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Irreversible energy extraction from negative-temperature two-dimensional turbulence
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The formation and transition of patterns of two-dimensional turbulent flows observed in various geophysical
systems are commonly explained in terms of statistical mechanics. Different from ordinary systems, for a
two-dimensional flow, the absolute temperature defined for a statistical equilibrium can take negative values. In a
state of negative temperature, the second law of thermodynamics predicts that energy in microscopic fluctuations
is irreversibly converted to a macroscopic form. This study explores the possibility of this one-way energy
conversion in a two-dimensional flow using a basic conceptual model. We consider an inviscid incompressible
fluid contained in a bounded domain, the shape of which is distorted by an externally imposed force. Unlike
the usual fixed boundary cases, the flow energy within the domain is exchanged with the external system via
pressure work through the moving lateral boundary. Concurrently, the flow field remains constrained by vorticity
conservation. Beginning from a state of Kraichnan’s grand-canonical ensemble, when the domain shape is
distorted from one shape to another in a finite time, the Jarzynski equality is established. This equality states
that, on average, the direction of a net energy flow through the boundary during a cycle of domain distortion
changes with the sign of the initial temperature of the system. Numerical experiments are carried out to verify
this theoretical argument and to investigate the parameter dependence of the energy exchange rate.
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I. INTRODUCTION

Two-dimensional turbulence is the simplest idealization
of geophysical and astrophysical flows. When the Reynolds
number is sufficiently large that viscosity is negligible, be-
cause of the vorticity conservation law, a two-dimensional
flow possesses an infinite number of invariants. In particu-
lar, conservation of the second moment of vorticity (i.e., the
enstrophy) has a unique role in partitioning energy across
length scales. Through nonlinear interactions among turbulent
eddies, the enstrophy is transferred to a smaller scale; the
energy is then transferred back to a larger scale. As a con-
sequence of this dual cascade, energy is accumulated in the
largest-scale mode, resulting in the spontaneous emergence of
coherent flow structures such as jets and vortices. This strik-
ing feature distinguishes two-dimensional turbulence from a
three-dimensional counterpart; it has attracted considerable
attention from physicists, mathematicians, and geophysical
scientists. Since the middle of the 20th century, many attempts
have been made to construct a theoretical basis for structure
formation in two-dimensional turbulence (for representative
reviews, see Refs. [1–3]). A major direction involves the use
of equilibrium statistical mechanics [4–6].

In equilibrium statistical mechanics, the macroscopic
nature of a dynamical system consisting of innumerable
interacting elements is predicted. Despite the tremendous suc-
cess of statistical mechanics in modern condensed matter

*Also at Laboratoire de Physique, École Normale Supérieure de
Lyon, 46 Allée d’Italie, F-69342 Lyon, France;
onuki@riam.kyushu-u.ac.jp

physics, its applicability to turbulent flows is limited. It is
because a microcanonical ensemble constrained by energy
conservation leads to ultraviolet divergence in a wave-number
spectrum. Statistical equilibria of a three-dimensional fluid
make sense only when we set an upper bound in the wave
number below which energy is partitioned [7,8]. If a fluid
motion is constrained on a two-dimensional surface, on the
other hand, enstrophy conservation restricts energy transfer
in wave-number space—energy accumulation at the largest
spatial scales greatly suppresses microscopic fluctuations
differently from three-dimensional cases [5]. Consequently,
equilibrium statistical mechanics readily predicts the gross
nature of a continuous flow, such as the macroscopic spatial
structure specified by coarse-grained streamlines. Indeed, var-
ious flow patterns observed in Earth and planetary sciences
(e.g., oceanic rings and jets, the atmospheric polar vortex, and
Jupiter’s Great Red Spot) have been successfully explained
based on equilibrium statistical mechanics [9–14].

In contrast to the typical cases in condensed matter physics,
the temperature of an equilibrium state defined as the deriva-
tive of entropy with respect to energy, under the constraints
of other macroscopic parameters, can be negative in a two-
dimensional flow system. Using a point vortices model,
Onsager [15] provided a report of the negative temperature
state in a fluid. It allowed him to explain the spontaneous
aggregation of same-sign vortices. In later years, many other
models have been proposed to describe statistical equilibria
for a broader range of fluid systems [1,16–21], and they
have commonly shown the existence of negative temperature
states. However, to the author’s knowledge, there remains a
lack of clarity concerning specific physical properties that
differ between negative and positive temperature states of
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FIG. 1. Example of a typical thermodynamics model. A cylinder
made of insulating material contains ideal gas and is connected to
an external system through a piston. The piston can be moved to
compress or expand the gas inside the cylinder. The piston position
measured from its initial position is given by x, while the external
force that sustains the piston is given by f . Then, the work performed
on the gas is expressed as W = ∫

f dx. According to the first law
of thermodynamics, or the law of energy conservation, W should
coincide with an increase in the internal energy of the gas. When
the piston is moved by some distance and pulled back to its initial
position, the second law of thermodynamics claims W � 0; thus, the
work is irreversibly converted into thermal energy.

fluid systems. Indeed, in the equilibrium statistical mechanics
framework, the sign of temperature is not essential. When the
consideration is extended into nonequilibrium cases, negative
temperature reveals its peculiar characteristics; precisely, the
direction of the energy flow predicted from the second law of
thermodynamics is reversed.

In most problems, the monotonic increase of entropy
claims that thermal energy contained in random and mi-
croscopic motions (i.e., heat energy) cannot be extracted
macroscopically into work in any kind of machinery with-
out changing other conditions throughout the system. Let us
take a specific example. We consider ideal gas contained in
a cylinder made of insulating material and connected to an
external system through a movable piston (Fig. 1). The gas
is assumed to be in equilibrium at the initial time. Then, the
piston is moved inward by some distance to compress the gas
and pulled back to the initial position. If this experiment is per-
formed sufficiently slowly that the gas is always in quasistatic
equilibrium, the procedure is reversible; the energy of the gas
in the final state is the same as that in the initial state. In con-
trast, if the piston is moved at a finite rate, the gas remains in
nonequilibrium throughout the process, resulting in increase
of entropy. Consequently, energy is inevitably greater in the
final state than in the initial state—the total work performed
by the piston is irreversibly converted into thermal energy.
This one-way energy conversion from a macroscopic form to
heat is, however, dependent on the assumption that absolute
temperature is positive. If the absolute temperature is negative,
increase in entropy leads to the decrease in energy of the
gas. Consequently, the piston extracts energy in a macroscopic
form outside the system.

The dependence of energy flow directions on a temperature
sign is systematically explained from a celebrated expression
derived by Jarzynski [22]. According to his formulation, work
W performed on a system initially attached to a thermal
bath with temperature T is related to the difference in the

Helmholtz free energy �F via

exp(−βW ) = exp(−β�F ), (1)

where β ≡ 1/kBT , with kB as Boltzmann’s constant; the over-
line represents the ensemble average over all the possible
initial states. The Helmholtz free energy F is generally a
function of the temperature T and external parameters (e.g.,
a piston position), which are designated as λ. Then, the dif-
ference in F is represented as �F = F (T, λfin) − F (T, λini ),
where λini and λfin are the initial and final values of λ, respec-
tively. Equation (1) is referred to as the Jarzynski equality.
In the original study by Jarzynski, this equality is derived
for a situation where the system is attached to a thermal
bath. However, this equation is valid even for a thermally
isolated system. In that case, T should be interpreted as the
initial temperature of the system. By application of an iden-
tity exp x � exp x, from the Jarzynski equality, the inequality
W /T � �F/T can easily be derived. If T is positive, this
inequality is equivalent to the well-known formula W � �F ,
which restricts the work available from a heat engine. In
the experiment of the piston raised above, because λini = λfin

leads to �F = 0, we obtain W � 0; accordingly, the total
work performed on the system is inevitably positive. If T
is negative, in contrast, the inequality is reversed to yield
W � 0. That is, the energy of the randomly fluctuating motion
is irreversibly extracted outside the system in a macroscopic
form.

Historically, this kind of peculiarity in a state of negative
absolute temperature has been investigated in a particular
area of quantum mechanics, such as nuclear spins [23–28].
It would be intriguing to explore similar problems in clas-
sical fluid dynamics. Because we are concerned with an
incompressible fluid system, the typical piston model is in-
appropriate. Instead, we consider a closed domain whose
boundary is distorted by an externally imposed force while
the area is restricted to satisfy the incompressible condition.
The vorticity conservation still holds for this model while
the amount of energy changes because of the pressure work
performed across the moving boundary—analogous to the
gas-piston system that gains or loses energy while retaining
the same number of molecules. It is noted that the present
model has much in common with that of Gundermann et al.
[29]. Their interest was to verify the Crooks fluctuation the-
orem that connects probabilities of energy gain and loss for
a pair of forward and backward processes initiated from a
common thermal equilibrium [30]. This paper, on the other
hand, considers a single process where the Jarzynski equality,
the integrated version of the fluctuation theorem, is relevant.
We are particularly interested in temperature dependence of
the energy variations during periodic distortions of the flow
geometry.

The plan of this paper is as follows. In Sec. II, we set
up a two-dimensional inviscid fluid system with a mov-
ing boundary. The flow field is separated into two parts: a
boundary-induced potential flow and a vortical flow. We then
analyze the response of the vortical flow part to an externally
imposed potential flow part. In Sec. III, we apply a statistical
mechanics theory to this flow system and demonstrate the
derivation of the Jarzynski equality. In Sec. IV, we perform
numerical experiments to verify the theoretical predictions
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FIG. 2. We consider a two-dimensional fluid in a closed domain
D with a moving boundary condition. The speed of the boundary
motion, i.e, the velocity of the boundary element projected onto the
unit vector normal to the boundary, n, is represented as s.

and to discuss the energy efficiency of the system quantita-
tively. Discussion and conclusions are presented in Sec. V.

II. FORMULATION

We begin the study by introducing the simplest model of
an incompressible two-dimensional flow, the Euler equation,

∂u
∂t

+ u · ∇u = −∇p, (2)

∇ · u = 0, (3)

where u(r, t ) ≡ (u, v) and p(r, t ) are the velocity vector and
the pressure divided by density, which are functions of the
spatial coordinates r ≡ (x, y) and time t ; ∇ ≡ (∂x, ∂y) repre-
sents the spatial gradient operator. In the following text, we
also use a subscript of x or y to indicate the partial derivative
and an overhead dot to denote an ordinary differentiation with
respect to time. The fluid is contained in a simply connected
bounded domain D, whose boundary ∂D moves over time.
Conceptually, this boundary motion is caused by an external
force that controls the pressure at each location of the bound-
ary so that the domain shape varies in a prescribed way. We
designate the expansion speed of each boundary element on
∂D as s and impose a kinematic boundary condition for u as

u · n = s on ∂D, (4)

where n is a unit vector pointing outside the domain and
perpendicular to the element of ∂D (Fig. 2). In this setting, ve-
locity normal to the boundary is prescribed, but that tangential
to the boundary is not restricted, as in the usual manner of an
inviscid flow. To satisfy the incompressible condition Eq. (3),
the area of the domain must be conserved. The energy of the
system is defined as E = 1/2

∫
D |u|2dr. Borrowing a formula

(A3) in Appendix A, we understand that energy is exchanged
with the external system through the boundary via the pressure
work as

Ė = −
∮

∂D
psdl,

where dl represents an infinitesimal element of the boundary
path ∂D.

Using the incompressibility condition (3), we express the
velocity in the following form:

u = ∇ × ψ,

where ∇× ≡ (−∂y, ∂x ) is the curl operator. Then, the vorticity
is expressed as

ω ≡ −∂yu + ∂xv = ∇2ψ.

Taking the curl of (2), we derive the vorticity equation,
∂ω

∂t
+ u · ∇ω = 0, (5)

which shows that the vorticity ω is advected by u with-
out changing its value along the streamline. This vorticity
conservation law has the distinctive character of a two-
dimensional flow. In three-dimensional flow cases, additional
vortex stretching terms violate the vorticity conservation.

Now, we separate the stream function ψ into two parts:

ψ = ψω + ψp.

The first term is associated with vortical motion, while the
second term corresponds to a potential flow induced by
the moving boundary. These respective terms are defined as
the solutions of the following elliptic equations:

∇2ψω = ω with ψω = 0 on ∂D
∇2ψp = 0 with ∇ × ψp · n = s on ∂D.

In the same manner as the stream function, we sepa-
rate the velocity into vortical and potential flow parts as
u = uω + up, where uω ≡ ∇ × ψω and up ≡ ∇ × ψp. Be-
cause the vortical flow and the boundary-induced potential
flow are orthogonal to each other (i.e.,

∫
D uω · updr = 0),

the energy can be separated into two parts, E = Eω + Ep,
where Eω ≡ (1/2)

∫
D |uω|2dr = −(1/2)

∫
D ωψωdr and Ep ≡

(1/2)
∫
D |up|2dr.

If ω is initially zero, up becomes the solution of (2)–(4).
Clearly, up does not depend on any previous state of the sys-
tem and is determined at each time solely from the boundary
conditions. In the remaining parts of this paper, we discuss
the behavior of uω, or identically ω, affected by the externally
induced flow up. From this perspective, the energy of the sys-
tem should be identified with Eω, instead of the total energy,
Eω + Ep. Then, we focus on the temporal variations in Eω.
Because up is a solution of (2), it can be expressed as

∂up

∂t
+ up · ∇up = −∇pp, (6)

where pp is the pressure determined from the incompressibil-
ity constraint, ∇ · up = 0. Subtracting (6) from (2), we derive

∂uω

∂t
+ u · ∇uω + uω · ∇up = −∇(p − pp). (7)

Multiplying this by uω, using the incompressible condition
∇ · uω = 0, and integrating the equation over D, we obtain

Ėω = −
∫
D

uω · (uω · ∇)updr, (8)

where we have employed (A3) and the fact that uω · n = 0
on the boundary. Now, (8) allows a reinterpretation of the
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energetics of the system as follows. The boundary motion di-
rectly induces a potential flow inside the domain. The vortical
flow is affected by this potential flow, gaining or losing energy
through the term on the right side of (8). In this manner, the
energy of the system is indirectly affected by the boundary
motion.

The vorticity equation (5) with the formula (A3) ensures
that the domain integration of a function of the vorticity, or
the so-called Casimir functional, does not vary,

d

dt

∫
D

S(ω)dr = 0,

where S(ω) is arbitrarily chosen. In the present model, energy
is exchanged with the external system through the boundary
while other invariants are retained. This property contrasts the
current model with previous ones in which energy conserva-
tion holds while Casimir functionals (e.g., enstrophy) decay
at small scales due to viscosity [31].

Here, we introduce the eigenfunctions e1(r, t ), e2(r, t ), . . .
of the Laplacian operator and their corresponding eigenvalues,
λ1(t ), λ2(t ), . . ., as

−∇2en = λnen with en = 0 on ∂D.

Here, we assume that {λn} are initially arranged in ascending
order,

0 < λ1(0) � λ2(0) � . . . , (9)

and {en} compose an orthonormal system:∫
D

enemdr = δnm.

The vorticity ω is expanded in terms of {en} as

ω(r, t ) =
∑

n

ωn(t )en(r, t ). (10)

Notably, the location of the boundary ∂D varies over time; the
base functions {en} and the expansion coefficients {ωn} change
accordingly. The enstrophy and energy of the system can be
represented as

	2 ≡ 1

2

∫
D

ω2dr =
∑

n

ω2
n

2

and

Eω =
∑

n

ω2
n

2λn
,

respectively. The total velocity, composed of the vortical and
potential flow parts, is represented as

u =
∑

n

ωn

λn
en,y + up, (11)

v = −
∑

n

ωn

λn
en,x + vp. (12)

Inserting (10)–(12) into the vorticity equation (5), multiplying
en and integrating it over D, we obtain the vorticity equa-
tion expanded onto mode space as a set of ordinary differential
equations,

ω̇n =
∑

m

Anmωm +
∑
m,l

Bnmlωmωl , (13)

where the mode-coupling coefficients are defined as

Anm = −
∫
D

en

(
∂

∂t
+ up · ∇

)
emdr, (14)

Bnml = 1

2λm

∫
D

(em,xel,yen − em,yel,xen)dr + (m ↔ l ). (15)

These coefficients satisfy Amn = −Anm, Bnml = Bnlm, Bnml +
Bmln + Blnm = 0, and Bnml/λn + Bmln/λm + Blnm/λl = 0. Ac-
cordingly, we derive the enstrophy conservation law,

	̇2 = 0

and the energy equation,

Ėω =
∑
m,n

(
− λ̇nδnm

2λ2
n

+ Anm

λn

)
ωnωm. (16)

Again, if the domain boundary ∂D is fixed, λ̇n and Anm are
identically zero; thus, the right-hand side of (16) vanishes.
The role of the moving boundary is to cause variations in
the eigenvalues and eigenfunctions, both of which serve as
sources of energy in the system. When we define the energy
density for each mode as En = ω2

n/(2λn), a detailed energy
equation,

Ėn = − λ̇n

λn
En +

∑
m

Anm

λn
ωnωm +

∑
m,l

Bnml

λn
ωnωmωl ,

is also derived.

A. Rapid distortion theory

As described above, the evolution of the vorticity distri-
bution in the present model is governed by the external and
internal processes; the external process indicates advection by
the boundary-induced potential flow, and the internal process
indicates nonlinear interaction among vortices. The relative
importance of these two processes is quantified by introducing
the concept of timescales. If the timescale of the boundary
motion, represented as τb, is much shorter than the eddy
overturning timescale, τe, the flow field is dominated by the
potential flow part. Thus, we can approximate u ∼ up. Con-
sequently, the vorticity is almost passively advected by the
boundary-induced flow. The vorticity equation (13) is now
written as

∂ω

∂t
+ up · ∇ω = 0 (17)

or

ω̇n =
∑

m

Anmωm. (18)

This approximation is sometimes referred to as rapid distor-
tion theory (RDT) [32,33]. Because (17) and (18) are linear
equations, it is more tractable than the original nonlinear
equation. Furthermore, in some examples that we will provide
below, the boundary-induced potential flow up is analytically
obtained. In that case, (17) and (18) can easily be integrated
from an arbitrary initial condition to predict the linear re-
sponse of the vorticity field to an imposed boundary motion.
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FIG. 3. Potential flow induced by boundary motion in a rectan-
gular domain shrinking vertically and stretching horizontally. The
color and arrows represent the stream function, ψp, and the velocity,
up = ∇ × ψp, respectively.

1. Example I: Pure straining

We consider a situation where a domain is stretched in
one direction and shrunk in another (Fig. 3). We assign co-
ordinates x and y to these directions and assume they are
perpendicular to each other. The strain rate is specified by
a single parameter a(t ), which represents the aspect ratio of
a small rectangular element embedded in the domain and
distorted by the boundary-induced flow, up = ∇ × ψp. The
stream function of the potential flow, ψp, is now written as

ψp(x, y) = − ȧ

2a
xy + c1x + c2y. (19)

Here, the second and third terms on the right-hand side repre-
sent a spatially homogeneous flow. By properly choosing the
origin of the system, we can eliminate these terms without loss
of generality. Hereafter, we set c1 = c2 = 0.

In this example, the linearized vorticity equation (17) be-
comes

∂tω + ȧ

2a
(x∂xω − y∂yω) = 0. (20)

When we introduce a new coordinate as (x′, y′) =
(x/

√
a,

√
ay), (20) reduces to ∂tω|x′,y′ = 0. Thus, the

vorticity distribution is fixed in this straining frame. The
general solution of (20) with an arbitrary initial condition,
ω(x, y, 0) = ω0(x, y), is accordingly

ω(x, y, t ) = ω0(x/α, αy),

where α = √
a(t )/a(0) is defined. Notably, the vorticity dis-

tribution depends only on its initial state and the instantaneous
value of α. Here, α is independent of the rate of distortion;
whether we vary a slowly or fast, as far as the RDT is valid
and the final value of a is fixed, the system reaches an identical
state. This behavior is analogous to the distortion of an elastic
medium.

2. Example II: Pure rotation

We consider a situation where a domain boundary is ro-
tated in one direction without changing its shape (Fig. 4).
We introduce a parameter θ (t ) that represents the angle of

FIG. 4. Potential flow induced by boundary motion in a square
domain rigidly rotating counterclockwise. (a) The stream function
ψ ′ and the velocity ∇ × ψ ′ in the rotating frame are represented by
color and arrows, respectively. (b) The stream function and velocity
in the fixed frame, ψp and up = ∇ × ψp.

the domain measured from the initial state. For simplicity, we
regard the origin of the coordinate (x, y) = (0, 0) as the center
of the rotation. Although the domain boundary moves rigidly,
the fluid within it is not required to rotate similarly. Because
the potential flow, ψp, is not associated with any vorticity,
we must solve the Poisson equation to obtain a nontrivial
solution. For this purpose, we consider a time-dependent
coordinate change, x′ = x cos θ + y sin θ and y′ = −x sin θ +
y cos θ . Even in the (x′, y′) system, the vorticity equation (5)
remains the same form, whereas the vorticity in the rotating
frame, ω′, differs from the vorticity in the fixed frame, ω,
as ω′ = ω − 2θ̇ . To obtain the potential flow induced by the
moving boundary, we assume that the vorticity is zero in the
fixed frame (i.e., ω = 0), which is translated to ω′ = −2θ̇ in
the rotating frame. Because the domain boundary does not
move in the rotating frame, the equation to be solved reduces
to a simple form:

∇2ψ ′ = −2θ̇ with ψ ′ = 0 on ∂D.

By expanding ψ ′ onto the Laplacian eigenfunctions, we arrive
at

ψ ′ = 2θ̇
∑

n

γn

λn
en,

where γn = ∫
D endr is defined. The stream function, ψp, in the

fixed frame is finally obtained as ψp = ψ ′ + θ̇ (x2 + y2)/2.
Like the pure straining case, the vorticity distribution at

some instance is determined by its initial state and the rotation
angle θ ; it is independent of the angular velocity, θ̇ . Notably,
θ covers the whole range of real numbers; i.e., θ + 2π should
not be identified with θ . The vorticity distribution will not
return to the initial state even when the domain rotates over
one revolution to arrive at the initial angle. This result may
be visually understood from Fig. 4(b). The potential flow is
intense at the edge of the domain but very weak near the
center. Therefore, vorticity is transferred much faster in the
outer region than in the inner region. Although potential flow
does not cause vortical motion, it causes a net differential
rotation of fluid elements when averaged over time.
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III. STATISTICAL MECHANICS

We shall apply a theory of statistical mechanics to the flow
system constructed in the previous section. At this stage, it
is important to note that there are several ways to define a
statistical equilibrium in an Euler equation system. The most
widely accepted model for this problem is that formulated
by Miller, Robert, and Sommeria [19–21]. This model, cur-
rently referred to as MRS theory, specifies coarse-grained
streamlines as well as probability distributions of vorticity at a
microscopic scale based on an infinite number of constraints.
Despite its generality, MRS theory is not best suited for the
present discussion. It is because MRS theory uniquely deter-
mines the macroscopic flow structure and normally does not
allow turbulent fluctuations essential to extend the theory to
nonequilibrium problems. The easiest way to incorporate fluc-
tuations is provided by Kraichnan’s approach [1,16], which
we employ here. This classical model specifies the probability
density functions of vorticity expanded on Laplacian eigen-
functions based only on the energy and enstrophy constraints.
Limitations of the present formulation will be discussed in
Sec. V.

Hereafter, we truncate the normal mode expansion (10)
at a finite number, n = N . The state of the system is thus
represented by N real variables, {ω1, ω2, . . . , ωN } ≡ ω, which
specify a point in N-dimensional phase space. The trajectory
of this point is determined by its initial position and the time-
dependent external parameters, Anm and Bnml , which control
the governing equation (13). Then, we introduce the concept
of a statistical ensemble; we consider an innumerable number
of points that move independently in phase space. Instead of
examining the trajectory of each point, we focus on changes
in the number density of points at each location fixed in
phase space. When this number density is written as P(ω),
its temporal variation is described by the Liouville equation,

∂P

∂t
+

N∑
n=1

∂Pω̇n

∂ωn
= 0, (21)

where ω̇n represents the nth component of flow velocity of
points at each location, ω, and is defined by the (truncated)
vorticity equation (13). Here, because Ann = 0 and Bnmn = 0,
it follows that

∂ω̇n

∂ωn
= 0 (22)

and, accordingly,

N∑
n=1

∂ω̇n

∂ωn
= 0. (23)

This equation allows (21) to be rewritten as

∂P

∂t
+

N∑
n=1

ω̇n
∂P

∂ωn
= 0. (24)

Equation (23) is known as Liouville’s theorem, which ensures
that the volume element in phase space passively advected by
the vector field ω̇ does not change over time. Consequently,
because the number of particles contained in that element
is also conserved, the number density P will not vary along

the trajectories. This nature enables us to utilize the well-
established methods to define statistical equilibria.

In the truncated system, among the infinite number of
invariant quantities in the original Euler equation, only the
enstrophy,

	2(ω) =
N∑

n=1

ω2
n

2
, (25)

is strictly conserved. In addition, if the domain boundary is
fixed, the total energy,

Eω(ω) =
N∑

n=1

ω2
n

2λn
, (26)

is also conserved. If the probability density is a function of
these invariants [i.e., written as P(ω) = P (Eω, 	2)], it follows
that ∂P/∂t = 0. In this manner, based on Eω and 	2, various
kinds of stationary solutions of the Liouville equation (24)
can be arranged. Among these arrangements, we employ the
grand-canonical ensemble (GCE) that is defined by

P(ω) = 1

Z
e−N (βEω+α	2 ), (27)

where α and β are constants independent of ω. The coefficient
N on the exponential factor is absent in the usual form of GCE.
This coefficient is introduced here for the purpose of making α

and β finite, even in the limit of N → ∞, as we will describe
later. The normalization constant Z is the partition function
defined as

Z (α, β ) ≡
∫ N∏

n=1

dωne−N (βEω+α	2 ). (28)

By inserting (25) and (26) into (27), P(ω) can be rewritten as
a product of mutually independent Gaussian functions:

P(ω) = 1

Z

∏
n

e−ω2
n/(2σ 2

n ), (29)

with the variance for the nth mode defined as

σ 2
n = λn

N (β + αλn)
. (30)

Notably, σ 2
n coincides with twice the expectation value of

the enstrophy contained in the nth mode, or ω2
n. In general,

the eigenvalues of the Laplacian operators increase with their
indices as

λn ∼ O(n). (31)

For σ 2
n to be positive, even for a sufficiently large n, α must

be positive or O(1/n) with the negative sign. For simplicity,
we assume that α is always positive. Then, by redefining
(ωα1/2, t/α1/2, sα1/2, β/α) as (ω, t, s, β ), respectively, we
can set α = 1 without loss of generality. In addition, again
for (30) being positive for any n, β > −λ1 must be held.

Now, for a given set of {λn} and N , the state of the
system is specified by a single parameter β known as the
inverse temperature. Generally, β is related to the absolute
temperature, T , by the expression, β ≡ 1/(kBT ), where kB is
Boltzmann’s constant. Therefore, the sign of β coincides with
that of temperature. In most cases, the normalization condition
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of P allows only the positive sign of β. However, in the present
case, β ranges from negative to positive values. The existence
of negative temperature states is a peculiar characteristic in-
herent in a two-dimensional flow system.

Because ω2
n = λn/N (β + λn) derives from (30), the expec-

tation values of energy and enstrophy are calculated from (26)
and (25) as

Eω = 1

2N

N∑
n=1

1

β + λn
(32)

and

	2 = 1

2N

N∑
n=1

λn

β + λn
, (33)

respectively. If we increase N while fixing β, from (31) and
(32), the energy decreases as Eω ∼ O(log N/N ) and converges
to 0 in the thermodynamic limit, N → ∞. To avoid this un-
physical consequence, we also vary β in response to N as

β = −λ1 + 1

2E1N
,

which allows (32) to be rewritten as

Eω = E1 + 1

2N

N∑
n=2

1

λn − λ1 + 1/(2E1N )
. (34)

The second term on the right side will vanish if we extend the
summation to infinity, N → ∞. Specifically, all the energy is
concentrated in the lowest mode in the thermodynamic limit.
The enstrophy distributed in each mode becomes O(1/N ),
except for the lowest mode to which a finite value λ1E1 is
assigned. The contribution from n > 1 modes to the total en-
strophy is (1/2N )

∑N
n=2(λn/(λn − λ1 + (1/2E1N ))), which

remains finite even in the thermodynamic limit, N → ∞.
Note that these results are identical to those of the micro-
canonical ensemble [34].

The partition function Z defined as (28) is made explicit as

Z =
(

(2π )N
N∏

n=1

λn

N (β + λn)

)1/2

. (35)

Accordingly, the Helmholtz free energy F (β ) is calculated as

F = − 1

Nβ
ln Z = F1(β; N ) + F2(β; N, λ),

where

F1 ≡ − 1

2β
ln

(
2π

N

)
,

F2 ≡ 1

2Nβ

N∑
n=1

(ln(β + λn) − ln λn)

are defined. Here, F1 depends only on β and N . In contrast, F2

involves β, N , and the Laplacian eigenvalues, {λn}; therefore,
it depends on the domain geometry.

A. Jarzynski equality

Here, we consider a GCE specified by the inverse temper-
ature β at a time t = t1. Beginning from this ensemble, we
move the model boundary until t = t2, such that the Laplacian
eigenvalues vary as λ(t ) = (λ1, λ2, . . . , λN ). The probability
distribution in phase space, ω ≡ (ω1, ω2, . . . , ωN ), at each
time t is defined as P(ω, t ). The functional form of the energy
of the system explicitly involves the external parameter λ as
Eω = Eω(ω; λ), while the functional form of the enstrophy
depends only on ω as 	2(ω). We assume a trajectory in phase
space from t = t1 to t = t2 and designate the initial and final
states as ω(t1) = ω1 and ω(t2) = ω2, respectively. During a
process, the external parameter λ is switched from λ(t1) = λ1

to λ(t2) = λ2. Because the work performed on the system
through the domain boundary from t = t1 to t = t2 is the
difference in energy between these two times, it can be written
as W ≡ Eω(ω2; λ2) − Eω(ω1; λ1). In contrast to the energy
that varies, the enstrophy is conserved throughout the process:
	2(ω1) = 	2(ω2). In the context of these considerations, we
evaluate the following expression:

exp(−NβW ) ≡
∫

dω2P(ω2, t2) exp (−NβW ).

The Liouville theorem assures conservation of the proba-
bility density along a trajectory in phase space, P(ω2, t2) =
P(ω1, t1), which therefore results in

P(ω2, t2) exp(NβEω(ω1; λ1))

= P(ω1, t1) exp(NβEω(ω1; λ1))

= 1

Z (β; λ1)
exp(−N	2(ω1))

= 1

Z (β; λ1)
exp(−N	2(ω2)).

Consequently, we obtain

exp(−NβW )

= 1

Z (β; λ1)

∫
dω2 exp(−N (βEω(ω2; λ2) + 	2(ω2)))

= Z (β; λ2)

Z (β; λ1)
= exp(−Nβ�F ), (36)

where �F ≡ F (β,λ2) − F (β,λ1). This result,
exp(−NβW ) = exp(−Nβ�F ), is the Jarzynski equality
proposed in 1997 by Jarzynski [22]. Although it was
originally derived for a canonical Hamiltonian system,
the Liouville property enables establishment of this type of
equation even in noncanonical systems. Importantly, (36) is
valid for a nonequilibrium process. As far as the system is
initially in a (grand-)canonical ensemble state, even though
the distribution function P at a later time is not a stationary
solution of the Liouville equation, the present formulation
is exact. The Jarzinski equality is a powerful extension of
equilibrium statistical mechanics to a nonequilibrium theory.

Because of the convexity of the exponential function,
which assures exp X � exp X for any random variable X , we
can derive the following inequality:

−β�F � −βW . (37)
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When β is positive, which applies to most systems, (37)
is rewritten as W � �F . This inequality restricts the lower
bound of the work exerted on the system (when �F is neg-
ative, the inequality restricts the upper bound of the work
extracted from the system) and is recognized as a form of
the second law of thermodynamic. For two-dimensional tur-
bulence, as demonstrated in the last subsection, β can also be
negative. In that case, we obtain

W � �F, (38)

which asserts the upper bound of the work exerted on the
system. The most striking result is derived when the shape
of the domain boundary at the final time coincides with the
shape of the domain boundary at the initial time. In this case,
because λ1 = λ2 holds, �F becomes 0. Therefore, (38) re-
duces to W � 0; specifically, the expectation value of energy
injected into the system becomes non-positive for any type
of boundary motion. The energy of two-dimensional flows,
starting from the equilibrium state of GCE with negative
temperature, is on average irreversibly extracted to the outer
region.

IV. NUMERICAL ANALYSIS

Theoretical considerations based on statistical mechan-
ics have provided some clarity regarding the peculiar nature
of two-dimensional flow systems. Next, to extend our un-
derstanding on a quantitative level, we compute the energy
spectrum corresponding to the GCE in a specific situation
and carry out numerical simulations that directly solve the
Euler equation in a distorting domain. For ease of analysis, we
adopt a simple model configuration of a rectangular domain
periodically distorted by straining boundary motion.

Although an actual continuous fluid system inherently
involves an infinite number of eigenmodes, numerical inves-
tigation forces truncation of the mode expansion at a finite
number. We thus abandon the idea of the thermodynamic limit
and allow both positive and negative temperature states to
exist. This somewhat artificial configuration rather deserves
investigation because of the following points.

In the thermodynamic limit, all energy is concentrated in
the lowest mode. Consequently, the system is not associated
with any velocity fluctuation. In this case, externally imposed
boundary motion may cause transition of the flow field only
in a coherent manner. A statistical mechanics approach is
therefore unsuited for this scenario. Finite truncation of mode
numbers is a better approach to discussing the statistical be-
havior of a turbulently fluctuating system.

A. Model spectrum in a rectangular domain

The model system adopted here is a two-dimensional flow
contained in a rectangular domain with an area of unity, 0 �
x � √

a, 0 � y � 1/
√

a, surrounded by rigid boundaries.
The eigenvalues and eigenfunctions of the Laplacian operator
are

λn = π2k2

a
+ π2al2, (39)

en(x, y) = 2 sin(πkx/
√

a) sin(π
√

aly), (40)

FIG. 5. The ratio between the mean energy and the mean en-
strophy, E/	2, as a function of inverse temperature, β, in a square
domain, a = 1. The wave numbers, k and l , are truncated at kmax and
lmax, respectively. The total mode in the system is thus N = kmaxlmax.
As we increase the truncation wave number while fixing β, greater
amounts of energy are distributed in higher wave numbers, which
results in the reduction of E/	2. Conversely, when we decrease β

toward the critical value, −λ1 = −2π 2 � −19.74, the energy con-
centrates in the lowest mode, (k, l ) = (1, 1). Consequently, E/	2

finally converges to 1/λ1 � 0.0507, regardless of the values of kmax

and lmax. Thus, a sharper peak of E/	2 forms at β = −λ1 for larger
values of (kmax, lmax).

where a vector index n = (k, l ) with k = 1, 2, . . ., and l =
1, 2, . . . is used. If required, the eigenvalues can be rearranged
with a scalar index that yields {λ1, λ2, . . .} in ascending order
as (9). Regardless of the value of a, the smallest eigenvalue
always corresponds to the (k, l ) = (1, 1) mode; specifically,
λ1 = λ11 = π2(1/a + a). After the wave numbers, k and l ,
are truncated at some numbers, kmax and lmax, respectively,
following the formulation in Sec. III, the GCE with the total
number of modes, N = kmaxlmax, can be readily computed. In
Fig. 5, we show E/	2 as a function of β. The peak of E/	2

at β = −λ1 becomes sharper with increasing N . These plots
demonstrate that all the possible states of any specified E/	2

will reduce to a single value of β = −λ1 in the thermody-
namic limit. Thus, the finite truncation of the wave number is
essential to allow for variations in β.

The expectation value of the energy spectrum, En, can now
be represented as

En = 1

2N (β + λn)
= 1

2N (β + π2k2/a + π2al2)
.

Function En for a square domain, a = 1, is plotted in Fig. 6
for (a) negative (β = −10) and (b) positive (β = 100) tem-
peratures. When β is small and even close to the critical
value, −λ1, most energy concentrates in the lowest mode,
(k, l ) = (1, 1). As we increase β, the energy becomes broadly
distributed. In the asymptotic limit of β 
 λN , we obtain
En ∼ 1/(2Nβ ); specifically, the energy is equally distributed
in mode space.

Again assuming a square domain, a = 1, we define the
absolute value of the wave number, κ ≡ √

λn = π
√

k2 + l2,
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FIG. 6. Mean energy spectra of the grand-canonical ensemble
(GCE). We have chosen a square domain, a = 1, and truncate the
wave number as (kmax, lmax) = (50, 50). The inverse temperature is
(a) β = −10 and (b) β = 100.

as well as the azimuth angle, θ = arctan(l/k); we regard
them as continuous variables. Upon integration of the two-
dimensional energy spectrum with respect to θ , we derive the
corresponding one-dimensional spectrum:

E (κ ) ∝ κ

β + κ2
with κ �

√
λ1. (41)

Importantly, the treatment of κ and θ as continuous variables
is a crude approximation. The wave-number discreteness
cannot be ignored, particularly for a small-wave-number com-
ponent, κ2 � λ1. Nevertheless, the simple expression (41) is
useful for determining the dependence of the energy spectrum
on the inverse temperature, β. As shown in Fig. 7, when
−λ1 < β < λ1, E (κ ) is a monotonically decreasing function.
In contrast, when β > λ1, E (κ ) has a maximum at κ = √

β.
Roughly, β controls the energy concentration in the low-wave-
number components.

We now vary the aspect ratio a over time. This situation
corresponds to the case considered in Example I of Sec. II.
Here, the stream function for the boundary-induced potential
flow, ψp, is specified as (19). The temporal variation of the

Laplacian eigenfunction can be written as

∂en

∂t
= − πka−3/2ȧx cos(πkx/

√
a) sin(π

√
aly)

+ π la−1/2ȧy sin(πkx/
√

a) cos(π
√

aly)

= ψp,yen,x − ψp,xen,y.

This expression shows that the coupling coefficients between
the vortical flow and the potential flow, defined as Anm in (14),
identically vanish. In other words, the boundary-induced flow
does not cause any vorticity redistribution in mode space. The
system is formally governed by the usual form of the vorticity
equation,

ω̇n =
∑
m,l

Bnmlωmωl ,

although the coupling coefficient Bnml now changes over time.
In this system, energy contained in each mode varies ac-

cording to

Ėn = − λ̇n

λn
En + ωn

λn

∑
m,l

Bnmlωmωl , (42)

where the tendency of the Laplacian eigenvalue is λ̇n =
π2ȧ(l2 − k2/a2). When summing (42) for all n, we obtain

Ėω = −
∑

n

λ̇n

λn
En. (43)

Therefore, work performed by the boundary motion is at-
tributed to the variations in the Laplacian eigenvalues,
equivalently, the absolute values of the wave number. Work
performed on the system is thus written as W = Eω(t ) −
Eω(0) = − ∫ t

0

∑
n(λ̇n/λ)Endt ′. The tendency of the enstrophy

contained in each mode is similarly derived as

d

dt

(
ω2

n

2

)
=

∑
m,l

Bnmlωnωmωl . (44)

In contrast to the energy case, the total enstrophy is conserved:
	̇2 = 0.

FIG. 7. One-dimensional energy spectra corresponding to the GCE, specified by (41), for (a)β = −19, −10, −5, 0 and (b) β = 10,

30, 50, 100. In these plots, the lower end of the κ axis is chosen as
√

λ1 � 4.44.
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B. Experiments

1. Calculation conditions

We integrate the vorticity equation (5) in a rectangular
domain using eigenfunction expansion with basis functions of
(40). The nonlinear terms are evaluated in real space using
a fast Fourier transform scheme. Aliasing errors are elimi-
nated by truncation of the wave number based on the 3/2
rule. A total of N = 41×41 = 1681 modes are included in
the calculation. We adopt the third-order Runge-Kutta scheme
developed by Spalart et al. [35] for numerical integration. The
aspect ratio of the domain shape is varied as a(t ) = asin(2πt/τ )

0
with a0 = 4, which induces a pure straining potential flow
described as (19). Accordingly, the domain shape is restored
to its initial state, a = 1, at t = τ/2, τ, 3τ/2, . . .. The initial
conditions of the vorticity field, {ωn}, are sampled from a
GCE. Because each mode follows a Gaussian distribution
and is statistically independent, nonbiased samples can easily
be arranged from uniform random numbers using the Box-
Muller method. Here, we designate the number of samples as
M. In this paper, we vary M, the inverse temperature β, and
the distortion timescale τ to see the dependence of the result
on each parameter. The results of varying M are provided in
Appendix B. Although thousands of samples are desirable to
obtain a robust statistical estimate, because of limited compu-
tational resources, we adopt M = 8000 for only the first case
and subsequently employ M = 576 to discuss the dependence
on β and τ . Inevitably, nonnegligible random errors may be
contained in each experimental result.

In addition to τ , the system involves a typical timescale
L/U , where L and U represent the domain size and the typical
velocity of the vortical flow part, respectively. This timescale
roughly corresponds to the period that the largest eddy re-
quires to overturn. In the present model, because the domain
area is set to 1, L may also be regarded as unity. We then define
τe ≡ 1/

√
E0, where E0 is the mean initial energy determined

by β and N as (32); we set the distortion timescale τ with
reference to the eddy turnover timescale, τe.

2. Results

First, we focus on a particular case of β = −18,
M = 8000, and τ = τe. Pressure work performed by the
boundary on the system is shown in Fig. 8 as a histogram. In
the initial stage of the experiment, the shape of the histogram
is almost symmetric, and we cannot find a significant
tendency for the sign of W . Over time, the histogram becomes
negatively skewed; even the mode location shifts towards
W < 0. Until t = 5τ , 79.6% of the samples received negative
work from the boundary. The Supplemental Material [36]
shows a movie of colored contours of the stream function,
ψω, for a specific sample.

In the following text, we use an overline with a super-
script s to represent a sample mean of a variable. Figure 9(b)
compares the experimental results, exp(−NβW )

s
, with the

theoretical prediction, exp(−Nβ�F ), where �F is the dif-
ference in the free energy given by

�F = − 1

2Nβ

∑
n

ln

(
λn(t ′)

β + λn(t ′)

)∣∣∣∣∣
t

0

.

FIG. 8. Histograms of the cumulative work W performed by the
moving boundary on the system at the instances when the aspect ratio
is unity (i.e., t is a multiple of 0.5τ ). The experimental parameters are
β = −18, τ = τe, and M = 8000.

The theoretical estimates and the experimental results are in
good agreement. The Jarzynski equation (36) for this system
is thus validated. Figure 9(c) shows the time series of the
sample mean of work performed on the system, W

s
. The

difference in the free energy, �F , and the work predicted
by RDT are also shown. Here, the prediction from RDT cor-
responds to the results obtained if the cross-mode coupling
is neglected. In the initial stage, t/τ < 1, RDT adequately
explains the periodic variation in the mean energy. However,
W

s
gradually decreases in later periods and never returns to

0. We also confirm the relationship between the mean work
performed on the system and the difference in the free energy,
W

s
< �F , predicted from the Jarzynski equality under the

condition of β < 0.
Next, we analyze the detailed energy budget in spectral

space. Equation (42) is averaged over the samples and in-
tegrated over 0 � t � 5τ ; its terms for each n = (k, l ) are
compared in Fig. 10. Figures 10(b) and 10(c) show that,
in most of the low-wave-number regions (specifically, k +
l � 10), the energy production term is negative, while the
nonlinear interaction term is positive. An exception is the
lowest mode n = (1, 1), in which both the production and
nonlinear interaction terms are negative. These results indicate
that energy is transferred from the lowest mode toward the
adjacent higher modes. For a higher-wave-number region,
k + l 
 10, the production and nonlinear interaction terms
show random variations. The net variations of the energy
spectrum in Fig. 10(a), which is the sum of the following two
panels, exhibit significant energy loss in the lowest mode but
no clear tendency to gain or loss in the other modes.

We also discuss the enstrophy budget in spectral space.
In contrast to energy, enstrophy is not produced by the ex-
ternal force; only the nonlinear interaction term must be
considered. Here we define the cumulative enstrophy flux in
one-dimensional wave-number space as

F (κ ) =
∑

|n|>κ/π

∫ t

0

∑
ml

Bnmlωnωmωl dt ′, (45)
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FIG. 9. Results of the experiment for β = −18, compared with theoretical estimates. (a) Time series of the aspect ratio, a. (b) The blue
curve represents exp(−NβW )

s
, with the standard error indicated by cyan. The dashed curve is the analytically derived exp(−Nβ�F ). (c) The

blue curve represents the mean work performed on the system, W
s
. The standard error is indicated by cyan, although it is almost invisible. The

black solid curve is �F and the black dashed curve is the work predicted by the RDT.

FIG. 10. Two-dimensional spectral plots of the energy budget for a M = 8000, β = −18, and τ = τe experiment. (a) Net variations in
the mean energy spectrum, E

s
n(t = 5τ ) − E

s
n(t = 0). (b) Temporally integrated energy production term, − ∫ 5τ

0 (λ̇n/λn)E
s
ndt . (c) Temporally

integrated nonlinear interaction term,
∫ 5τ

0 (1/λn)
∑

ml Bnmlωnωmωl
sdt . All data are scaled by E0, and the color is represented in a logarithmic

scale for positive and negative values, respectively.

064131-11



YOHEI ONUKI PHYSICAL REVIEW E 106, 064131 (2022)

FIG. 11. Sample means of the enstrophy flux F (κ ) in one-
dimensional wave-number space defined as (45) at t = τ , 3τ , and
5τ . The vertical axis is scaled by the expectation value of the total
enstrophy at the initial time. Means and their standard errors are
shown.

where |n| = √
k2 + l2. This flux corresponds to the gain

of enstrophy for a high-mode region with a wave number
greater than κ until time t . Because the wave number of each
mode varies as

√
λn(t ), F does not strictly coincide with the

usual definition of enstrophy flux in homogeneous turbulence.
Figure 11 shows F for t = τ, 3τ , and 5τ . We confirm that
enstrophy contained in the lowest-mode component is trans-
ferred to higher wave numbers. At earlier times, the enstrophy
flux is constrained in the low-wave-number region; a negative
flux appears in the intermediate wave-number range. In later
periods, the positive flux approaches higher wave numbers
and the negative flux is no longer confirmed.

The downscale enstrophy transfer is a natural consequence
of the energy loss of the system. To explain this, we focus on
the ratio between energy and enstrophy,

Eω

	2
=

∑
n ω2

n/λn∑
n ω2

n

,

formally equivalent to the centroid of 1/λn weighted by the
enstrophy. Because 	2 is conserved, the gain or loss of energy
is accompanied by an increase or decrease in this centroid,
corresponding to upscale or downscale enstrophy transfer,
respectively. Two-dimensional turbulence is generally asso-
ciated with the upscale and downscale cascades of energy
and enstrophy, respectively [37,38]. Loss of energy via the
pressure force at the lateral boundary plays a similar role to the
upscale energy transfer in the downscale enstrophy cascade.

The Jarzynski equality indicates that the direction of the
energy transfer through the lateral boundary depends on the
sign of β. We validate this prediction by carrying out exper-
iments for various β ranges from negative to positive values.
The obtained W

s
/E0 are shown in Fig. 12. In accordance with

the theoretical expectation, the sign of W
s

switches with the
sign of β. When we decrease β until −λ1, all the energy is
concentrated at the lowest mode, (k, l ) = (1, 1). Such a single
eddy at the largest scale is a stable solution of the Euler equa-
tion. Consequently, no enstrophy is transferred toward higher

modes. The flow field evolves according to the RDT; the dis-
tortion process is completely reversible. Therefore, W should
converge to 0 in this limit. In addition, with the assumption
that W continuously changes the sign between positive and
negative temperature regions, W = 0 should hold at β = 0.
Consequently, we predict that W /E0 will have a minimum
value between β = −19.74 and β = 0. Figure 12 shows that
this minimum is located in −19 � β � −15 for every τ/τe

case.
Next, we focus on the dependence of W /E0 on the distor-

tion time τ . First, in the asymptotic limit of τ/τe � 1, the
system’s behavior may be adequately predicted by the RDT.
Because the RDT describes a completely reversible process,
it follows that W /E0 = 0 for τ → 0. The opposite side of the
asymptotic limit is a very slow distortion, τ/τe 
 1. For con-
ventional thermodynamic theory, this situation corresponds to
the quasistatic process, in which the probability density, P(ω),
is always very close to an equilibrium state; consequently, the
process is reversible. In the present model, however, the ex-
istence of such an equilibrium state at each time is uncertain.
We thus cannot conclude that W /E0 = 0 for τ → ∞ based on
theoretical reasoning.

The plots of W
s
/E0 against τ are shown in Fig. 13. Indeed,

|W s|/E0 decreases monotonically toward 0 as we decrease
τ/τe for τ/τe < 0.1. In contrast, the results separate for a large
τ/τe, depending on the sign of β. Although |W s|/E0 decreases
monotonically toward 0 for positive β, it does not decrease in
such a manner for negative β. Apparently, W

s
/E0 approaches

a constant value prescribed by β, but a proper explanation of
this unexpected result has not yet been provided. Additionally,
for negative β, the most efficient energy extraction occurs at
0.4 � τ/τe � 1. In contrast, for positive β, the location of
the peak in W

s
/E0 shifts toward lower τ/τe as β increases.

This result can be rationalized by focusing on the turbulence
length scale. As shown in Fig. 7, when we increase β, a
larger part of the energy is distributed to higher wave numbers.
Accordingly, the typical length scale of the turbulent eddies
decreases; this leads to a considerably shorter turnover time
of eddies compared with the original estimate, τe = 1/

√
E0.

The distortion time and turnover time should be comparable
for the potential flow induced by domain distortion to interfere
most efficiently with turbulent eddies. Therefore, for large β,
efficient energy injection occurs at smaller τ/τe.

V. DISCUSSION AND CONCLUSIONS

In most physical systems, the second law of thermodynam-
ics restricts the amount of work available from microscopic
random motions. More specifically, heat energy cannot be
extracted from an equilibrium state without changes to any
other macroscopic condition. However, this principle is valid
only when the absolute temperature is positive. In a negative
temperature state, macroscopic operations irreversibly extract
heat energy from the system. A two-dimensional flow is a
unique system in which the temperature can be negative.
The simple model used here—incompressible Euler equa-
tion system surrounded by a moving lateral boundary—allows
us to theoretically and numerically explore the energetics
of negative temperature states of turbulent flows. A specific
choice of initial conditions of statistical equilibria employed
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FIG. 12. Sample means of the work performed on the system scaled by the initial mean energy, W
s
/E0, at t = 5τ against β for (a) β > 0

and (b) β � 0. The horizontal axis in (a) uses a logarithmic scale while the horizontal axis in (b) uses a linear scale. Error bars represent the
standard errors.

from Kraichnan’s classical work enables direct application
of Jarzynski’s formula. We have thus derived, as expected, a
simple expression that exhibits the one-way energy transfer
from turbulent fluctuations to macroscopic pressure work.

Several caveats exist, however, as to the initial equilibrium
state adopted in this paper. As is the common notion in sta-
tistical mechanics, a thermal equilibrium would be regarded
as a state that a system reaches after a sufficiently long time
has passed from an arbitrary state. The present Kraichnan’s
GCE is not genuine in that sense; frankly, it is a particular
class of invariant measure of the truncated Euler equation.
An assumption on the ergodicity of the truncated Euler equa-

tion would provide a microcanonical ensemble formulated by
Bouchet and Corvellec [34] as a better model, which still
ignores constraints from higher-order Casimir invariants. To
formulate a model much more strictly, taking the continuous
limit by setting the truncation wave number as infinite and
considering all the Casimir invariants to define the equilibria
are desired. This procedure is nothing but the MRS theory.
Such a rigorous method, however, provides only a trivial result
as to the response of the system to the external boundary forc-
ing. It is because the MRS theory predicts the macroscopic
flow state in a completely deterministic form. Accordingly,
the work’s probability distribution reduces to a delta function
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FIG. 13. Sample means of the work performed on the system scaled by the initial mean energy, W
s
/E0, at t = 5τ against τ/τe for (a) β > 0

and (b) β � 0. The error bars represent the standard errors.

on the mean state. A Jarzynski-like formulation will not be
applicable in this line. Intriguing results essentially originate
from turbulent fluctuations that are allowed to reside in an
equilibrium for a system with a large but finite number of el-
ements. These explain why the standard approach to defining
equilibria for a continuous flow system was abandoned in the
present study.

Although the validity of the initial conditions of equilib-
rium requires further investigation, interpreting the results of
numerical analysis is rather straightforward. If the tempera-
ture is negative, a large amount of energy and enstrophy are

concentrated at the lowest-wave-number mode. When one dis-
turbs the system by moving the domain boundary, enstrophy
in the lowest mode is redistributed towards higher wave num-
bers. This enstrophy transfer is inevitably accompanied by the
energy loss of the system. We have seen that the energy and
enstrophy budgets in spectral space obtained from an experi-
ment support this mechanism. If the temperature is increased
to positive values, since the enstrophy concentration to the
lowest mode is no longer prominent, an inverse enstrophy
cascade becomes possible; thus, the system can gain energy. A
series of parameter-sweep experiments further show that the
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energy exchange rate is dependent on temporal parameters.
Specifically, the most efficient energy exchange occurs when
the two timescales, those of cyclic boundary motion and the
overturning of turbulent eddies, are comparable. These intu-
itively reasonable results are likely not an artifact originating
from Kraichnan’s GCE but a ubiquitous feature of statistical
equilibria of two-dimensional Euler equation systems.

We shall discuss the present results in connection with the
existing knowledge of two-dimensional flows. Commonly, in
various Earth and planetary systems, coherent flow structures
such as jets or vortices spontaneously emerge from a turbulent
state. Energy conversion from microscopic fluctuations to a
macroscopic structure plays a driving role in this process.
From this perspective, it is possible to regard the extraction
of turbulence energy to an externally imposed potential flow
as a derivative of the structure-formation mechanisms.

This paper has considered a simple Euler equation, but
a similar approach applies to quasigeostrophic systems that
involve planetary-beta effects and variations in layer thick-
nesses. Furthermore, we can even replace the rigid lateral
boundary by periodic conditions. In this case, variation in
the domain shape is represented by decomposing a velocity
vector into potential and vortical flow parts, u = uω + up, and
imposing the stream function of the potential flow part. For
example, ψp defined as Eq. (19) induces the variation in the
aspect ratio of the domain. By combining different boundary
configurations with a more general quasigeostrophic equation,
we can discuss energy exchanges among jets, vortices, Rossby
waves, and small-scale turbulence interacting with an exter-
nally imposed potential flow. For any kind of situation, the
sign of temperature, if defined, is presumably a factor that
determines the energy gain or loss of the system.

To make a model relevant to the real geophysical and
astrophysical situations, it is important above all to formulate
a statistical theory meaningful even in the thermodynamic or,
equivalently, continuous limit. For this purpose, a plausible
way is to include the diabatic source and sink of vortic-
ity and net energy transfer between forcing and dissipation
scales. Forced-dissipated turbulence of two-dimensional flows
has also been explored in many other works (see Ref. [5]
and references therein). Recent studies have focused on
the mechanisms of emergence and maintenance of a coher-
ent flow structure much greater than forcing scales (e.g.,
Refs.[39–43]). Future research should extend discussion to a
generic nonequilibrium state of turbulence.

Finally, although this study has considered statistical quan-
tities obtained by averaging over innumerable samples, it is
also important to concentrate on a specific realization and
to follow its transitions. In such problems, we occasionally
find a drastic change in the flow structure over a short period,
which bridges bistable states [44–49]. Temporal variation in
the domain geometry is expected to switch a stable state to
an unstable state, thus triggering an abrupt transition of the
flow structure to another state, like the vapor-liquid transi-
tion induced by compression or expansion of a fluid volume.
Indeed, Yasuda et al. [14] suggested that the splitting of a
polar vortex in the stratosphere can be explained in terms of
a phase transition induced by variation in a geometrical con-
dition. This paper will hopefully motivate discussions of the
statistical mechanics of geophysical fluid in those directions.

ACKNOWLEDGMENTS

The author thanks Sylvain Joubaud and Corentin Herbert
for carefully reading the paper and suggesting informa-
tive, relevant literature. The author is also grateful to three
anonymous reviewers for giving critical comments that sig-
nificantly improved the paper. This research was supported
by JSPS Overseas Research Fellowship and KAKENHI
Grants No. JP18H04918 and No. JP20K14556. Compu-
tations were carried out using the Fujitsu PRIMERGY
CX600M1/CX1640M1 (Oakforest-PACS) at the Information
Technology Center of the University of Tokyo. Computations
were also performed using the computer resources offered
under the category of General Projects by Research Institute
for Information Technology, Kyushu University.

APPENDIX A: TEMPORAL DIFFERENTIATION
OF A SPATIALLY INTEGRATED QUANTITY

In the present model, since the domain geometry varies
with time, special care is required to compute the temporal
differentiation of an integrated quantity. To see this, let us first
introduce a real continuous function C(r, t ) that is positive
inside of D and negative outside of D. Clearly, the bound-
ary of the domain ∂D is specified by the condition, C = 0.
Accordingly,

∂C

∂t
+ u · ∇C = 0 (A1)

is always satisfied on ∂D. Letting s ≡ |∇C|−1∂C/∂t , (A1)
represents the kinematic boundary condition (4).

Now, using the Heaviside function H , the integration of an
arbitrary function f (r, t ) over D is expressed as

∫
D

f dr =
∫
R2

H (C(r, t )) f (r, t )dr.

The temporal differentiation of this expression is

d

dt

∫
D

f dr =
∫
R2

∂C

∂t
δ(C(r, t )) f dr +

∫
R2

H (C(r, t ))
∂ f

∂t
dr,

(A2)

where δ is the Dirac’s delta function. Since the integration of
the first term on the right-hand side is contributed only from
∂D where C = 0, we may use (A1) to rewrite it as

∫
R2

∂C

∂t
δ(C(r, t )) f dr = −

∫
R2

u · ∇Cδ(C(r, t )) f dr

= −
∫
R2

u · ∇H (C(r, t )) f dr

=
∫
R2

H (C(r, t ))u · ∇ f dr,

where we have used the incompressible condition, ∇ · u = 0,
and the integration by parts. Inserting this to (A2), we finally
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derive

d

dt

∫
D

f dr =
∫
R2

H (C(r, t ))

[
∂ f

∂t
+ u · ∇ f

]
dr

=
∫
D

[
∂ f

∂t
+ u · ∇ f

]
dr. (A3)

Expression (A3) is useful to formulate the variations in energy
or prove the conservation of Casimir invariants.

APPENDIX B: EVALUATION OF ERRORS

For the GCE of a truncated Euler equation system, the devi-
ation of a sampled macroscopic quantity such as Eω, W , or F
from a genuine ensemble mean is massive. A robust estimate
of a mean value requires a sufficiently large number of sam-
ples. Here, we consider the amount of work W as an example.
The confidence interval of the sample mean of W obtained in
experiments is represented as (W

s − cδW,W
s + cδW ), where

W
s

is the sample mean, δW is the standard error of the sample
mean, and c is a constant. The standard error is defined as
δW = S/

√
M, where S is the sample standard deviation of W .

For a normal distribution with M 
 1, the 95% confidence
interval corresponds to c = 1.96, but for simplicity we use
c = 1.

To assess the dependence of the results on the number of
samples, we refer to Fig. 14 for the estimated sample means
and the standard errors of W for various M and t . We notice
that the relative error of W depends on the number of samples
and time. We can estimate the rate of loss of energy from the
system with more confidence in later periods. Overall, as is
inferred from Fig. 14(b), to suppress the relative error of the
estimates of W within 10%, it would be sufficient to set M
greater than 500 for this case.

FIG. 14. (a) Estimated mean work performed on the system until
t = τ, 3τ, 5τ for β = −18. The horizontal axis, M, is the number of
samples. Error bar represents a standard error. (b) Sample standard
errors of W divided by the absolute values of sample means against
M for β = −18 and various t .
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