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Occupation time statistics of the fractional Brownian motion in a finite domain
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We study statistics of occupation times for a fractional Brownian motion (fBm), which is a typical model of
a non-Markov process. Due to the non-Markovian nature, recurrence times to the origin depend on the history.
Numerical simulations indicate that dependence on the sum of successive recurrence times becomes weak. As a
result, the distribution of the occupation time in a finite domain follows the Mittag-Leffler distribution when the
Hurst exponent of the fBm is close to 1/2. We show this distributional behavior of a time-averaged observable by
renewal theory. This result is an extension of the distributional limit theorem known as the Darling-Kac theorem
in general Markov processes to non-Markov processes.
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I. INTRODUCTION

Statistical properties of occupation times in stochastic pro-
cesses are well studied in mathematics [1–5] as well as
physics [6–10]. The occupation time of a set A for a stochastic
process x(t ) is defined as

TA(t ) ≡
∫ t

0
VA(x(τ ))dτ, (1)

where V (x) is the characteristic function of set A. There
are two typical fluctuations in occupation times. One is the
generalized arcsine distribution [2], and the other is the
Mittag-Leffler distribution [1]. The arcsine law is known as
fluctuations of occupation time of leads in coin tossing [4].
The generalized arcsine law is observed to a plethora of sys-
tems such as fluorescence of quantum dots [11], currents in
stochastic thermodynamics [12], drift in anomalous diffusion
[13], α-percentile options in stock prices [14,15], and leads
in sports games [16]. On the other hand, the Mittag-Leffler
distribution is known as a universal distribution for time aver-
ages of integrable observables in infinite ergodic theory [17].
Recently, this universal law is applied to nonstationary pro-
cesses such as anomalous diffusion [18–26] and laser cooling
processes [27–30].

Fractional Brownian motion (fBm) is proposed as a model
of natural time series [31], which is a generalization of Brow-
nian motion to a non-Markov process. The fBm BH (t ) is
defined as

BH (t ) = 1

�
(
H + 1

2

) ∫ t

−∞
(t − t ′)H− 1

2 dB(t ′), (2)

where dB(t ) is an increment of the ordinary Brownian mo-
tion, �(x) represents the Gamma function, and the parameter
H ∈ (0, 1) is the Hurst exponent. The dynamic equation of the
Brownian motion B(t ) can be described by

Ḃ(t ) =
√

2ξ (t ), (3)
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where ξ (t ) is a white Gaussian noise with variance 1, i.e., the
diffusion coefficient of B(t ) is D = 1. The ordinary Brownian
motion corresponds to the case of H = 1/2. By a simple
calculation of Eq. (2), the covariance of the fBm is given by

〈BH (t )BH (s)〉 = t2H + s2H − |t − s|2H . (4)

The increment of the fBm is not independent but strongly cor-
related with the past increments. This interdependence of the
increments is a characteristic of the fBm. This non-Markovian
nature explains many varieties of natural processes such as
anomalous diffusion in cells [32–38], viscoelastic motions of
lipid molecules [32,39], and polymer translocation [40–42].

Two types of generalizations of occupation time statistics
have been investigated. One is an aging extension of the
distributional limit theorem [43–46], and the other is a non-
Markovian extension of the generalized arcsine law [47,48].
As a generalization to non-Markov processes, the distribution
of occupation times on a semi-infinite interval such as the
positive or negative side is obtained for the fBm [47,48].
However, this type of generalization has not yet been done
for occupation times in a finite domain. In Markov processes,
Darling and Kac showed that the distribution of occupation
times in a finite interval follows the Mittag-Leffler distribution
[1]. Therefore, it is important to unravel the distribution of oc-
cupation times in a finite interval for non-Markov processes.
The occupation time statistics for the fBm in a finite domain
are relevant to trajectory-to-trajectory fluctuations of the oc-
cupation times of non-Markovian natural phenomena such as
diffusion in a cell, polymer translocation, and water flows in
hydrology in a specific finite domain [49].

The paper aims to obtain the distribution of trajectory-to-
trajectory fluctuations of occupation times in a finite interval
for the fBm. The rest of the paper is organized as follows.
In Sec. II, we review some well-known results in Markov
processes and derive the distribution of occupation times in
a finite interval using renewal theory. In Sec. III, we conduct
numerical simulations of the fBm and obtain the distribution
of occupation times on a finite interval in the fBm. Sections IV
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and V are devoted to the discussion and the conclusion, re-
spectively.

II. OCCUPATION TIME STATISTICS
IN MARKOV PROCESSES

Here, we review the first passage time (FPT) statistics and
derive a distributional limit theorem for the occupation time
on a finite interval in the Brownian motion. The FPT is a
time when the particle has first reached a target. To derive
the FPT distribution of the Brownian motion, we consider the
Brownian motion with the absorbing boundary condition at
the origin. The Fokker-Planck equation (diffusion equation)
is described by

∂t Z
(0)
+ (x0, x, t ) = ∂2

x Z (0)
+ (x0, x, t ), (5)

Z (0)
+ (x0, x, 0) = δ(x − x0), (6)

where Z (0)
+ (x0, x, t ) is the propagator, i.e., the probability den-

sity function (PDF) of position x at time t with B(0) = x0 > 0.
By using the method of images, the propagator Z (0)

+ (x0, x, 0)
can be obtained as

Z (0)
+ (x0, x, t ) = 1√

4πt

[
e−(x−x0 )2/(4t ) − e−(x+x0 )2/(4t )

]
. (7)

The survival probability is obtained by integrating
Z (0)

+ (x0, x, t ) with respect to x from 0 to ∞:

S(0)(x0, t ) =
∫ ∞

0
Z (0)

+ (x0, x, t )dx = erf

(
x0

2
√

t

)
, (8)

where erf (x) is the error function. It follows that the PDF of
FPT t of a Brownian particle starting from x to the origin
becomes

px(t ) = |x|
2
√

πt3
exp

(
−x2

4t

)
. (9)

The elegant proof of the FPT distribution is also given
in Ref. [50]. Therefore, the asymptotic behavior becomes
px(t ) ∝ t−3/2, which means that the mean first passage time
diverges, i.e., 〈t〉 = ∫ ∞

0 t px(t )dt = ∞.
Next, we consider the occupation time of a set. By the self-

similarity property of the Brownian motion, this set can be
assumed to be arbitrary. For simplicity, we assume A = [-1, 1].
To apply renewal theory, we construct a dichotomous process
from the Brownian motion (see Fig. 1). In particular, we define
R(t ) as

R(t ) = VA(B(t )) =
⎧⎨
⎩

1, B(t ) ∈ A

0, B(t ) /∈ A
, (10)

where VA(x) is the characteristic function of set A. When the
Brownian particle exits set A and reaches 1 + 	x, the recur-
rence time to set A is the same as the FPT of the Brownian
motion starting from 	x to the origin. Therefore, the PDF of
the recurrence time to set A from 1 + 	x is given by p	x(t ).
In the same way, the PDF of the recurrence time to set A from
−1 − 	x is given by p	x(t ). Moreover, the exit time, which is
a time when a Brownian particle exits set A after entering set
A, is an independent random variable with a finite mean be-
cause the increment of the Brownian motion does not depend

FIG. 1. Dichotomous process obtained from the Brownian mo-
tion. The dashed line represents a trajectory of the Brownian motion.
The solid line corresponds to R(t ) = 1, where A = [−1, 1].

on the history, i.e., Markov property. It follows that duration
times of a state R(t ) = 0 and R(t ) = 1 are independent and
identically distributed (IID) random variables.

A dichotomous process of R(t ) is considered to be an alter-
nating renewal process [51]. We denote the PDFs of durations
of states R(t ) = 0 or R(t ) = 1 by ψ0(τ ) and ψ1(τ ), respec-
tively, which are related to the PDFs for recurrence times and
exit times. The occupation time of set A can be represented by

TA(t ) =
Nt∑

k=1

τk, (11)

where τk is the kth duration time for state R(t ) = 1 and Nt is
the number of changes from R(t ) = 0 to R(t ) = 1 until time
t . Let Sr be the time at the rth renewal, we have

Prob{Nt < r} = Prob{Sr > t}. (12)

The asymptotic behavior of ψ0(τ ) is the same as that of pε(τ ),
i.e., ψ0(τ ) ∝ τ−3/2 for τ → ∞. In what follows, we consider
a general situation that the PDF ψ0(τ ) follows ψ0(τ ) ∝ τ−1−α

(τ → ∞). Using Eq. (12) and r = xtα , we have

Prob

{
Nt

tα
< x

}
= Prob

{
Sr

r1/α
> x− 1

α

}
. (13)

By the generalized central limit theorem [52], we have the
long-time limit

Prob

{
Nt

tα
< x

}
=

∫ ∞

x− 1
α

gα (x′)dx′, (14)

where gα (x) is the one-sided Lévy density [52]

gα (x) = − 1

πx

∞∑
k=1

�(1 + kα)

k!
(−cx−α )k sin (kπα), (15)
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and c is a scale factor. The PDF of Nt/tα ∝ TA(t )/tα is given
by differentiating Eq. (14), i.e.,

fα (x) = gα (x− 1
α )

αx1+ 1
α

, (16)

which is called the Mittag-Leffler (ML) distribution with order
α. The case α = 1/2 corresponds to Brownian motion, and
the limit distribution converges to the half Gaussian. The all
moments of the ML distribution are finite. Therefore, the
expectation of TA(t ) becomes

〈TA(t )〉 ∝ tα, (17)

in the long-time limit. We consider the normalized occupation
time defined as

T̃A(t ) = 1

u(t )

∫ t

0
VA(x(τ ))dτ, (18)

where u(t ) = 〈TA(t )〉∝ tα . Thus, the ensemble average of
T̃A(t ) is 〈T̃A(t )〉 = 1 by definition, and the moments are

lim
t→∞〈T̃A(t )k〉 = k!�(1 + α)

�(αk + 1)
. (19)

Therefore, the normalized occupation time converges in dis-
tribution. This result is known as the Darling-Kac theorem in
general Markov processes [1].

III. OCCUPATION TIME STATISTICS IN A NON-MARKOV
PROCESS

A. Survival probability of the fractional Brownian motion

Using the path integral method [47,48,53], the propagator
Z+(x0, x, t ) of the fBm restricted on the positive side can be
written as

Z (x0, x, t ) =
∫ x(t )=x

x(0)=x0

D[x]e−S[x]�[x], (20)

where �(x) is the indicator function, which is 1 if x(t ) > 0
and 0 otherwise, and S[x] is the action

S[x] =
∫ t

0
dt1

∫ t

0
dt2

1

2
x(t1)G(t1, t2)x(t2), (21)

where G(t1, t2) is the kernel of the action given by

G−1(t1, t2) = 〈x(t1)x(t2)〉. (22)

In the following, we will calculate Eq. (20), using a perturba-
tive approach for H = 1/2 + ε, given in [47,48].

By using perturbation theory, Eq. (21) can be written as

S[x] = 1

D

[
S (0)[x] + εS (1)[x] + O(ε2)

]
= 1

D

[
1

4

∫ t

0
dt ′(∂t ′x(t ′))2 − ε

2

∫ t

0
dt1

∫ t

t1+ω

dt2
∂t1 x(t1)∂t2 x(t2)

t2 − t1
+ O(ε2)

]
, (23)

where the diffusion constant D is given by

D = eε2(1+lnω)+O(ε2 ). (24)

Note that the diffusion constant becomes D = 1 for H = 1/2. The small-time cutoff ω > 0 is introduced to regularize the
integrals in the action. The action Eq. (23) in Eq. (20) gives

Z (x0, x, t ) =
∫ x(t )=x

x(0)=x0

D[x]e−S0�[x] + ε

∫ x(t )=x

x(0)=x0

D[x]

(
1

2
S1 + 2S0(1 + lnω)

)
e−S0�[x] + o(ε2)

=: Z (0)(x0, x, t ) + εZ (1)(x0, x, t ), (25)

where Z (0)(x0, x, t ) is the propagator of the Brownian motion and Z (1)(x0, x, t ) is a perturbative term in the fBm.

1. Semi-infinite domain

The propagator in the semi-infinite domain is calculated as
Eq. (B1). Using Eq. (B1), the survival probability S(x0, t ) is
calculated in the same way as in the Brownian case [Eq. (8)]
[53]. For t → ∞, we have

S(x0, t ) ∝ t− 1
2 [1 + εln(t )] = O(t−α ), (26)

where the first term, i.e., t− 1
2 originates from the Brownian

and the second term is obtained from B2(x, t ) in Appendix B.
Using the small-ε expansion:

t ε ∼= 1 + εlnt, (27)

we have the power law exponent α given by

α = 1
2 − ε + O(ε2) ∼= 1 − H. (28)

We confirmed numerically Eq. (28) (see Fig. 2).

2. Finite domain

One can obtain the propagator in a finite domain (see Ap-
pendix C). The survival probability Sin(t ) in a finite domain
is obtained by integrating Eq. (C4) with respect to x in the
interval [−L, L]. The asymptotic behavior of the leading order
becomes an exponential decay:

Sin(t ) ∝ e−t (1 + εtEi(t )e−t ) ∼ e−t (t → ∞), (29)
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FIG. 2. Power-law exponent of the FPT distribution. Symbols are
the results of numerical simulations. The solid line represents α =
1 − H . We use 105 trajectories and the FPT is defined by the time
until BH (t ) with BH (0) = 0 passes the origin for the first time.

where Ei(t ) is the exponential integral. When t is large
enough, the effect of the perturbation term can be ignored.
Moreover, the mean survival time is finite.

B. Numerical simulations of correlations of durations
of states in a dichotomous process

We consider recurrence times for the fBm. Here, we define
the recurrence time as the time elapsed before the particle
passes the origin again after passing the origin. Let τn be
the nth recurrence time (see Fig. 3). In the case of H = 1/2,
there is no correlation between successive recurrence times.
On the other hand, when H �= 1/2, there is a correlation of

FIG. 3. A schematic figure of two recurrence times, i.e., τ1 and
τ̃1, where τ̃1 and τ̃2 are given by τ̃1 = τ1 + τ2 and τ̃2 = τ3 + τ4. The
solid line represents a trajectory of the Brownian motion with 	t =
0.01, i.e., H = 1/2. The trajectory passes the origin four times.

successive recurrence times due to the non-Markov property
of the fBm. In fact, the occupation time statistics for the fBm
differ from those for Markov processes due to the correlation.
For a dichotomous process with a power-law waiting-time
distribution, the PDF of the occupation time of one of the
two states follows the generalized arcsine law [2,6], where the
PDF has a peak at the middle when the power-law exponent
α is greater than 1/2. On the other hand, for H < 1/2, which
corresponds to α > 1/2, the PDF of the occupation time for
the positive side in the fBm does not have a peak [53]. This
is evidence of a correlation between successive recurrence
times. In particular, the successive recurrence time has a neg-
ative correlation. When the previous recurrence time is large,
the recurrence time tends to be small. Therefore, the ratio of
occupation time on the positive side to that on the negative
side rarely takes one. In other words, the peak of the PDF
does not appear.

Here, we consider the sum of two consecutive recurrence
times, i.e., τ̃n = τn + τn+1, instead of recurrence times (see
Fig. 3). If τn−1 depends only on τn, the correlation between
τ̃n and τ̃n+1 becomes smaller than the correlation between
τn and τn+1. In Appendix D, we show that the correlation
between τ̃n and τ̃n+1 becomes weak when τn−1 depends only
on τn. In renewal processes, the waiting times are IID random
variables. Therefore, we expect that the renewal theory can be
applied to a dichotomous process constructed by the fBm.

C. Trajectory-to-trajectory fluctuations of occupation times

We investigate trajectory-to-trajectory fluctuations of occu-
pation times in a finite domain for the fBm. Figure 4 shows the
distribution of the occupation times in a finite domain for the
fBms with different Hurst exponents. Numerical simulations
indicate that the distribution converges to the ML distribution
with order α = 1 − H , where we calculate the distribution
P(T̃A) of the normalized occupation time T̃A defined by T̃A ≡
TA(t )/〈TA(t )〉.

To quantify the trajectory-to-trajectory fluctuations of the
occupation times, we calculate the ergodicity breaking (EB)
parameter of the occupation time for different Hurst exponents
[18]. The EB parameter is defined by the relative variance of
the occupation time:

EB(t ) ≡ 〈TA(t )2〉 − 〈TA(t )〉2

〈TA(t )〉2
. (30)

If it converges to zero, it is ergodic in the sense that the
time average of the occupation time converges to a constant
in the long-time limit. By extensive numerical simulations,
we confirm that the EB parameter converges to a nonzero
value which is the same as that for the ML distribution (see
Fig. 5). In particular, the EB parameters of TA(t ) for the fBm
converge to those of the ML distributions for H = 5/12 and
7/12 (|ε| = 1/12), i.e., small |ε|. However, there are small
deviations from the ML distribution for large |ε|. It follows
that the occupation time distribution for a finite domain of the
fBm converges to the ML distribution for small |ε|.

Here, we explain why the ML distribution is observed in
the normalized occupation time distribution using renewal
theory. The occupation time can be represented by the number
Nt of changes of the values for R(t ) until time t and the mean
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(a) (b)

(c)

(e)

(d)

FIG. 4. Probability density function of the normalized occupa-
tion times for the fBm for (a) H = 1/3, (b) H = 5/17, (c) H = 7/12,
(d) H = 2/3, and (e) H = 1/2. The histogram is the results of
numerical simulations for finite domain A = [−0.001, 0.001], where
220 steps and 106 particles were used. The solid lines are the PDFs of
the ML distributions, i.e., Eq. (16), with α = 1 − H .

exit time 〈τin〉, i.e., the mean duration time of R(t ) = 1:

TA(t ) ∼ Nt

2
× 〈τin〉, (31)

for t → ∞. Because 〈τin〉 is finite, the distribution of TA(t ) is
equivalent to that of Nt . In Sec. II, we have shown that the
distribution of Nt follows the ML distribution with order α

when the PDF of durations, i.e., ψ0(τ ) follows a power-law
distribution with exponent α. In the fBm, durations of a state
outside the set A are power-law distributed but not indepen-
dent random variables. However, the sum of the durations
becomes independent as shown in the previous subsection.
Therefore, a renewal theory with power-law distributed dura-
tion time with exponent 1 − H can be applied. It follows that
the normalized occupation time distribution follows the ML
distribution with order 1 − H .

FIG. 5. The EB parameter of TA(t ) as a function of the mea-
surement time for different H (= 1/3, 5/12, 1/2, 7/12, and 2/3),
where A = [−0.001, 0.001] and 106 trajectories were used. Solid
lines represent the EB parameters of the ML distributions.

IV. DISCUSSION

In the previous studies [54,55], it has been found that the
PDF of the first passage time can be expressed by the sum of
two power-law distributions with exponents 1 − H and 2H . In
particular, it suggests that the PDF follows a power-law dis-
tribution with exponent 1 − H for short time and a power-law
distribution with exponent 2H for large time when H < 1/3.
Thus, the power-law exponent of the FPT distribution in the
asymptotic behavior becomes different from Eq. (28). Our
results of the power-law exponent of the FPT distribution in
Fig. 2 are estimated for a finite time, which suggests that
the exponent is in a good agreement with 1 − H . However,
in the asymptotic behavior, it will change. This will affect
our statement that the normalized occupation time distribution
converges to the Mittag-Leffler distribution with order 1 − H
for H < 1/3.

As an application of the occupation time statistics of the
fBm in a finite domain, we consider a Langevin equation with
fluctuating diffusivity [56]. The dynamic equation is described
by ẋ(t ) = √

2D(t )ξ (t ), where ξ (t ) is a white Gaussian noise.
We define the fluctuating diffusivity D(t ) by the fBm:

D(t ) =
⎧⎨
⎩

1, BH (t ) ∈ A

0, BH (t ) /∈ A
, (32)

where A is a finite domain. The PDF of durations of a freez-
ing state, i.e., D(t ) = 0 follows a power-law distribution. In
particular, durations are IID random variables following a
power-law distribution with exponent α = 1/2 when H =
1/2. The motion of this model is almost the same as that of the
continuous-time random walk (CTRW). Since the durations
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FIG. 6. Ensemble-averaged mean square displacement for the
fractional CTRW for H = 2/3 in the log-log scale, where A =
[−0.01, 0.1]. The blue line represents a linear scaling, i.e., 〈x(t )2〉 =
2t and the red line represents a sublinear scaling, i.e., subdiffusion:
〈x(t )2〉 ∝ tα . We use 104 trajectories and 217 steps.

are not independent random variables when H �= 1/2, this
model is a kind of extension of the CTRW to the CTRW
with correlated waiting times. Thus, we call this model the
fractional CTRW. The mean square displacement (MSD) of
x(t ) can be obtained as

〈x(t )2〉 = 2〈D(t )〉t . (33)

The ensemble average of D(t ) is calculated by 〈D(t )〉 ∝
〈TA(t )〉/t ∝ tα−1. Therefore, the MSD exhibits anomalous dif-
fusion

〈x(t )2〉 ∝ tα, (34)

in the long-time limit. For short-time behavior, the MSD ex-
hibits normal diffusion because D(t ) = 1 when BH (t ) ∈ A. In

Fig. 6, we calculated the MSD and confirmed normal diffu-
sion in the short time and the subdiffusion in the long-time
behavior, which is a similar behavior to a recently proposed
model of the generalized Langevin equation with fluctuating
diffusivity [57].

V. CONCLUSION

We found trajectory-to-trajectory fluctuations of occupa-
tion times in a finite domain for the fBm. In particular, the
EB parameter converges to a nonzero constant for t → ∞.
Thus, the normalized occupation time converges in distribu-
tion for any H . When |ε| is small enough, the EB parameter
converges to that of the ML distribution with order 1 − H . On
the other hand, the EB parameter slightly deviates from that
of the ML distribution when |ε| is not small enough. This is
a non-Markov extension of the infinite ergodic theory. The
Hurst exponent H in the fBm characterizes the occupation
time statistics.
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APPENDIX A: NUMERICAL METHOD OF THE FBM

We conduct numerical simulations of the fBm by two dif-
ferent methods [58].

1. Method 1

Mandelbrot and Van Ness defined the fractional Brownian
motion. An approximate expression of the fBm defined by
Eq. (2) is

BH (t ) ∼ 1

�
(
H + 1

2

) nt∑
i=−∞

(
t − i

n

)H− 1
2

n− 1
2 ξi, (A1)

where ξi is the white Gaussian noise. The difference equa-
tion of the fBm is approximately given by

	BH (t ) = n− 1
2

�
(
H + 1

2

)
⎛
⎝ nt−1∑

i=n(t−1)

(
t − i

n

)H− 1
2

ξi +
n(t−1)−1∑
i=−M+nt

((
t − i

n

)H− 1
2

−
(

t − 1 − i

n

)H− 1
2

)
ξi

⎞
⎠, (A2)

where 	BH (t ) = BH (t + 1) − BH (t ).

2. Method 2: Davis and Harte method

The mean and the covariance of the increments 	BH (t )
are given by 〈	BH (t )〉 = 0 and 〈	BH (t )	BH (s)〉 = γ (t − s),
respectively, where

γ (t ) = (t + 1)2H + (t − 1)2H − 2t2H , (A3)

for positive integers t . First, we define the linear array {Wn} as
follows:

W0 = V0, (A4)

Wn = 1√
2

(Vn + iV2N−n), for n = 1, ..., N − 1, (A5)

WN = VN , (A6)

Wn = − i√
2

(Vn + iV2N−n), for n = N + 1, ..., 2N − 1, (A7)

where V0,V1, · · ·,V2N−1 are independent Gaussian random
numbers, with 〈Vn〉 = 0 and 〈VmVn〉 = δm,n. This mean is
〈Wn〉 = 0 and covariance is

〈WnWn′ 〉 = δn,0δn′,0 + δn+n′,2N . (A8)
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Second, we define the linear array {λn} as follows:

λn =
2N−1∑
k=0

�keiπ nk
N , (A9)

where

�k =
⎧⎨
⎩

γ (k), (0 � k � N )

γ (2N − k), (N + 1 � k � 2N − 1)
.

The set of increments of the fBm is obtained as:

	BH (n) = 1√
2N

2N−1∑
k=0

Wk

√
λkeiπ nk

N . (A10)

APPENDIX B: DETAILED FORM FOR THE PROPAGATOR
IN A SEMI-INFINITE DOMAIN

The propagator Z+(x0, x, t ) is calculated by using the per-
turbation theory [53]

Z+(x0, x, t ) = Z (0)
+ (x0, x, t ) + εZ (1)

+ (x0, x, t )

= x√
4πt3

e− x2

4t (1 + ε(A(x, t ) + B0(x0)

+ B1(x, t ) + B2(x, t ) − a1lnx0)), (B1)
where A(x, t ) = (1 + ω( x2

2t − 3)), B0(x0) = 3 − 2γE +
ln( ω

2 ) − 4lnx0, B1(x, t ) = ( x2

2t − 2)(γE − 1 + 2ln x√
2t

−
ln2) − 2, B2(x, t ) = ( x2

2t − 1)ln( 4t
ω

) + I (x, t ), and

I (x, t ) = x2

12t
2F2

(
1, 1;

5

2
, 3;

x2

4t

)
+ π

(
1 − x2

2t

)
erfi

(
x

2
√

t

)
.

(B2)

APPENDIX C: DERIVATION OF THE PROPAGATOR IN A FINITE DOMAIN

Here, we derive the propagator in a finite domain. The propagator can be obtained in the same way as in Eq. (25). We calculate
the propagator Zin(x, x0, t ). The propagator in a finite domain can be written as

Zin(x0, x, t ) =
∫ x(t )=x

x(0)=x0

D[x]e−S0�A[x] + ε

∫ x(t )=x

x(0)=x0

D[x]

(
1

2
S1 + 2S0(1 + lnω)

)
e−S0�A[x] + o(ε2)

= Z (0)
in (x0, x, t ) + εZ (1)

in (x0, x, t ), (C1)

where �A[x] is 1 if BH (t ) ∈ A ≡ [−L, L] and 0 otherwise, and Z (0)
in is the propagator the Brownian for the finite domain. By the

separation of variables, we have

Z (0)
in (x0, x, t ) =

∞∑
n=1

1

L
cos

(
2n − 1

2L
πx0

)
cos

(
2n − 1

2L
πx

)
e−( 2n−1

2L π )2
t . (C2)

Using Eq. (23), Z (1)
in (x0, x, t ) can be calculated as follows:

Z (1)
in (x0, x, t ) = −

∫ x(t )=x

x(0)=x0

D[x]

(
−1

4

∫ t

0
dt1

∫ t

0
dt2

∂t1 x(t1)∂t2 x(t2)

|t1 − t2| − 2S (0)[x](1 + log ω)

)
e−S (0)[x]�[x]

= 2(1 + log ω)
∫ x(t )=x

x(0)=x0

D[x]S (0)[x]e−S (0)[x]�[x] + 1

4

∫ t

0
dt1

∫ t

0
dt2

∫ x(t )=x

x(0)=x0

D[x]
∂t1 x(t1)∂t2 x(t2)

|t1 − t2| e−S (0)[x]�[x]

=: Zα
in(x0, x, t ) + Zβ

in(x0, x, t ).

The first term becomes

Zα
in(x0, x, t ) = 2(1 + log ω)

∫ x(t )=x

x(0)=x0

D[x]S (0)[x]e−S (0)[x]�[x]

= −2(1 + log ω)
∂

∂a

∣∣∣∣
a=1

∫ x(t )=x

x(0)=x0

D[x]e−aS (0)
�[x]

= −2(1 + log ω)
∂

∂a

∣∣∣∣
a=1

∑
n

a

L
cos

(
2n − 1

2L
πx0

)
cos

(
2n − 1

2L
πx

)
e− 1

a ( 2n−1
2L π )2

t

= −2(1 + log ω)
∑

n

(
1 +

(
2n − 1

2L
π

)2

t

)
cos

(
2n − 1

2L
πx0

)
cos

(
2n − 1

2L
πx

)
e−( 2n−1

2L π )2
t ,
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and the second term becomes

Zβ

in(x0, x, t ) = 1

8L5

∫ t

0
dt1

∫ t

t1+ω

dt2

∫ L

−L
dx1

∫ L

−L
dx2

∑
j,k,l,m,n

1

t2 − t1
cos

(
2 j − 1

2L
πx1

)
e−( 2 j−1

2L π )2
t1

(
1 + cos

(
2k − 1

L
πx1

))

× cos

(
2l − 1

2L
πx1

)
cos

(
2l − 1

2L
πx2

)
e−( 2l−1

2L π )2
(t2−t1 )

(
1 + cos

(
2m − 1

L
πx2

))

× cos

(
2n − 1

2L
πx2

)
cos

(
2n − 1

2L
πx

)
e−( 2n−1

2L π )2
(t−t2 ). (C3)

Calculating the above equations by using MATHEMATICA, we obtain the leading term of Zin(x0, x, t ) in the long-time limit:

Zin(x0, x, t ) ∼ e−t (1 − εtEi(t )e−t ) f (x), (C4)

where f (x) is a function of x.

APPENDIX D: CORRELATION OF THE SUM
OF THE RANDOM VARIABLES

Here, we estimate the correlation of a sum of dependent
positive random variables, Xn + Xn+1. Xn is independent of Xk

for k = 1, · · ·, n − 2. In other words, Xn depends on Xn−1. We
quantify the strength of the correlation as follows:

CX = 〈X1X2〉 − 〈X1〉〈X2〉
〈X 〉2

, (D1)

where 〈Xn〉 is the expected value of Xn. Furthermore, the
strength of the correlation for the sum of consecutive random

variables, i.e., Yn = X2n−1 + X2n, becomes

CY = 〈Y1Y2〉 − 〈Y1〉〈Y2〉
〈Y 〉2

= 〈X2X3〉 − 〈X2〉〈X3〉
〈Y 〉2

= CX
〈X 〉2

〈Y 〉2
< CX , (D2)

where we used 〈Y 〉 > 〈X 〉 because random variable X is
positive. Therefore, the correlation of Yn gets weaker than that
of Xn.
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