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Strongly coupled quantum Otto cycle with single qubit bath
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We discuss a model of a closed quantum evolution of two qubits where the joint Hamiltonian is so chosen
such that one of the qubits acts as a bath and thermalizes the other qubit which is acting as the system.
The corresponding exact master equation for the system is derived. Interestingly, for a specific choice of
parameters the master equation takes the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) form, with constant
coefficients representing pumping and damping of a single qubit system. Based on this model we construct an
Otto cycle connected to a single qubit bath and study its thermodynamic properties. Our analysis goes beyond
the conventional weak coupling scenario and illustrates the effects of finite baths, including non-Markovianity.
We find closed form expressions for efficiency (coefficient of performance), power (cooling power) for the heat
engine regime (refrigerator regime), and for different modifications of the joint Hamiltonian.
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I. INTRODUCTION

In the last few decades new experimental techniques [1–5]
have been developed which enabled the study of particles and
phenomena at a length scale where quantum effects play a
dominant role. In these studies the quantum systems inter-
act with their ambient environment with varying degrees of
isolation. Mostly systems exhibit significant variation in their
behavior as a result of weak or strong interaction with the
environment. This has resulted in a renewed focus on the study
of quantum systems which are open to the environment [6].
When the interaction between the system and the environ-
ment is weak, one can microscopically derive its evolution
[6,7] through a series of approximations (Born-Markov and
secular) in the form of the celebrated Gorini-Kossakowski-
Lindblad-Sudarshan (GKLS) master equation [8,9],

dρ

dt
= −i[HS, ρ] +

n∑
k=1

γk

(
AkρA†

k − 1

2
{A†

kAk, ρ}
)

, (1)

where Ak’s are the jump operators, HS is the (effective) system
Hamiltonian, and the rates γk � 0 for all k. The corresponding
evolution is governed by the Markovian semigroup �t = etL.
However, for a vast majority of dynamics, interaction is not
weak and all the approximations used to derive master equa-
tions in GKLS form are not valid. Consequently, such general
closed form master equations do not exist when the interaction
is not weak. In this case one often uses the corresponding mas-
ter equation with time-dependent generator, i.e., all objects
appearing in (1) are in general time dependent. Interestingly,
when time-dependent rates satisfy γk (t ) � 0, we call the cor-
responding evolutions completely positive divisible or CP
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divisible [10–15]. This means that the corresponding dynami-
cal map �t satisfies the following composition law:

�t = Vt,s�s, (2)

and the corresponding propagator Vt,s is completely positive
and trace preserving (CPTP) for all t � s. CP-divisible evo-
lutions are usually called Markovian. Also, in this paper we
will consider CP divisibility as the criterion for Markovianity.
Note that semigroup master equations are also Markovian
according to this criterion. Interestingly, there are alternate
formulations of Markovianity, namely, the information flow
approaches, where a backflow of information from the envi-
ronment to the system gives rise to non-Markovianity [15–18],
but for all these approaches CP divisibility serves as a suffi-
cient criterion. Another approach to quantum (non)Markovian
dynamics uses the structure of multitime correlations, which
are built during the evolution of the system and environ-
ment [12,19–22]. This concept of quantum Markovianity is
closely related to the well-known quantum regression theorem
[12,23–25].

Theory of open quantum systems provides a solid foun-
dation to the emergent field of quantum thermodynamics
[26–28]. The dynamical framework of quantum mechanics
allows one to address finite time thermodynamics processes.
Specifically, in the weak coupling limit, the microscopi-
cally derived Markovian master equation (also known as
Davies construction [7]) in the GKLS form gives a consis-
tent and universal description of the basic thermodynamic
laws [26,29,30]. Originally, Davies construction was engi-
neered for the time-independent system Hamiltonian. Later
on it was generalized for the time-dependent scenarios
[31–35]. Beyond the weak coupling approximation, where
non-Markovianity inevitably enters into the picture, it is
not straightforward to establish a consistent framework of
thermodynamics, largely due to the unavailability of a
unique closed form master equation as mentioned before.
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Consequently, a number of approaches [36–46] have been
proposed to deal with strong interaction without compro-
mising the thermodynamic consistency. One of the major
applications of quantum thermodynamics is the study of
quantum thermal machines [30,31,47,48], which are typically
restricted to the weak coupling scenario. New experimental
techniques [49–55] to access the strongly coupled regime
and recent theoretical progresses have now opened an av-
enue to consider the performance of thermal machines beyond
the weak coupling scenario [56–65]. In general, it has been
observed that the strong coupling effect reduces the per-
formance of a thermal machine [57,62,63,66,67]. On the
other hand, there are several studies [68–71] that showed
the non-Markovian effect is actually beneficial for enhancing
performance, even in the regime of weak coupling [57,68].
Although there are some objections [72–74] to this non-
Markovian boosting due to the neglecting of the coupling
and decoupling cost, recently a genuine non-Markovian ad-
vantage has been reported [75], taking into account these
previous shortcomings. Evidently, it is an intriguing task to
investigate the interplay between strong interaction and non-
Markovianity [76] with respect to thermodynamic tasks, and
it still remains a largely unexplored area.

With this goal, here we consider a model of quantum Otto
cycle, where the working medium qubit is connected to an-
other single qubit (working as bath) with arbitrary interaction
strength. Notably, in Refs. [77,78] the Otto cycle was im-
plemented on a quantum harmonic oscillator where another
harmonic oscillator acted as the bath. In our model, following
Ref. [79], we devise a two-qubit unitary evolution such that
the exact reduced dynamics of the working medium resembles
a semigroup master equation, i.e., in the GKLS form with
constant coefficients, representing pumping and damping of a
single qubit system. There are several advantages for choosing
this model. First, we go beyond the weak coupling approxima-
tion and yet get the exact dynamics in GKLS form. Second,
by tweaking the interaction Hamiltonian, we can make the
dynamics non-Markovian. This gives us a way to study strong
coupling and non-Markovianity at the same time. Finally, we
have control over the thermalization process taking place in
contact with a finite bath. We work out analytical expres-
sions for efficiency (coefficient of performance) and power
(cooling power) for the Otto engine (refrigerator), employing
the thermodynamic framework suited for strong coupling. We
notice that the transition from a Markovian to non-Markovian
scenario gives a better performance, even in the regime of
strong interaction.

This paper is organized as follows. In Sec. II we give a
short introduction to the Otto cycle with a conventional weak
coupling approximation. In Sec. III A we discuss the strong
coupling formalism we use in our paper. Next we describe
our model of qubit bath in Sec. III B. Implementation of
the Otto cycle is described in Sec. III C. In Sec. III D we
discuss the thermodynamic implications of Markovian and
non-Markovian dynamics. Finally, in Sec. IV we conclude.

II. WEAKLY COUPLED OTTO CYCLE

We present a brief discussion of the conventional Otto
cycle where the working medium (WM) with Hamiltonian HS

is weakly connected to two thermal baths, one at a time, with
temperatures Th and Tc (Th > Tc), respectively. The setup is
described by the total Hamiltonian,

H (t ) = HS(t ) + HBh + HBc + HSB(t ), (3)

where HBh , HBc are the self-Hamiltonians of the hot and cold
bath, respectively, and HSB(t ) = Hh

SB(t ) + Hc
SB(t ) denotes the

interaction Hamiltonian. The cycle consists of four strokes as
described below. A schematic diagram of the cycle is given
in Fig. 1(a). For simplicity we take h̄ = kB = 1. We here
consider that the time dependence of the WM Hamiltonian is
controlled through an external parameter ω(t ), and we write
the system Hamiltonian as HS(ω(t )). We also denote HS,α

as the WM Hamiltonian at each point of the schematic of
Fig. 1(a), with α = {A, B,C, D}.

First stroke. Initially [point A in the schematic diagram
1(a)], the WM is prepared in the state ρA

S with Hamiltonian
HS,A = HS(ω = ωA) ≡ HS(ωA), in equilibrium with the cold
bath. Baths are assumed to be always in equilibrium state with
their respective Hamiltonians and temperatures. Therefore the
initial joint state of the system-bath setup can be written as

ρA
tot = ρA

S ⊗ ρc
B = e−βcHS(ωA )

Tr[e−βcHA
S ]

⊗ e−βcHBc

Tr[e−βcHBc ]
. (4)

The first stroke is unitary, where the WM is decoupled from
the bath and the WM Hamiltonian HS(ω(t )) is changed from
HS,A = HS(ωA) at point A to HS,B = HS(ωB) at point B in a
time duration τu1. The final state of the WM after the first
unitary stroke is

ρB
S = U1ρ

A
S U †

1 , (5)

where U1 = T exp[−i
∫ tB

tA
HS(ω(t ))dt] is the unitary operator,

and T represents time ordering.
Second stroke. In this stroke from point B to C, the WM

is connected to the hot bath at inverse temperature βh for a
time interval τh, while keeping the WM Hamiltonian fixed
at HS(ωB) throughout the process. Evolution of the WM
is governed by the Markovian master equation in GKLS
form derived microscopically for weak coupling and standard
Born-Markov secular approximations [6],

ρ̇S (t ) = −i[HS(ωB), ρS (t )] + Dh[ρS (t )], (6)

where Dh is the dissipative superoperator. After a sufficiently
long time τh � τB (bath correlation time), the WM is equilib-
riated with the bath with state ρC

S = e−βhHS(ωB )/Tr[e−βhHS(ωB )].
Due to the weak coupling approximation, the joint system-
bath state is always in the form ρtot (t ) = ρS (t ) ⊗ ρ i

B (i = h, c).
Third stroke. Similar to the first stroke, this is the second

unitary stroke, where the Hamiltonian is changed back from
HS,C = H (ωB) to HS,D = H (ωA) in a time interval τu2. The
final state of the working medium after the first unitary stroke
is

ρD
S = U2ρ

C
S U †

2 , (7)

where U2 = T exp[−i
∫ tD

tC
HS(ω(t ))dt] is the unitary operator.

Fourth stroke. This is the second thermalization stroke,
where the WM is connected to the cold bath at inverse tem-
perature βc, keeping the Hamiltonian fixed at HS(ωA). If the
stroke duration τc is sufficiently long (τc � τB), the WM is

064133-2



STRONGLY COUPLED QUANTUM OTTO CYCLE WITH … PHYSICAL REVIEW E 106, 064133 (2022)

A B

CD

Unitary

Unitary

T
he

rm
al

iz
at

io
n

T
he

rm
al

iz
at

io
n

A1 B0

B1

C0

C1D0

D1

A0

Unitary

Unitary

T
he

rm
al

iz
at

io
n

T
he

rm
al

iz
at

io
n

Con
ne

cti
ng

 

to
 h

ot
 b

at
h

Con
ne

cti
ng

 

to
 co

ld 
ba

th

Disconnecting 

from
 hot bath

Disconnecting 

from
 cold bath

(a) (b)

FIG. 1. Schematic of Otto cycle for (a) weak and (b) strong coupling.

returned to the initial thermal state ρD
S = ρA

S completing the
cycle.

Total cycle time is given by τ = τu1 + τh + τu2 + τc. The
definition of heat and work is well defined in the regime of
weak interaction, given by, respectively [28,29],

Q =
∫

Tr[ρ̇S (t )HS(t )]dt, W =
∫

Tr[ρS (t )ḢS(t )]dt . (8)

We now consider a specific model where the Hamiltonian of
the WM is given as

HS(t ) = ω(t )σz. (9)

As mentioned before, ω(t ) is the external parameter, which
is changed from ωA = ωc to ωB = ωh in the first unitary
stroke and back to ωc in the final unitary stroke. Two ther-
mal baths are always in usual equilibrium states with inverse
temperatures βh and βc(βh < βc), respectively. We calcu-
late the heat and work done in each stroke for this model.
Note that in the unitary strokes no heat is exchanged and in
the thermalization strokes no work is done, as the Hamiltonian
is kept fixed. Defining the average energy of the WM at the
αth (α = A, B,C, D) point as Eα = Tr[ρα

S HS,α], we get the
following expressions for work and heat in different strokes:

W0
AB = 〈EB〉 − 〈EA〉 = (ωc − ωh) tanh βcωc, (10)

Q0
h = 〈EC〉 − 〈EB〉 = ωh(tanh βcωc − tanh βhωh), (11)

W0
CD = 〈ED〉 − 〈EC〉 = (ωh − ωc) tanh βhωh, (12)

Q0
c = 〈EA〉 − 〈ED〉 = ωc(tanh βhωh − tanh βcωc). (13)

It is evident from the above expressions that W0
AB + W0

CD =
−(Q0

h + Q0
c ), which is nothing but the energy conservation

or the first law of thermodynamics. When ωh/ωc > βc/βh,
the cycle works as a heat engine and we get the following
expression for the power P0 as

P0 = −W
τ

= −W0
AB + W0

CD

τ
= Qh + Qc

τ
(14)

and efficiency η0 as

η0 = −W
Q0

h

= −W0
AB + W0

CD

Q0
h

= 1 − ωc

ωh
. (15)

Similarly, in the refrigerator regime that is when ωh/ωc <

βc/βh, and the cooling rate κ0 is given as

κ0 = Q0
c

τ
, (16)

and the coefficient of performance K0 is given as

K0 = Q0
c

W0
AB + W0

CD

= ωc

ωh − ωc
. (17)

Here, we have used the sign convention that energy flow
(heat, work) is positive (negative) if it enters (leaves) the WM.
Hence a heat engine (refrigerator) is characterized by Qh > 0
(<0), Qc < 0 (>0), and W < 0 (>0). The second law of
thermodynamics gives us the bound on efficiency (coefficient
of performance) for the engine (refrigerator). It states that
the total entropy production is never negative. Now, for each
separate thermalization stroke one has [28,80]

�Stot = �S − β�Q � 0, (18)

where �S is the change in the von Neumann entropy [81] of
the system in a thermodynamic process, and �Q is the heat
entering to the system form a bath at inverse temperature β.
In our model of Otto cycle, one can check that ρB

S = ρA
S and

ρC
S = ρD

S . Hence, change in the von Neumann entropy of the
system in the two thermalization strokes cancel each other and
second law takes the form

βhQ0
h + βcQ0

c � 0, (19)

as, of course, �Stot remains zero in the unitary processes. The
validity of the above inequality can easily be seen from the ex-
pressions of Eqs. (10)–(13) and employing the fact that tanh x
is a monotonically increasing function of x. This implies that

η0 = 1 + Q0
c

Q0
h

= 1 − ωc

ωh
� 1 − βh

βc
. (20)

Similarly, in the refrigerator regime, K0 � βh

βc−βh
. This limit is

famously known as the Carnot limit.
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III. STRONGLY COUPLED OTTO CYCLE

In the strongly coupled model of the Otto cycle, the de-
scriptions of the strokes are the same as in the weakly coupled
one. Differences will come only in the thermodynamic frame-
work. In this case, the thermalization stroke will make the
system-bath joint state a correlated one, and the marginal bath
state will no longer be a equilibrium state. Consequently, the
thermodynamic analysis will change and we have to adopt
different definitions of the thermodynamic observables suited
for strongly coupled scenario. Here we follow the framework
of Refs. [36,37,42] to define the thermodynamic quantities.

A. Formalism

Let us start by giving a short account of this framework.
We first write the total Hamiltonian of a system-bath setup as
follows:

Htot (t ) = HS(t ) + HB + HSB(t ). (21)

Change in average energy of the joint system-bath state is
identified as the work performed,

dW (t ) = dESB(t ) = Tr[dHtot (t )ρSB(t ) + Htot (t )dρSB(t )],

(22)

where ESB(t ) = Tr[ρSB(t )Htot] is the total energy of the joint
state ρSB(t ) of the system and bath. Heat is defined as the
energy flowing out of the reservoir,

dQ(t ) = −dTrB[HBρB(t )] = −TrB[HBdρB(t )] (23)

= Tr[(HS(t ) + HSB(t ))dρSB(t )], (24)

where ρB(t ) = TrS[ρSB(t )]. The internal energy of the system
is defined as

ES(t ) = TrSB[(HS (t ) + HSB(t ))ρSB(t )]. (25)

Now, it is easy to see that

dES(t ) = dW (t ) + dQ(t ), (26)

which is nothing but the first law of thermodynamics. In the
weak coupling limit (HSB ≈ 0), these definitions boil down to
the conventional definitions stated in the previous section. Let
us assume the initial joint state as

ρSB(0) = ρS (0) ⊗ ρ
β
B , (27)

where ρ
β
B is the thermal state of the bath with inverse temper-

ature β. The state of the joint system-bath setup at time t = τ

is given by

ρSB(t ) = U (τ, 0)ρSB(0)U †(τ, 0), (28)

where U (τ, 0) is the unitary generated by the total Hamil-
tonian Htot (t ). As mentioned before, entropy production is
defined as �Stot = �S − β�Q. Note that β is the initial tem-
perature of the bath. At later times, the reduced state of the
bath is not even a thermal state. It can be shown that [36,42]

�Stot (t ) = S
[
ρSB(t ) ‖ ρS (t ) ⊗ ρ

β
B

]
� 0, (29)

where S(φ ‖ ψ ) is the relative entropy between two quantum
states φ and ψ . This shows the validity of the second law
of thermodynamics in this formalism. Next we derive the

master equation used to describe the dynamics in our model of
Otto cycle.

B. Dynamics with single qubit bath

We consider a two-qubit total Hamiltonian which can be
considered as the total Hamiltonian of the system-bath setup,

Htot (t ) = HS ⊗ 1 + 1 ⊗ HB + HSB(t )

= ω(σz ⊗ 1 + 1 ⊗ σz ) + HSB(t ), (30)

where the system Hamiltonian is HS = ωσz, bath Hamiltonian
is HB = ωσz, and the interaction Hamiltonian HSB(t ) reads

HSB(t ) = f (t )

2
(σx ⊗ σx + σy ⊗ σy), (31)

where f (t ) is a time-dependent coupling strength. The matrix
form representation reads

HSB(t ) =

⎡
⎢⎣

0 0 0 0
0 0 f (t ) 0
0 f (t ) 0 0
0 0 0 0

⎤
⎥⎦. (32)

Note here that we have chosen HS and HB in such a way in
Eq. (30) that Htot (t ) is different time commuting. Here, by
different time commuting we mean [Htot (t ), Htot (t ′)] = 0 for
all t 
= t ′, and as a result, the evolution operator as given in
Eq. (34) can be calculated without considering time ordering
[82]. We have also chosen this special form for the Hamilto-
nian so that for a specific choice of f (t ) (as discussed later)
the system evolution will be described by a semigroup master
equation [6,79]. Not only that, we can also smoothly transit to
the non-Markovian regime by changing the form of f (t ). Now
we choose the initial states of the system and environment
to be

ρS(0) =
[

p x
x∗ 1 − p

]
, ρB(0) = 1

2

[
1 − g 0

0 1 + g

]
, (33)

where 0 � p, g � 1, and x is a complex number with |x|2 �
p(1 − p). One can assign a temperature to the initial bath
state with respect to the bath Hamiltonian HB to write it as
a thermal state. The initial joint system-bath state ρSB(0) =
ρS(0) ⊗ ρB(0) evolves through the unitary:

U (t, 0) = exp

[
−i

∫ t

0
dt ′ Htot (t

′)
]
. (34)

Note here that we have used the fact that Htot (t ) is different
time commuting. A quantum circuit realization of U (t, 0) is
given in Fig. 2 [83,84]. One finds that U (t, 0) can be realized
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FIG. 2. Circuit realization of U (t, 0) as given in Eq. (34).

as the following composition of qubit gates:

U (t, 0) = CNOT[U1(t ) ⊗ 1] CNOT[U2 ⊗ V (t )]

× CNOT[W ⊗ W −1][Rz(t ) ⊗ Rz(t )], (35)

where

U1(t ) = i√
2

(σx + σz ) e−i( F (t )
2 − π

4 )σx , (36)

U2 = −i√
2

(σx + σz ), (37)

CNOT = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ σx, (38)

and diagonal unitaries

V (t ) = ei F (t )
2 σz , W = 1 − iσz√

2
, Rz = e−iωt σz .

The time-evolved system state is ρS(t ) = TrB[ρSB(t )],
where ρSB(t ) = U (t, 0)ρSB(0)U †(t, 0). The explicit form of
ρS can be written as

ρS (t ) = �t [ρS (0)] =
[

p(t ) xe−2iωt cos F (t )
x∗e2iωt cos F (t ) 1 − p(t )

]
,

(39)

where

p(t ) = p cos2 F (t ) + 1 − g

2
sin2 F (t ),

�t is the dynamical map, and F (t ) = ∫ t
0 f (t ′) dt ′. The corre-

sponding master equation

dρS

dt
= Lt [ρS] (40)

reads as follows (cf. Appendix B):

dρS(t )

dt
= −iω[σz, ρS(t )]

+ γ−(t )
(
σ−ρS(t ) σ+ − 1

2 {σ+σ−, ρS(t )})
+ γ+(t )

(
σ+ρS(t ) σ− − 1

2 {σ−σ+, ρS(t )}), (41)

with

γ±(t ) = (1 ∓ g)γ (t ) (42)

and

γ (t ) = f (t ) tan F (t ). (43)

It is therefore clear that the evolution is Markovian (CP divis-
ible) if [10,85,86]

γ (t ) � 0. (44)

We can choose f (t ) in a form such that cos F (t ) → 0
as t → ∞. In that case the system state asymptotically
approaches the initial bath state, which can be seen as thermal-
ization. Interestingly, one can show [79] that choosing f (t ),

f (t ) = e−t/2g

2g
√

1 − e−t/g
, (45)

leads to γ (t ) = 1
2g , and hence both rates,

γ− = 1+g
2g , γ+ = 1−g

2g ,

are time independent, leading to the GKLS Markovian master
equation. In this case the asymptotic state of the system is a
thermal state in the following form:

ρS (t → ∞) = 1

2

[
1 − g 0

0 1 + g

]
. (46)

Later we also discuss non-Markovian generalization of the
master equation in Eq. (41) with other choices of f (t ).

C. Implementation of the Otto cycle

In this section we implement an Otto cycle where the WM
is connected to two single-qubit baths (hot and cold). Dynam-
ics in the thermalization strokes is described by the formalism
developed upstairs. For the sake of clarity of notation, we
will append all the relevant quantities in the single-qubit bath,
namely, Hamiltonians, ω, g, f (t ) and F (t ), with a suffix h or
c depending on whether it is used in connection with the hot
bath or the cold bath, respectively. The total Hamiltonians of
the WM and the baths are described as

H (t ) = HS(t ) + HBh + HBc + HSB(t ), (47)

where HS(t ) = ω(t )σz. The external parameter ω(t ) is varied
from ωc to ωh in the first unitary stroke and changed back to
ωc in the second unitary stroke. HBh and HBc are ωhσz and
ωcσz, in accordance with Eq. (30). The interaction Hamil-
tonian HSB(t ) = Hh

SB(t ) + Hc
SB(t ) is given as Eq. (32), with

prefix h and c for f (t ) the contact with the hot and cold bath,
respectively. The initial states of the hot and cold baths are as
follows:

ρBh (0) = 1

2

[
1 − gh 0

0 1 + gh

]
,

ρBc (0) = 1

2

[
1 − gc 0

0 1 + gc

]
. (48)

Initial temperatures of the baths can be determined by writing
the states in the form of thermal states,

ρBj (0) = e−β j HBj

Zj
, j = {h, c}, (49)

where Zj = Tr[e−β j HBj ], which gives us gh = tanh βhωh, and
similarly, gc = tanh βcωc. Below we describe the strokes of
the cycle. The schematic of the cycle is shown in Fig. 1(b).
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WM is initially (point A1) prepared in the thermal state cor-
responding to the initial temperature of the cold bath, and the
total WM-bath state is prepared initially in a product state as
follows:

ρA
tot = e−βcHS(ωc )

Tr[e−βcHS(ωc )]
⊗ e−βcHBc

Tr[e−βcHBc ]
, (50)

where the initial state of the cold bath in Eq. (48) is written
in the form of Eq. (49). Below we describe the strokes of the
Otto cycle.

First stroke. In the first unitary stroke, WM is disconnected
from the baths and the external parameter ω(t ) of the system
Hamiltonian is varied from ωc (point A1) to ωh (point B0)
in a time interval τu1. The state does not change during the
evolution and remains constant at ρA1

S = e−βcHS(ωc )/Zc, where
Zc = Tr[e−βcHS(ωc )]. No heat is exchanged in this process,
whereas the work done is given by

WAB = 〈
EB0

S

〉 − 〈
EA1

S

〉 = (ωc − ωh) tanh βcωc. (51)

Here, Eα
S = Tr[ρA1

S HS(ωα )], with α = {h, c}.
Connecting the hot bath. The WM is connected to the

hot bath as represented by point B0 to B1 in the schematic
diagram [Fig. 1(b)]. We assume that this coupling operation
is instantaneous. Hence the state of the WM and the bath do
not change during this operation. Additionally, the interaction
Hamiltonian also remains constant. As a result, the energy
change of the total WM-bath setup during this operation is

Wcon
B = Tr

[
Hh

SB(0)(ρBh (0) ⊗ e−βcHS(ωc )/Zc)
] = 0,

where ρBh (0) is as given in Eq. (48), with gh = tanh βhωh, and
Hh

SB(0) is given as Eq. (32) with the parameter as f h(0). A
functional form of f j (t ) for j = {h, c} will be specified later
for both a Markovian and non-Markovian scenario.

Second stroke. The second stroke is the thermalization
stroke after the WM is connected to the hot bath. As the state
of the bath does not change during the connection of WM to
it, at the start of the stroke, its state is given by ρBh (0). We
assume that the WM is kept in contact with the bath for a time
interval τh (B1 to C0 in the schematic), keeping the system
Hamiltonian constant at HS(ωh). Work done in this process
is zero, as calculated using Eq. (22). Using the definition in
Eq. (24), heat exchanged in this stroke is given as

Qh = QBC =
∫ τh

0
dt Tr

[[
ωhσz + Hh

SB(t )
] d

dt
ρtot (t )

]

= ωh(tanh βcωc − tanh βhωh) sin2 F h(τh)

= Q0
h sin2 F h(τh). (52)

Here F h(τh) = ∫ τh

0 f h(t )dt , and Q0
h is the heat exchanged in

the weakly coupled Otto cycle (assuming the WM is thermal-
ized at the end of the stroke), given as Eq. (11). After the
thermalization stroke, the total state of the WM-bath setup is
ρC0

tot , which is in general a correlated state. The reduced state
of the WM denoted by ρC0

S will be in the form of Eq. (39), with
x = 0, and p to be the initial population of the WM before the
start of the stroke. Note here that the heat exchange Qh can be
alternatively calculated from the formula given in Eq. (23),
where in this case the time-evolved bath state is given by

(see Appendix A)

ρB(t ) =
[

q(t ) 0
0 1 − q(t )

]
, (53)

where q(t ) = 1−g
2 cos2 F h(t ) + p sin2 F h(t ).

Disconnecting the hot bath. The work done to remove the
bath is given by

Wdiscon
C = −Tr

[
Hh

SB(τh) ρC0
tot

] = 0, (54)

where we again assumed the process is instantaneous and
denoted from the point C0 to C1 in Fig. 1.

Third stroke. This is the second and final unitary stroke,
which is represented from point C1 to D0 in the schematic
[Fig. 1(b)], taking place in the time interval τu2. The WM is
disconnected from the bath, and the system Hamiltonian is
changed back from HS(ωh) to HS(ωc). The reduced state of
the WM at the start of this stroke is given as

ρC1
S =

[
pC1 0
0 1 − pC1

]
, (55)

where pC1 = e−βhωh

Zh
+ cos2 F h (τh )

2 (gh − gc). Here Zh =
Tr[e−βhHS(ωh )]. The reduced state of the WM will not change
during the unitary evolution. The work done in this stroke is
thus

WCD = 〈ED0〉 − 〈EC1〉 = (ωc − ωh)Tr
[
σz ρC1

S

]
= (ωh − ωc)[gh − cos2 F h(τh)(gh − gc)], (56)

where gh = tanh βhωh and gc = tanh βcωc as mentioned
before.

Connecting the cold bath. Similarly as before, the process
[from D0 to D1 in Fig. 1(b)] is instantaneous and the work
done in the process is

Wcon
D = Tr

[
Hc

SB(0)(ρC1
S ⊗ ρBc (0))

] = 0. (57)

Here ρBc (0) is as given in Eq. (48), with gc = tanh βcωc, and
Hc

SB(0) is given as Eq. (32), with the parameter denoted as
f c(0).

Fourth stroke. This is the second and final thermalization
stroke denoted from D1 to A0 in the schematic [Fig. 1(b)].
After connecting the the WM to the cold bath, it is kept in
contact for a time interval τc. Work done is again zero for
this stroke. Using the definition in Eq. (24), heat exchange is
calculated to be

Qc = QDA =
∫ τc

0
dtTr

[
(ωcσz + Hc

SB(t ))
d

dt
ρtot (t )

]

= ωc(tanh βhωh − tanh βcωc) sin2 F h(τh) sin2 F c(τc)

= Q0
c sin2 F h(τh) sin2 F c(τc), (58)

where Q0
c is the heat exchanged in the weakly coupled Otto

cycle (assuming the WM is thermalized at the end of the
stroke). At the end of this stroke, state of the total WM-bath
setup is ρA0

tot , which is again correlated in general.
Disconnecting the cold bath. In the last step, the cold bath

is disconnected from the WM instantaneously [shown as A0
to A1 in Fig. 1(b)]. Similarly as before, the work done in this
process is also zero:

Wdiscon
A = −Tr

[
Hc

SB(τc) ρA0
tot

] = 0. (59)
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In general, the work cost for connecting and disconnecting the
baths with WM is not free [62,63]. But for our special kind of
model the cost turns out to be zero.
Now, total work done in the cycle is given by W = WAB +
WCD, which is

W = (ωc − ωh)(tanh βcωc − tanh βhωh) sin2 F h(τh)

= W0 sin2 F h(τh). (60)

Here W0 is the total work done in the weakly coupled Otto
cycle. Thus for the heat engine regime, we find the expression
for power and efficiency as

P = −W
τ

= P0 sin2 F h(τh), and η = −W
Qh

= η0, (61)

where P0 and η0 are the power and efficiency for the weakly
coupled Otto cycle in the previous section. Interestingly, for
this particular model we notice that the efficiency is always
the same as the maximal efficiency of the weakly coupled
counterpart irrespective of the power. The cost we pay for
this advantage is that after one cycle the state of the bath
does not return to its initial states, whereas to reach maximum
efficiency in the case of the weakly coupled Otto engine, we
need perfect thermalizations in the nonunitary strokes. For the
refrigerator regime, the expressions for cooling rate and CoP
are as follows:

κ = Qc

τ
= κ0 sin2 F h(τh) sin2 F c(τc), (62)

K = Qc

W = K0 sin2 F c(τc). (63)

Notably, for the refrigerator regime, the coefficient of perfor-
mance is dependent on the last thermalization stroke. In the
next section we show that with perfect thermalization in the
last unitary stroke sin2 F c(τc) = 1, we achieve the maximum
coefficient of performance in the strongly coupled Otto cycle
too.

D. Markovian and non-Markovian scenario

Depending upon the functional form of f (t ), one can make
the system dynamics Markovian or non-Markovian. Note here
that we must choose f (t ) such that the thermalizing condition
is obeyed, i.e., cos F (t ) → 0 as t → ∞.

Let us first recall the form of f (t ) given in Eq. (45):

f (t ) = e−t/2g

2g
√

1 − e−t/g
. (64)

As a result we get F (t ) = π
2 − sin−1 e−t/2g, which gives us

f (t ) tan F (t ) = 1/2g � 0 for all t > 0 and the correspond-
ing master equation as a semigroup master equation. Hence,
from Eq. (44) we find that the dynamics is Markovian. From
Eq. (39) one can further note that in the long time limit (t →
∞) compared to the bath correlation time, the initially diago-
nal system state in the σz basis approaches the fixed thermal
state. This shows that indeed our model achieves thermal-
ization. Now, it is straightforward to notice that sin2 F (t ) =
1 − e−t/g if τ is the time taken for the thermalization strokes.
So, on applying to the Otto cycle we get

K = K0(1 − e−τc/gc ). (65)

FIG. 3. Plot of f (t ) tan F (t ) vs t for Markovian (red dashed) and
non-Markovian (solid blue) dynamics with g = 0.8.

For perfect thermalization to occur in the last nonunitary
stroke, in principle we need τc → ∞ (in the scale of bath
correlation time). This shows that we can get the maximum
achievable coefficient of performance in the strongly coupled
scenario. In this case we also notice that W = −(Qh + Qc),
which is nothing but the first law of thermodynamics for a
complete cycle. This justifies the consistency of our thermo-
dynamic framework.

We now choose the following form of f (t ), which gives
a non-Markovian dynamics according to the condition of
Eq. (44). It can be thought of as a non-Markovian correction
to the previous form of f (t ):

f (t ) = e−t/2g

2g
√

1 − e−t/g
− 10 sin(20t )

(10t + 1)2
+ 20 cos(20t )

10t + 1
. (66)

One can easily check whether this functional form gives rise
to non-Markovian dynamics. In Fig. 3 we plot f (t ) tan F (t )
with t , whose non-negativity ensures Markovian dynamics.
It is evident from the plot that for the second form of f (t )
the condition breaks down, resulting a non-Markovian dy-
namics, whereas for the first form f (t ) tan F (t ) is always
positive. Again, from Eq. (39) one can check that in the
limit of t → ∞, initially the diagonal system state in σz basis

FIG. 4. Plot of P/P0 vs t for Markovian (red dashed) and non-
Markovian (solid blue) dynamics with g = 0.8.
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thermalizes for the non-Markovian form of f (t ) also. In
Fig. 4 we plot sin2 F (t ) with t for g = 0.8 to show the
non-Markovian advantage for power output in the Otto en-
gine. Clearly, the oscillatory behavior of sin2 F (t ) for the
non-Markovian scenario gives an enhancement over the
Markovian scenario, as evident from the expression of power
as P = P0 sin2 F h(τ ). With increasing time, both reach the
limit P0 of the weakly coupled Otto engine. Similarly, for the
Otto refrigerator one can see a similar kind of behavior.

IV. CONCLUSION

In this paper we have studied a quantum Otto cycle model
with a single qubit bath. First, from a closed quantum evolu-
tion of two qubits with a specially chosen joint Hamiltonian,
we derive an exact master equation for a single qubit in
the form of a semigroup master equation. By tweaking the
form of the joint Hamiltonian, one can end up with both
Markovian and non-Markovian dynamics. Next we construct
an Otto cycle employing this dynamic in the thermalization
strokes to investigate the thermodynamic implications of this
model. Our model provides a link to study the interplay be-
tween strong coupling and non-Markovianity. We employ the
formalism of strongly coupled quantum thermodynamics to
calculate the thermodynamic quantities for the Otto cycle for

both Markovian and non-Markovian scenarios. Interestingly,
for the Otto engine we find that the efficiency is always
maximal, irrespective of whether the WM is thermalized or
partially thermalized in the nonunitary strokes, whereas for a
refrigerator, perfect thermalization in the last stroke is needed
to achieve the maximal coefficient of performance. On the
other hand, with approximate thermalization, the power out-
put is hampered in the strongly coupled Otto cycle. In this
scenario we can exploit the non-Markovianity, which provides
an enhancement of performance over the Markovian counter-
part. In the long time limit, power output for both Markovian
and non-Markovian models reaches the limit of a weakly
coupled cycle. For an Otto refrigerator one can also see similar
effects. It is important to note that the observations are based
on the specific model we have chosen. This special model has
enabled us to demonstrate the non-Markovian advantage for
thermodynamic tasks, yet in the regime of strong coupling.
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APPENDIX A

One finds the following formula for the time-evolved system-environment state:

ρSB(t ) =

⎛
⎜⎜⎜⎝

1−g
2 p i 1−g

2 xe−2itω sin F (t ) 1−g
2 xe−2itω cos F (t ) 0

−i 1−g
2 x∗e2itω sin F (t ) 1−g

2 sin2 F (t ) + p
2 (g + cos 2F (t )) i

4 (g + 2p − 1) sin 2F (t ) 1+g
2 xe−2itω cos F (t )

1−g
2 x∗e2itω cos F (t ) − i

4 (g + 2p − 1) sin 2F (t ) 1−g
2 cos2 F (t ) + p

2 (g − cos 2F (t )) −i 1+g
2 xe−2itω sin F (t )

0 1+g
2 x∗e2itω cos F (t ) i 1+g

2 x∗e2itω sin F (t ) 1+g
2 (1 − p)

⎞
⎟⎟⎟⎠,

(A1)
which reduces to

ρSB(t ) =

⎛
⎜⎜⎝

1−g
2 p 0 0 0
0 1−g

2 sin2 F (t ) + p
2 (g + cos 2F (t )) i

4 (g + 2p − 1) sin 2F (t ) 0
0 − i

4 (g + 2p − 1) sin 2F (t ) 1−g
2 cos2 F (t ) + p

2 (g − cos 2F (t )) 0
0 0 0 1+g

2 (1 − p)

⎞
⎟⎟⎠, (A2)

for x = 0.

APPENDIX B

The dynamical map �t and Lt as given in Eqs. (39) and (40) are given by the following matrices in the operator-vector
correspondence representation [87] as

�̂t =

⎡
⎢⎢⎣

1 − 1+g
2 sin2 F (t ) 0 0 1−g

2 sin2 F (t )
0 e−2iωt cos F (t ) 0 0
0 0 e2iωt cos F (t ) 0

1+g
2 sin2 F (t ) 0 0 1 − 1−g

2 sin2 F (t )

⎤
⎥⎥⎦, (B1)

L̂t = ˙̂�t ◦ �̂−1
t =

⎡
⎢⎣

−(1 + g)γ (t ) 0 0 (1 − g)γ (t )
0 −2iω − γ (t ) 0 0
0 0 2iω − γ (t ) 0

(1 + g)γ (t ) 0 0 −(1 − g)γ (t )

⎤
⎥⎦. (B2)
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