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Angell plot from the potential energy landscape perspective
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Within the scenario of the potential energy landscape (PEL), a thermodynamic model has been developed to
uncover the physics behind the Angell plot. In our model, by separating the barrier distribution in PELs into
a Gaussian-like and a power-law form, we obtain a general relationship between the relaxation time and the
temperature. The wide range of the experimental data in the Angell plot, as well as the molecular-dynamics data,
can be excellently fitted by two characteristic parameters, the effective barrier (ω) and the effective width (σ )
of a Gaussian-like distribution. More importantly, the fitted ω and σ 2 for all glasses are found to have a simple
linear relationship within a very narrow band, and fragile and strong glasses are well separated in the ω-σ 2 plot,
which indicates that glassy states appear only in a specific region of the PEL.
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I. INTRODUCTION

The Angell plot (AP) [1], depicting the α-relaxation time
(τα) as a function of the reciprocal temperature [in units of
the glass transition temperature (Tg)] is a very important plot
in the research field of glasses. The fragility, a key concept
of glasses, defined as m = d log(τα )

d (Tg/T ) |T =Tg , can directly be vi-
sualized in an AP. Fragility then lets us divide glasses into
two classes: strong and fragile. For strong glasses, τα can be
roughly fitted by the Arrhenius equation in the range between
the melting temperature and Tg, while for a fragile glass, τα

shows a non-Arrhenius behavior (usually referred to as super-
Arrhenius) [2–4]. The most essential scientific significance of
the AP may be as a general classifier among various glass-
forming materials [4]. For this reason, it is believed that the
AP must deeply relate to the intrinsic nature of glasses.

Over past decades, great efforts have been made to look for
the physical interpretation of the AP. These studies span from
theoretical models to computer simulations [5–36]. Among
them, the potential energy landscape (PEL) provides a first-
principles perspective for exploring the physics behind the
AP, in which the relation between the statistical properties of
PELs and the fragility is thought to be a central issue. The PEL
scenario of glasses comes from Goldstein’s seminal paper
published a half century ago [37]. Since then, it is generally
believed that the PEL is indeed a very useful perspective,
which can be used to investigate various glass-related prob-
lems [38–43]. Up to now, some possible connections between
the PEL and the AP have been suggested. For existing models,
difficulty is met when one tries to unify strong and fragile
glasses within the same framework. For example, as a typical
PEL-based model, the Gaussian model predicts a quadratic
dependence of τα on temperature [13], and the quadratic form
well describes both strong and weak fragile glasses. However,

if the quadratic form is used to fit typical fragile glasses, a
negative average barrier emerges, which is obviously non-
physical. Elmatad, Chandler, and Garrahan (ECG) have used
the quadratic form within a class of kinetically constrained
consideration [9]. The ECG model does avoid the nonphysical
negative barrier, but it encounters other problems for strong
glasses (see below for details).

In spite of great efforts, the physics underlying the AP
is not yet well understood, and a unified picture for both
strong and fragile glasses is still missing. In this paper, we
present a unified PEL model for α relaxation in both strong
and fragile glasses using two basic facts: the existence of the
barrier distribution in the PEL, and the Arrhenius relationship
for a single relaxation event. The current model cannot only
well establish the quantitative link between PELs and the AP,
but also predicts a general relationship to classify strong and
fragile glasses.

II. PEL MODEL

A. Mathematical derivation

It is generally recognized that the existence of metabasins
(MBs) is a significant feature of PELs for glass-forming liq-
uids [44,45]. A basin is a region of minima in the PEL with
similar potential energies. They are thought to be organized
into groups, and form MBs, which have been identified in a
few molecular dynamics (MD) simulations and experimen-
tal studies [46–48]. Since the α relaxation is related to the
transition between MBs [49,50], we will limit our discussion
to the inter-MB relaxation. The PEL of a real glass-forming
system may be composed of a large number of MBs or differ-
ent relaxation channels. However, the overall relaxation time
of the system must be contributed by all MBs or channels,
which is actually the relaxation time measured by experi-
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FIG. 1. Upper panel: Schematic plot of metabasins (MB) and
possible relaxation paths. Lower panel: Possible shapes of the barrier
distribution. The total distribution of barriers ρ(x) is divided into two
parts: the distribution mainly coming from downhill relaxations ρl (x)
and that from uphill relaxations ρc(x). For a given ρc(x) (blue solid
line), the possible ρl (x) for the strong and fragile glass are plotted in
green and red, respectively.

ments. Our model considers the relaxation of the system as
a whole rather than any specific MB. In the current model,
at the dynamic level, the only assumption is the validity of
the Arrhenius relation for a single relaxation event, which is
also a general consensus in studying the dynamics of glasses
[8,51,52]. Based on the discussion above, our model does not
make any specific assumptions about whether the system is
in equilibrium. The goal of our model is to establish the link
between a given PEL and the temperature dependence of the
relaxation time.

To illustrate our model, consider a system currently staying
in a MB, in which there are many paths connecting to other
MBs as schematically shown in Fig. 1. Clearly, the number
of paths is closely related to the local configuration entropy.
Define a function ρ(x), which counts the number of paths
with the barrier x. Hereafter ρ(x) is called the distribution
of barriers (DOB). Since the system will try each path with
an equal probability, a single jump can be described by the
Arrhenius formula, and the average α-relaxation time (τα) is

1

τα

= 1

τ0

∫
ρ(x)e−βxdx, (1)

where τ0 and β are the characteristic timescale and reciprocal
temperature, respectively. Since our model is developed for
the relaxation of the system as a whole rather than for a spe-
cific MB, ρ(x) should be considered as the overall distribution
of the relaxation channels. It needs to be pointed out that
Eq. (1) implies the relaxation of the overall system resulting
from a superposition of many local or nonlocal processes.

For a given path, we label the average potential energy of
the initial and final states of system as Ei and E f , respectively.
For the uphill relaxation (see Fig. 1), as the difference be-
tween Ei and E f is large, it is a good approximation to write
x ≈ E f − Ei. With this approximation, the DOB for larger
barriers [ρc(x)] should be ρc(x) ≈ �(E f ) ≈ �(Ei + x), in
which �(E f ) corresponds to the number of states with a
potential energy of E f . Clearly kBln[�(E f )] is nothing but
the configurational entropy at fixed potential energy E f . Be-
cause the entropy is an extensive quantity, the leading term
of �(E ) may have the form, as discussed in many texts [53],
Rc( x+Ei−E0

N )
BcN

, where Rc and Bc are material-dependent con-
stants. E0 is the true ground-state energy of the system (note:
not the energy of glass at zero temperature). Finally,

ρc(x) = Rc

(
x + Ei − E0

N

)BcN

= Rceg(x). (2)

The above equation can be obtained according to the
definition of entropies; the detailed mathematical derivation
is presented in Appendix A. Regarding Eq. (2), two points
should be made. (i) It meets the physical requirement that
entropy is an extensive quantity, and entropy will not change
with the translation of energy as a whole. A similar consid-
eration, namely, the entropy being additive, has been used to
analyze possible formulas for the density of states [54–57]. (ii)
Equation (2) may include only the leading term, which refers
to the formula in the thermodynamic limit (N → ∞). For
practical systems, g(x) may contain other similar power terms,
but this does not affect our discussion other than increas-
ing mathematical complexity. The long tail of high energies
found in some papers may relate to this kind of distribution
[19,28,58–60].

For downhill relaxations, the barrier usually does not cor-
relate to the energy of the final states and will distribute in
a narrow region. Physically, downhill DOB should approach
zero for both large and small x, which is schematically shown
in the lower panel of Fig. 1 (blue or red lines). If ρl (x) is used
to describe the DOB of downhill relaxation, the total DOB
ρ(x) = ρl (x) + ρc(x).

It needs to be stressed that if the barrier x is smaller or
comparable to E f − Ei, the above approximation for ρc(x)
may not be appropriate. Physically, ρc(x) should be zero for x
less than a certain positive value and may not be a smooth
function as is Eq. (2) for small x. Here for mathematical
convenience, we still define ρc(x) in the range of [0 : ∞]
and incorporate the corresponding correction into ρl (x). With
this correction, ρl (x) and ρc(x) do not come purely from
downhill and uphill relaxation, respectively. However, we still
name ρl (x) and ρc(x) for the DOBs for downhill and uphill
relaxations, respectively.

In real materials, ρl (x) may contain multiple maxima; in
order to keep the form concise, only one dominant maximum
is considered. For real systems, we can always write it as
the sum of a few functions, each containing a single maxi-
mum. The final mathematical form should not change with
the number of maxima. Without losing generality, we rewrite
ρl (x) as Rle− f (x) with f (x) � 0. Further, we can express
f (x) as a polynomial, namely, f (x) = ∑M

i=0 aixi. Based on
the above assumptions, ρl (x) has a single maximum, as does
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f (x). Assuming the maximum appears at x0, mathematically,
there will always exist nM and nm to make A(x − x0)nM �
f (x) � a(x − x0)nm true for any x. For the convenience of
mathematical analysis and keeping major physics unchanged,
we take the form f (x) = Bl (x−	)n, where Bl , Rl , 	, and
n are constants larger than zero. By properly choosing the
values of Bl , Rl , 	, and n, f (x) can roughly describe a specific
system.

Considering ρ(x) = ρl (x) + ρc(x), Eq. (1) becomes

1

τα

= 1

τl
+ 1

τc
, (3a)

with

1

τl
= 1

τ0

∫
ρl (x)e−βxdx = Rl

τ0

∫
e−βx− f (x)dx (3b)

and

1

τc
= 1

τ0

∫
ρc(x)e−βxdx = Rc

τ0

∫
e−βx+g(x)dx. (3c)

Both e−βx− f (x) and e−βx+g(x) should be fast-decaying func-
tions of x. Namely it is important only in the vicinity of the
maximum of −βx− f (x) and −βx + g(x). After some mathe-
matical deductions (see Appendixes B and C for details), we
reach the final results,

1

τl
≈ Rl

τ0

√
2π

f ′′ (x̄)
e− 	

kBT −(n−1)Bl ( 1
nBl kBT )

n
n−1

(4)

and

1

τc
≈ Rc

τ0

√
2π

|g′′ (x̄)|e
Ei

k BT − E0
kBT +BcN+BcN ln ( BcN

Nβ ). (5)

In order to further simplify the mathematics, we keep only
the first two leading terms, which change fastest with temper-
ature. In Eqs. (4) and (5), besides those explicitly containing
temperature, Ei is also a function of temperature, which is
the average potential energy of systems at the current tem-
perature, similar to the configurational energy (total energy
minus vibrational energy) [43]. Ei must be a monotonically
increasing function of temperature, because the derivative of
energies over temperature is the specific heat. In the temper-
ature range focused on in the current work, quantum effects
can be neglected, and the change of energy with temperature
should be very close to linear. Ei may be approximated as
∼ ∈0 + ∈1T + O(T ) (here ∈0 and ∈1 are constants for a given
system, and ∈0 is the energy of the glasses at zero tempera-
ture). Here O(T ), which counts those terms changing slowly
with temperature, is neglected. The last term in the exponen-
tial function of Eq. (5), BcN ln( BcN

Nβ
) ∝ g(x̄), is proportional

to the configuration entropy, since Rceg(x̄) is the number of
configurations. The dependence of entropy on temperature is
much weaker than that of energy, since T dS

dT = dE
dT = C with

C being the specific heat. For example, the entropy of a binary
Lennard-Jones glass is about T 0.4 [61] and is similar in other
glasses [62]. Considering the above arguments, Eqs. (4) and

(5) become
1

τl
≈ 1

τ̄l
e
− ωl

kBT −
(

σl
kBT

)nl

(6)

and
1

τc
≈ 1

τ̄c
e− ωc

kBT . (7)

As an approximation, here the constants and the part slowly
changing with temperature in Eqs. (4) and (5) are collected
into two new constants, τ̄l and τ̄c, respectively. According to
our definition, ωl = 	 > 0, and ωc = E0 − ∈0 is the differ-
ence between the ground-state energy of systems E0 and the
zero-temperature energy of the glass ∈0. For almost all vitri-
fication process, ∈0 is higher than E0, and obviously ωc � 0.
σl = (n−1)

n−1
n n

n√Bl
measures the effective width of the down-

hill distribution ρl . According to our analysis in Appendix B,
nl must be less than or equal to 2 due to nl = n

n−1 � 2. nl = 2
corresponds to ρl (x) being a Gaussian distribution.

To calculate the total relaxation time τα determined by Eqs.
(3), we consider three cases. First, if τl 
 τc, then τα ≈ τl .
We have

ln τα ≈ ln τ̄l + ωl

kBT
+

(
σl

kBT

)nl

. (8a)

Second, if τl � τc, then τα ≈ τc, we have

ln τα ≈ ln τ̄c + ωc

kBT
. (8b)

Third, if τl ∼ τc, 1
τα

= 1
τl

+ 1
τc

≈ 2 1√
τl

1√
τc

, we have

ln τα ≈ ln τ̄l + ln τ̄c + ωl

kBT
+

(
σl

kBT

)nl

+ ωc

kBT
. (8c)

Equation (8c), which covers all cases by properly choosing
parameters, can be further simplified as

ln τα ≈ ln τ̄0 + ω

kBT
+

(
σl

kBT

)n

, (9)

where the parameters τ̄0, ω, σl , and n � 2 are material de-
pendent, respectively. Since n � 2, the dependence of the
logarithm of the relaxation time on the reciprocal temperature
cannot be higher than the second power or lower than the first
power.

For ρl (x), the Gaussian distribution may be a reasonable
assumption, which is also used in previous models [13,15–
17]. More importantly, some calculations also show the ex-
istence of a Gaussian-like distribution [28,63–67]. If ρl (x) ∼
exp[−( x−	

2σ
)
2
] is a Gaussian distribution with the distribution

width σ and the average barrier 	 � 0, Eq. (9) becomes

ln τα ≈ ln τ̄0 + ω

kBT
+

(
σ

kBT

)2

. (10)

In this case, from Eqs. (8), we find that 	 � ω � E0 − ∈0.
Because of E0 − ∈0 � 0, ω can be either positive or negative
dependent on the relative importance of ρl (x) and ρc(x) (see
below for details). Here ω reflects the effect barrier height
contributed from both ρl and ρc, and σ refers the effect
distribution width of ρl . Thus, ω and σ are mathematically
independent and have dimensions of barrier height and dis-
tribution width, respectively. Hereafter ω and σ are labeled
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as the effective barrier and the effective width of the DOB,
respectively. Accordingly, the fragility becomes

m = d log (τα )

d (Tg/T )
|T =Tg = ω

kBTg
+ 2

(
σ

kBTg

)2

. (11)

Equations (10) and (11) will be used in the following discus-
sions.

According to Eq. (11), the fragility can be well interpreted
within the PEL perspective. If ρl (x) is a sharp and narrow
distribution, i.e., the PEL is flat, the contribution from ρc(x)
may be neglected, and a strong glass is expected. In this
case, the effective barrier ω will be positive. Conversely, if
ρl (x) is a very wide and flat distribution, i.e., a rough PEL,
ρc(x) begins to play a more and more important role, and the
effective barrier ω tends to be negative, then a fragile glass
is expected. The above correspondence between PEL rough-
ness and fragility has been confirmed in previous simulations
[29,41,45,65]. The shapes of ρl (x) and ρc(x) for the strong
and fragile glass are sketched in the lower panel of Fig. 1.

Quite a few previous studies in particular have shown that
the soft interactions or soft particles make strong glasses
[68–71]. Here we can make a qualitative understanding for
such connections between the fragility and the interaction
potential. From Eq. (11), one can see that the key parameters
affecting fragilities are ω and σ . Obviously, σ ∝ 1√

Bl
char-

acterizes the distribution width of barriers. The larger Bl is,
the smaller σ , while ω ∼ 	 + E0 − Ei represents the energy
difference. Although we cannot establish an explicit formula
between the interaction potential and these parameters, a
qualitative relationship can be obtained. As the interatomic
potential becomes softer, the whole PEL will be squished,
namely, become flatter and flatter. An extreme example is
the ideal gas, whose PEL is flat. As a result, the DOB will
become narrower (a larger Bl or a smaller σ ), and any energy
difference will be reduced (a smaller ω) accordingly. From
Eq. (11), we can see that the smaller ω and σ result in a
smaller fragility, which is in agreement with the statement
of “soft particles making strong glasses.” A more rigorous
treatment will be published later.

If some fundamental changes have taken place in the effect
DOB, the capability of our model opens for discussion. For
example, upon cooling, most glasses undergo a fragile-to-
strong crossover [72], which is believed to originate from the
ergodicity breakdown. After the ergodicity breakdown, the
system no longer “sees” the original DOB, thus our model
may be no longer valid. In fact, we do find the fitting becomes
poor after the fragile-to-strong crossover (see Appendix E).

A quadratic dependence of τα on temperature, similar to
the form of Eq. (10), was discussed in previous papers, e.g.,
the Gaussian model and ECG model [9,13]. The Gaussian
model does predict a quadratic dependence of τα on temper-
ature τ = τ∞ exp[(T0/T )2], where T0 is a material-dependent
characteristic temperature given by kBT0 ∝ σG. Parameter σG

here is the width of the Gaussian distribution. Though such
quadratic dependence can be used to fit curves in AP, T0

shows an increasing trend with decrease in fragility, indicating
that the distribution of barriers in strong glasses is broader
than that in fragile glasses, which is opposite to the results
of previous simulations [29,41,45,65]. More importantly, if

the Gaussian form is adopted, a negative average barrier is
obtained when fitting to fragile glasses (see Appendix E),
which obviously cannot be the case. It is the existence of ρc

in the current model that avoids the problem of a negative
average barrier and guarantees a PEL of the fragile glasses
being rougher than that of strong glasses.

In ECG model, to obtain the quadratic form, the authors
have taken a class of kinetically constrained models, in which
the barrier is correlated to a characteristic length scale. After
simple mathematical processing, our model [Eq. (10)] can
also be transformed into the ECG form ln( τ

τ ∗
o

) = J2( 1
T − 1

To
)
2
,

with J2 = σ 2

k2
B

, To = −2 σ 2

k2
Bω

, and ln( τ̄o
τ ∗

o
) = 4 k2

Bω2

σ 2 . Here, to make
the ECG equation meaningful, a negative ω must be assumed.
If Eq. (10) is used to fit the AP, a positive (negative) ω will be
obtained for typical strong (fragile) glasses. Obviously, if the
ECG equation is used to describe strong glasses, a much lower
To will be obtained, which evidently invalidates the physics
meaning of To.

The current model can also be used to explain the results
from various computer simulations, such as the square well
(SqW) model. In SqW model, the interaction between atoms
is described by an attractive square well with a tunable barrier
(	) at its outer edge. It was found that, by increasing 	,
the system shows a trend from fragile to strong in dynam-
ics without changing its thermodynamics fragility. Since the
width of the barrier is infinitesimal compared to the size of
particles and width of the well, when the observation time
is much longer than the typical relaxation time, changing 	

has little effect on thermodynamics properties [33]. However,
the increase of 	 in the SqW potential does affect the kinetic
behavior. At a given temperature, there exists a threshold
barrier height xth, and the barriers above xth are too high to be
overcome. By increasing 	, more barriers grow higher than
xth and fewer remain available for dynamics processes. There-
fore, the effective DOB will become narrower as increasing
	 and results in the decrease of fragility. This result is in
agreement with the prediction of our current model.

B. Comparison to molecular dynamics and experimental data

Tuning the PEL will be the most direct test of the current
model. Recently we have proposed a MD method to adjust
a PEL [73]. The advantage of this method is that it changes
only the height of barriers in a PEL, but the number and posi-
tion of minima in phase space are kept unchanged. Consider
ϕ(r1, r2, . . . , rN ) being the total potential energy of a system,
which defines the PEL of this system. In order to adjust the
PEL, we define an alternative total potential energy ϕ∗ as

ϕ∗ =
{

ϕ + ε(ϕ − ϕa )m, f or ϕ � ϕa

ϕ, f or ϕ > ϕa
, (12)

where ε and ϕa are adjustable parameters, and m is an even
number (m � 2). Obviously, ϕ∗ defines a different PEL. Here
the negative parameter ε is used to tune the heights of barriers.
When ε is reduced, all barriers will be raised accordingly, and
thus DOB naturally becomes broader in comparison to that of
the original PEL. Because the larger the energy difference is,
the larger the degree of modification on PELs, the tuning will
have a greater effect on ρl (x) than on ρc(x). Here this method
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FIG. 2. Self-intermediate scattering function of Al46 at 440 K
and 540 K for different ε. As ε is lowered, the structural relaxation
time increases significantly.

has been employed to modify the PELs of two nanoglasses
(Al43 and Al46 clusters). The relevant computational details
are presented in Appendix D.

The self-intermediate scattering function (SISF) provides
rich information on structural relaxations, which is shown
in Fig. 2 for two selected temperatures. τα is given by the
intersection of SISFs and the solid line (e−1). It can be seen
that, as the PEL becomes rougher (ε being lower), the struc-
tural relaxation does show a significant slowdown, and such
a slowdown is more pronounced at low temperatures. This is
easy to understand because the lower ε is, the higher barrier is.

The AP of Al43 and Al46, in the upper panel of Fig. 3, in
which Tg is determined according to τα , reaches the order of
100 ps. From this figure, one can see that, Al43 can be consid-
ered a strong glass former at ε = 0, indicated by the Arrhenius
relation between τα and temperature. Al46 slightly deviates
from the Arrhenius relation even at ε = 0, indicating a less
strong behavior. With the decrease of ε, the τα-temperature
curves begin to deviate from the Arrhenius relation, indicating
the system tends to be more fragile. This result is actually the
most direct support of both our model and previous specu-
lation, namely, that the PEL of a fragile glass is “rougher,”
because in our current work, as the PEL is adjusted, only
barriers are changed. The τα-temperature curves from our MD
simulations can be well fitted by Eq. (10), as shown in the
upper panel of Fig. 3. Besides our MD data, Eq. (10) well de-
scribes the τα-temperature curves of various glasses perfectly.
Here the experimental results are taken from Refs. [74–83].
The lower panel of Fig. 3 presents the selected fitted results
of the relaxation time by Eq. (10), which is almost perfectly
fitted. More fitting results for these experimental works are
presented in Appendix E.

The fitting parameters (τ̄0, ω, and σ ) for Al43 and Al46

are listed in Table I, from which it is seen that our model
gives a clear physical description of APs. With decreasing ε, ω
decreases and σ increases accordingly. Such a trend is in line
with our expectations, since the PEL becomes rougher as ε de-

FIG. 3. Upper panel: The Angell plot of Al43 and Al46 nano-
glasses. With the decrease of ε, the τα-temperature curves gradually
deviate from the Arrhenius form, indicating the trend to be fragile.
Lower panel: The Angell plot for various glasses adopted from ex-
perimental work. Lines are the fitting results based on Eq. (10). Both
the experimental data and the current molecular dynamics data can
be well fitted by Eq. (10).

creases. Correspondingly, the system becomes more and more
fragile, the effective barrier ω does not increase but decreases.
This indicates that ρc(x) begins to play a nonnegligible role.
At the same time, σ grows larger. As discussed above, σ is
a parameter positively correlated with the effective width of
ρc(x). The manipulation of the PEL enlarges the difference
between barriers, and therefore leads to the increase of σ .
Similar trends between ω and σ are also observed in other
glasses (see Table II in Appendix E). The above discussion
gives us a strong hint that there could be a special relationship
between ω and σ .

TABLE I. The parameters (τ̄0, ω, σ ) obtained for nanoglasses
by fitting MD data with Eq. (10).

System ε (×10−6) ln τ̄0 ω (eV) σ 2 (×10−2eV2)

Al43 0 −5.65 0.42 0
−3 −5.08 0.34 0.25
−6 −4.60 0.27 0.51

Al46 0 −5.91 0.38 0.36
−2 −4.64 0.20 1.02
−4 −2.71 −0.15 2.2
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FIG. 4. σ 2 as a function of ω for various glasses. ω and σ 2 seem
to have a simple linear relationship. All glasses are distributed in a
narrow band. The purple area marks this band, in which the direction
of the arrow shows the trend of fragility from fragile towards strong.

By fitting various glass-forming liquids from polymers,
metal alloys to molten salts, and nano- to bulk glasses, we
find a simple linear relationship between ω and σ 2, as shown
in Fig. 4. In this figure, the current MD results for the binary
Lennard-Jones system (black open circle) and nanoglasses
(red open circles) are also included. From this figure, one
can see that σ 2 increases with the decrease of ω. More im-
portantly, ω and σ 2 exhibit a linear relationship. All glasses
are distributed in a very narrow band, in which fragile and
strong glasses locate in the upper left and lower right regions,
respectively, in line with our theoretical expectation discussed
above.

The narrow-band distribution in Fig. 4 implies that glasses
or glass transitions may occur only for a restricted category
of PELs, namely, within a certain range of ω and σ 2. It is not
too difficult to argue that far away from this band the glassy
state would not exist. Considering two parts that contribute
to it, i.e., ωl and ωc, ω shall have both a maximum and a
minimum. On one hand, a large value of ω corresponds to
high local barriers ωl , which would prevent the system from
relaxing towards lower MBs. On the other hand, remember
that ω � E0 − ∈0 (the difference between the ground-state
energy of systems and the zero-temperature energy of the
glass), and ω cannot be infinitely small, otherwise the sys-
tem would be unstable. In fact, although the glassy state is
metastable, it could not have a very high energy compared to
the ground-state energy. What’s more, in the ω-σ 2 plot, we
find another intriguing feature, namely, that the typical fragile
and strong (or weak fragile) glasses are well separated. Thus,
we can see that the so-called fragile and strong glasses are
really different from the perspective of PELs.

III. CONCLUSION

We have established a model for α relaxation based on
the potential energy landscape perspective. We find that the
Angell plot can be well explained as long as the barrier dis-
tribution is reasonably described. The key issue in our model
is to realize that the total distribution of barriers is divided in
two parts: a local Gaussian-like distribution and an extended
power-law distribution. Our model shows that a fragile glass
tends to have a wide, Gaussian-like distribution, while a strong

glass tends to have a narrow Gaussian-like distribution. By
comparing various glass systems, we find that these glasses
are distributed in a very narrow band determined by two pa-
rameters, the square of the effective width of the Gaussian-like
distribution and the effective barrier.
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APPENDIX A: MATHEMATICAL DERIVATION OF ρl (x)

Let �(E ) be the number of states with energy E , and
the entropy expressed as kBln[�(E )]. According to statistical
physics, �(E ) can be calculated as

�(E ) =
(

1

2π h̄

)3N ∫
δ(E − [H ({qi, qi}) − E0])

∏
i

dqidqi,

(A1)
where qi and pi are the coordinate and momentum of the ith
atom, respectively. N and H are the total number of atoms and
the total energy for a given {qi, qi}, respectively, and E0 is the
energy of the ground state. In classical physics, the number of
states cannot be well counted. To roughly estimate the number
of states around the energy E , the total energy H is formally
written as the sum of energies of N atoms, namely,

H ({qi, qi}) − E0 =
N∑
i

hi. (A2)

Accordingly, Eq. (A2) can be rewritten as

�(E ) ∝ 1

N!

∫
δ

(
E −

N∑
i

hi

)
N∏
i

g(hi )dhi, (A3)

where g(hi ) counts the degeneracy at hi or the reciprocal
of energy-level spacing. For the ideal gas, g(hi ) ∝ h1/2

i ; for
the three-dimensional harmonic oscillator, g(hi ) ∝ h2

i ; for the
one-dimensional harmonic oscillator, g(hi ) is a constant. Gen-
erally speaking, the higher the energy, the narrower the energy
level spacing, and the larger g(hi ). Without losing generality,
we write g(x) in the form of xBc , where Bc is a constant for a
given system. Then we have

�(E ) ∝ 1

N!

∫
δ

(
E −

N∑
i

hi

)
N∏
i

hBc
i dhi. (A4)

By variable substitutions, hi = y2
i , we have

�(E ) ∝ 2N

N!

∫
δ

(
E −

N∑
i

y2
i

)
N∏
i

y2Bc+1
i dyi. (A5)

This integral can be easily performed in spherical coordi-
nates. By writing Y 2 = ∑N

i y2
i , we obtain

�(E ) ∝ C
2N

N!

∫
δ(E − Y 2)Y 2NBc+N Y N−1 dR

= 2N−1

N!
EN (Bc+1)−1. (A6)
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C is a constant containing the integration over angles, which
is irrelevant to our discussion. Through simple mathematical
deduction, we arrive at the final formula,

�(E ) = Rc

(
E

N

)NBc

. (A7)

In Eq. (A1) we have set the zero point of energy at the
ground state. If we change the zero point of energy back to its
original position, Eq. (A7) will become Eq. (2). One can see
that both Rc and Bc are material dependent, since they depend
on the specific expression of g(hi ).

APPENDIX B: MATHEMATICAL DEDUCTION FOR THE
CONTRIBUTION FROM ρl (x)

Considering f (x) = Bl (x−	)n � 0.0 and ρl (x) =
Rle− f (x), where Bl , Rl , 	, and n are constants larger than zero.
Defining F (x) = −βx− f (x), then ρl (x)e−βx = e−βx− f (x) =
eF (x) should be a fast-decayed function of x. Namely, it is
important only in the vicinity of the maximum of F (x). Thus,
it is reasonable to replace F (x) by its Taylor expansion,

F (x) ∼= −β x̄ − f (x̄) − 1
2 f ′′ (x̄)(x − x̄)2 + O(3), (B1)

where x̄ is determined by ∂F
∂x |

x̄
= 0. Then

1

τl
= Rl

τ0

∫
e−β x̄− f (x̄)− 1

2 f ′′ (x̄)(x−x̄)2+O(3)

≈ Rl

τ0

√
2π

f ′′ (x̄)
e−β x̄− f (x̄). (B2)

Now taking f (x) = Bl (x−	)n, we have

x̄ = 	 −
(

β

nBl

) 1
n−1

, (B3a)

f ′′ (x̄) = n(n − 1)Bl

(
β

nBl

) n−2
n−1

, (B3b)

f (x̄) = Bl

(
β

nBl

) n
n−1

. (B3c)

After simple mathematical simplification, Eq. (B2) be-
comes

1

τl
≈ Rl

τ0

√
2π

f ′′ (x̄)
e
− 	

kBT +(n−1)Bl

(
1

nBl kBT

) n
n−1

. (B4)

In order to make f (x) physically meaningful, two con-
straints are needed. First, the second derivative of f (x) ( f ′′(x̄))
must be positive, it requires n > 1. This, of course, is consis-
tent with that ρ(x) must decay faster than eβx for larger x.
Second, f ′′(x̄) must increase with T , otherwise the fluctuation
of τl will reach the largest at zero temperature, which obvi-
ously makes no sense. This condition requires n � 2.

APPENDIX C: MATHEMATICAL DEDUCTION FOR THE
CONTRIBUTION FROM ρc(x)

Consider ρc(x) = Rc( x+Ei−E0
N )

BcN = Rceg(x) with g(x) =
BcN ln( x+Ei−E0

N ), where N, Rc, Bc, and E0 are constants for
a given glass, and Ei � E0. Defining G(x) = −βx + g(x),

then ρc(x)e−βx = e−βx+g(x) = eG(x) should be a fast-decayed
function of x. Namely, it is important only in the vicinity of
the maximum of G(x). Thus, it is reasonable to replace G(x)
by its Taylor expansion,

G(x) ∼= −β x̄ + g(x̄) + 1
2 g′′ (x̄)(x − x̄)2 + O(3), (C1)

where x̄ is determined by ∂G
∂x |x̄ = 0; thus

x̄ = E0 − Ei + BcN

β
, (C2a)

g(x̄) = BcN ln

(
BcN

Nβ

)
, (C2b)

g′′(x̄) = −NBc

(
BcN

β

)−2

. (C2c)

After mathematical simplification, Eq. (3c) becomes

1

τc
= Rc

τ0

∫
e−β x̄+g(x̄)+ 1

2 g′′ (x̄)(x−x̄)2+O(3)

≈ Rc

τ0

√
2π

|g′′ (x̄)|e−β x̄+g(x̄), (C3)

where

−β x̄ + g(x̄) = β(Ei − E0) + BcN + BcN ln

(
BcN

Nβ

)
. (C4)

Then

1

τc
≈ Rc

τ0

√
2π

|g′′ (x̄)|e
Ei

kBT − E0
kBT +BcN+BcN ln( BcN

Nβ ). (C5)

To make g(x) have physical meaning, similar to that for
g(x), two constraints are needed. The second derivative of
(x) [g′′(x̄)] must be negative and decrease with T, which are
automatically satisfied.

APPENDIX D: COMPUTATONAL METHODS

The thermodynamics behavior of two aluminum nanoclus-
ters (Al43 and Al46) were studied, and the empirical potential
was adopted to describe the atomic interaction of Al18. The
constant temperature MD method without any boundary con-
ditions was used in the calculations. At each temperature of
interest, a 10 ns simulation for initial relaxation is performed,
followed by a 6 μs simulation. Previous studies had shown
that both Al43 and Al46 have a disordered structure at its
ground state and melt or solidify with a typical glasslike tran-
sition, namely, the continuous change in energy and volume
[60,73].

To manipulate PELs, the method developed by some of
us was used. Here the key points were listed as follows: the
high-dimensional PELs are the function of the total potential
energy of systems (note: the total potential energy is not the
interatomic potential). Suppose ϕ(r1, r2, . . . , rN ) being the
total potential energy function, an alternative total potential
energy ϕ∗ is defined as

ϕ∗ =
{

ϕ + ε(ϕ − ϕa )m, f or ϕ � ϕa

ϕ, f or ϕ > ϕa
, (D1)

where ε, ϕa, and m are adjustable parameters. It can be easily
demonstrated that, by proper choice of ε, ϕa, and m, the PEL
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FIG. 5. Fitting MD results with Eq. (10).

determined by ϕ∗ has the adjustable barriers but the same
topologic structure as the one determined by ϕ. Namely, by
adjusting PELs, both the number and position of extreme
points in phase space is unchanged, but only the height of
barriers or the roughness of PELs are modified, which is a
remarkable feature of our method. In current studies, for Al43

(Al46), ϕa and m were −2.58 × 43(46) eV and 6, respectively.
And ε was chosen in the range of [−6 × 10−6, 0]. Since here
ε is negative, the PEL becomes steeper as ε is decreased; in
other words, the fluctuation of barriers increases.

To obtain the structural relaxation time (the so-called α-
relaxation time, τα), the self-intermediate scattering function
(SISF), which reveals a stretched time evolution of structure,
is calculated by

Fs(q, t ) = N−1

〈
N∑

i=1

exp{iq · [ri(0) − ri(t )]}
〉
, (D2)

FIG. 6. Fitting experimental results with Eq. (10).

where N is the number of atoms in nanoclusters, 〈 〉 denotes
the ensemble average, and q is the wave vector. In this work,
|q| = qmax = 2.84 Å−1, i.e., the position of the main peak in
the static structure factor S(q) [84]. From SISF, one can obtain
the structural relaxation time τα , which is usually defined as
Fs(q, t = τα ) = e−1.

APPENDIX E: FITTING TO MD AND EXPERIMENTAL
DATA

The fitting curves to MD and experimental data using Eq.
(10) are shown in Fig. 5 and Fig. 6, respectively. The fitting
parameters for different glass-forming materials are listed in
Table II. In many glass formers there exists such a fragile-
strong crossover, i.e., at the low-temperature region, that the
temperature dependence of structural relaxation time and vis-
cosity shows a non-Arrhenius to Arrhenius crossover, which
is thought to be connected to the breakdown of ergodicity.
Due to the broken ergodicity, the system no longer “sees” the
complete distribution of barriers, so the relationship does not
hold below the crossover temperature; see, for example, the
fitting curves to Al46 in Fig. 5, and BZP and CKN in Fig. 6.

TABLE II. The parameters (τ̄0, ω, σ ) obtained by fitting experimental results with Eq. (10).

System Full name ln (τ0 ) ln(η0) ω (eV) σ 2(×10−2eV2) Ref.

GeO GeO2 −7.01 2.05 3.61 [74]
nProp n-propanol −18.41 −0.29 0.40 [75]
DP Dibutyl-phthalate 7.70 −1.58 2.26 [76]
KDE Cresolphthalein-dimethylether 69.69 −7.57 15.58 [77]
Sal Salol 182.48 −10.56 13.68 [78]
OTP o-terphenyl 120.32 −8.55 12.83 [79]
PPCA Propylene carbonate 61.79 −3.54 3.70 [80]
CKN Ca−K − NO3 46.34 −6.33 14.03 [81]
BZP Benzophenone 138.75 −8.05 10.10 [82]
POC α-phenyl-o-cresol 214.37 −10.79 13.58 [83]
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