely.

Figure 4 shows a phase diagram of the temperature versus
the density for the WCA fluid. Again, a gray region between
the fluid and solid phases indicates the coexistence region as
predicted by our SFMT method introduced in this paper. We
find that the freezing and melting densities predicted by our
SMFT method show good agreement with MC simulations
though shifted slightly to higher densities. The BH freezing
and melting densities show lower values than the MC simula-
tions and deviate increasingly as the temperature increases.

Overall, we found that our SFMT method introduced in
this paper shows good agreement with MC simulations over
a wide range of temperatures and densities, but predicts pres-
sures that are too high for the solid crystal. The melting and
freezing densities predicted by our SMFT method show much
better agreement with MC simulations than BH.
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FIG. 4. Phase diagram of the reduced temperature versus the
reduced density (n∗ = nσ 3) for the WCA fluid. The narrow gray
region between the fluid phase (on the left) and solid phase (on
the right) is the region of coexistence generated using our SFMT
method introduced in this paper. Dashed lines indicate freezing and
melting densities from MC simulations [35] and dotted lines show
BH freezing and melting densities derived using Eq. (24) together
with hard-sphere packing fractions η f = 0.494 and ηm = 0.545 [33].

B. Soft spheres near a hard wall

As the simplest test for inhomogeneous one-dimensional
behavior, we plot density profiles for the WCA soft-sphere
fluid near a hard wall. A hard wall, in this context, is inter-
preted as a potential encountered by the spheres that abruptly
transitions from zero to infinity. Figure 5 shows density
profiles for reduced densities of n∗ = 0.6 and n∗ = 1.0 at
different temperatures.

We find that our SFMT method introduced in this paper and
the BH approach with the White Bear hard-sphere functional
give almost identical results. Both methods (this paper and
BH) are in good agreement with the MC simulations overall
with slight discrepancies in the position and height of the
peaks, especially at the first peak, which increase with de-
creasing temperature or increasing density.

C. Soft spheres near a soft wall

As a second and more physical case, we construct a soft
wall made of a continuum of soft WCA spheres with density
ρ. The potential at a distance z from such a wall is given by

VSW(0 < z � d )

= 2πρε

[
2σ 12

45

(
1

z9
− 1

d9

)
+ σ 6

3

(
1

d3
− 1

z3

)

+ z3 − d3

6
+ (d − z)

(
d2

2
+ σ 6

d4
− 2σ 12

5d10

)]
, (27)

where the distance d = 2−5/6σ is equal to the distance at
which the interaction between WCA spheres vanishes. The
Lennard-Jones parameters ε and σ in Eq. (27) are those be-
tween the wall and the fluid and are taken to be identical to

z

FIG. 5. Density distribution of the WCA fluid near a hard wall
as a function of the reduced distance (z/σ ) for reduced densities
of (a) n∗ = 0.6 and (b) n∗ = 1. The solid lines give our SFMT
results introduced in this paper, the dotted lines represent the BH
approximation using the White Bear functional, and dashed lines
give our MC simulation results. (Curves at lower temperatures show
higher peaks.)

those within the fluid. The potential is zero when z > d , and
is infinite for z � 0.

In Fig. 6, we plot the density versus the distance from the
surface of the wall at different temperatures. Again, we find
that our SFMT method introduced in this paper gives almost
identical predictions to the BH approach, while both methods
closely follow the MC simulations with slight discrepancies
in the position and height of the peaks, especially at the first
peak, which increase with decreasing temperature or increas-
ing density.

D. Soft spheres radial distribution function

For three-dimensional comparisons, we plot radial distri-
bution functions generated by using the Percus’ test particle
approach [36] in which a test sphere with a WCA potential
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z

FIG. 6. Density distribution of the WCA fluid near a soft wall
as a function of the reduced distance (z/σ ) for reduced densities
of (a) n∗ = 0.6 and (b) n∗ = 1. The solid lines give our SFMT
results introduced in this paper, the dotted lines represent the BH
approximation using the White Bear functional, and dashed lines
give our MC simulation results. (Curves at lower temperatures show
higher peaks.)

is surrounded by a WCA fluid. Figure 7 shows radial dis-
tribution functions at two different densities for a range of
temperatures. We find that both our SFMT method introduced
in this paper and the BH approximation are in almost exact
agreement with the MC simulations with slight discrepancies
in the position and height of the peaks, especially at the first
peak, which increase with decreasing temperature or increas-
ing density.

E. Argon

To make comparisons with experiment, we simulate the ra-
dial distribution function of argon under high pressure (which
minimizes the effects of the attractive potential). We do this by
computing the radial distribution of a WCA fluid surrounding
a single Lennard-Jones test particle where we have used the

FIG. 7. Radial distribution function of the WCA fluid for reduced
densities of (a) n∗ = 0.6 and (b) n∗ = 1. As in the other figures,
the solid lines give our SFMT results introduced in this paper, the
dotted lines represent the BH approximation using the White Bear
functional, and dashed lines give our MC simulation results. (Curves
at lower temperatures show higher peaks.)

Lennard-Jones parameters developed by Verlet: σ = 3.405 Å
and ε/kB = 119.8 K [37] for both our WCA fluid and the
test particle. In Fig. 8, we show the results of three experi-
ments for which data is available [38–40], and which roughly
span the range of reduced densities from 0.6 to 1.0. The
first experiment was performed at 148 K and 9.92 MPa, the
second at 85K and vapor pressure, and the third at room
temperature and 1.1 GPa. For each system, we compute the
radial distribution function for argon using our SFMT method
introduced in this paper, the BH approximation, and MC
simulation.

From the results shown in Fig. 8, we note that our MC sim-
ulations of the WCA fluid give a reasonably good prediction
of the radial distribution function of a real liquid, albeit with
some discrepancies which increase with increasing density,
especially at the first peak. We find that the results of our
SFMT method introduced in this paper and those of the BH
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FIG. 8. Radial distribution functions of argon. The darker solid lines show the results of experiments, and the lighter solid lines show the
results from simulations using our SFMT method introduced in this paper. The dotted lines show the results of the BH approximation using the
White Bear functional and the dashed lines show the results of our MC simulations. (a) Experimental data taken at 148 K and 9.92 MPa, and
simulated with n∗ = 0.5844, T ∗ = 1.235. (b) Experimental data taken at 85 K and vapor pressure, and simulated with n∗ = 0.8389, T ∗ = 0.71.
(c) Experimental data taken at room temperature and 1.1 GPa, and simulated with n∗ = 1.0950, T ∗ = 2.48.

approximation show good agreement overall with both the
experimental results and MC simulations, with some slight
discrepancies in the position and height of the peaks, espe-
cially at the first peak.

IV. CONCLUSION

We have developed a functional for a classical fluid with a
soft, or smoothly varying, repulsive interatomic potential and
applied it successfully to model the WCA soft-sphere fluid.
Our functional is based on Schmidt’s SMFT, designed to be
applied directly to a soft-sphere fluid without the need to map
a fluid with a soft potential to a hard-sphere fluid as is done in
the widely used BH method. Similar to the BH method, which
makes the hard-sphere radius temperature dependent, we also
make parameters in our functional temperature dependent to
characterize the length scale and softness of the particle inter-
action, and reproduce the second virial coefficient of the fluid.

In this paper, we demonstrated that our functional can be
used to predict the equation of state and freezing and melting
densities for the WCA fluid in good agreement with MC
simulations over a wide range of temperatures and densities.
We have also generated one-dimensional density profiles of
the WCA fluid against hard and soft walls, and radial distri-
bution functions which all show good agreement with MC
simulations. We have also used our functional to simulate
radial distribution functions of liquid argon that show good
agreement with both MC simulations and experiments.

Overall, we found that our method presented in this paper
is as good as the BH method over a wide range of densities and
temperatures and at the freezing and melting densities, but not
much further into the solid crystalline region. The advantage
to our theory is that it is closer to modeling a real fluid which
is naturally soft, and we can use it as is rather than needing to
accommodate for discontinuities and delta functions of hard-
sphere fluids.
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