
PHYSICAL REVIEW E 106, 064125 (2022)

Obtaining efficient collisional engines via velocity-dependent drivings
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Brownian particles interacting sequentially with distinct temperatures and driving forces at each stroke have
been tackled as a reliable alternative for the construction of engine setups. However, they can behave very
inefficiently depending on the driving used for the work source and/or when temperatures of each stage are
very different from each other. Inspired by some models for molecular motors and recent experimental studies,
a coupling between driving and velocities is introduced and detail investigated from stochastic thermodynamics.
Exact expressions for thermodynamic quantities and distinct maximization routes have been obtained. The search
of an optimal coupling provides a substantial increase of engine performance (mainly efficiency), even for large
�T . A simple and general argument for the optimal coupling can be estimated, irrespective of the driving and
other model details.
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I. INTRODUCTION

One of the main goals of nonequilibrium thermodynam-
ics is to understand, from an operational point of view, the
conversion between distinct amounts of energy into useful
power output [1]. Such a fundamental issue appears in several
systems in nature, encompassing physical [2–5], biological
[6,7], chemical processes [8], quantum technologies, and oth-
ers, and thereby illustrating the great deal of attention devoted
to describing thermal machines operating at the nanoscale
[2,3]. Among the distinct setups, we cite those composed
of quantum dots [9], colloidal particles [4,5,10], single [11]
and coupled systems [12,13] acting as working substance and
others [14]. Most of the above examples deal with engines
operating under fixed or time-periodic variation of external
parameters.

Collisional machines have also been tackled as a candidate
for the construction of reliable thermal engines, in which the
system is sequentially exposed to a distinct thermal reservoir
and external driving forces and the time required for switching
the thermal baths at the end of each stage is neglected. More
recently, such idea of engines has been proposed and extended
for Brownian engines, in which at each stage a particle is sub-
jected to a distinct driving work source. Despite its reliability
in distinct situations, such as systems interacting only with a
small fraction of the environment or those presenting distinct
drivings over each member of the system [15–18], such class
of systems can operate inefficiently depending on the way
it is projected (temperatures, kind of driving, and duration
of each stroke). For this reason, recent strategies, such as
optimal switching time between thermal baths [19,20] and the
choice of an appropriate driving [21] at each stroke have been
proposed and investigated. However, about improvements can
be limited when heat cannot be converted into output work
and the temperature difference �T between strokes increases,
yielding small efficiencies [20–22].

Aimed at circumventing the above limitation, we introduce
a new ingredient as an strategy for improving the efficiency of

Brownian thermal engines. It consists of including a velocity
dependent driving in which the output power generation is
due to two component drivings: the first, given by fihi(t ),
is coming from an arbitrary driving hi(t ) with strength fi,
whereas the second, given by α fivi, accounts to the coupling
between the driving strength and velocity vi, where parameter
α quantifies its weight. Driving forces proportional to the
velocity are rarely explored theoretically [23,24], but they are
present in distinct experimental studies such as an electri-
cal force stemming from delayed feedback [25], self-motile
colloidal particles [26], catalytic nanomotors [27], and others
[28]. Our results reveal that the search of an optimal coupling
provides a substantial increase of engine performance (mainly
efficiency), even for a large difference of temperatures.

This paper is organized as follows. Section II presents the
main equations, system thermodynamics, and distinct opti-
mization routes. Results and phase diagrams are presented in
Sec. III and conclusions are drawn in Sec. IV.

II. THERMODYNAMICS OF COLLISIONAL ENGINES

One of the simplest nanoscopic engines is composed of a
Brownian particle with mass m sequentially placed in contact
with a given thermal reservoir and subjected to an exter-
nal force f̃i(t ) at each stage. Each contact has a duration
of τ/N (with τ and N being the total time and the num-
ber of strokes, respectively) and occurs during the intervals
τi−1 � t < τi, where τi = iτ/N for i = 1, . . . , N , in which the
particle evolves in time according to the following Langevin
equation:

dvi

dt
= −γivi + f̃i(t ) + ξi(t ), (1)

where quantities vi, γi, and f̃i(t ) denote its velocity, the vis-
cous constant, and the driving force, respectively. As stated
previously, we propose f̃i(t ) as given by the time depen-
dent plus a velocity dependent components f̃i(t ) = [hi(t ) −
αvi] fi, where α is a constant. Note that one recovers the
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standard collisional engine as α = 0 [20,22]. The interaction
between particle and the ith environment is described by the
white-noise stochastic force ξi(t ), satisfying the white-noise
properties:

〈ξi(t )〉 = 0, 〈ξi(t )ξi′ (t
′)〉 = 2γiTiδii′δ(t − t ′), (2)

where Ti is the bath temperature. In order to derive the thermo-
dynamics, let Pi(v, t ) be the velocity probability distribution
with time evolution described by the Fokker-Planck (FP)
equation [29–32]:

∂Pi

∂t
= − fihi(t )

∂Pi

∂v
− ∂Ji

∂vi
, (3)

where Ji is given by

Ji = −βiviPi − γiTi
∂Pi

∂vi
, (4)

where βi = γi + α fi. Note that the term α fi is the new
quantity to be optimized, together with the external force
fi. For simplifying matters, from now on, we shall assume
kB = m = 1.

From the FP equation and by performing the usual bound-
ary conditions in the space of velocities, in which both Pi(v, t )
and Ji(v, t ) vanish as |v| → ∞, the first and second law of
thermodynamics can be derived. Starting with the former, the
time variation of the energy system Ui = 〈Ei〉 is given by
dUi/dt = −(Ẇi + Q̇i ), where Ẇi(t ) and Q̇i(t ) denote the work
per unity of time (power) and heat flux exchanged between the
system and the environment (thermal bath) reading

Ẇi(t ) = − fi〈vi〉(t ), Q̇i(t ) = βi〈v2
i 〉(t ) − γiTi, (5)

respectively. Analogously, time evolution of system entropy
Si(t ) = −〈ln[Pi(vi, t )]〉 is given by

dSi

dt
= 1

γiTi

[∫
J2

i

Pi
dvi + βi

∫
viJidvi

]
, (6)

where the first and second right terms are identified as
the entropy production rate 
i(t ) and entropy flux −�i(t ),
respectively [30–32]. Note that 
i(t ) � 0 (as expected),
whereas �i(t ) can be rewritten in a more convenient way:

�i(t ) = βi

γiTi

[
βi

〈
v2

i

〉
(t ) − γiTi

]
. (7)

Summarizing, the above expressions for thermodynamic
quantities can be calculated from ensemble averages 〈vi〉(t )
and 〈v2

i 〉(t ) = bi(t ) + 〈vi〉2(t ). Since the coupling between ve-
locity and external driving has been incorporated into Eq. (4),
the probability distribution has a similar form to the couplin-
gless case [22] and is a Gaussian:

Pi(v, t ) = 1√
2πbi(t )

exp

(
− 1

2bi(t )
[v − 〈vi〉(t )]2

)
, (8)

in which the mean 〈vi〉(t ) and variance bi(t ) = 〈v2
i 〉(t ) −

〈vi〉2(t ) are time dependent and obey the following equations:

d〈vi〉(t )

dt
= −βi〈vi〉(t ) + fihi(t ) (9)

and
dbi(t )

dt
= −2βibi(t ) + 2γiTi, (10)

respectively. Continuity of Pi(v, t ) at each stroke implies that
Pi(v, τi ) = Pi+1(v, τi ) (for all i = 1, . . . , N). Since the system
must return to the initial state after a complete cycle, it fol-
lows that PN (v, τ ) = P1(v, 0). The above conditions are only
satisfied if 〈vi〉(τi ) = 〈vi+1〉(τi ) and bi(τi ) = bi+1(τi ) (for all
i = 1, . . . , N); together 〈v1〉(0) = 〈vN 〉(τ ) and b1(0) = bN (τ )
and therefore all averages 〈vi〉(t )’s and variances can be solely
calculated in terms of model parameters, that is, from the
driving, temperature reservoirs, coupling α, and the period.
By focusing on the simplest design of an engine composed of
only two strokes, expressions for averages and variances can
be obtained for an arbitrary driving:

〈v1〉(t ) = e−β1t

(
f1F1(t, α) + f2e

β1τ

2 F2(τ, α) + f1F1
(

τ
2 , α

)
e

τ
2 (β1+β2 ) − 1

)
(11)

and

〈v2〉(t ) = e−β2(t− τ
2 )

×
(

f2F2(t, α) + f1e
β2τ

2 F1( τ
2 , α) + f2F2(τ, α)

e
τ
2 (β1+β2 ) − 1

)
(12)

for the mean velocities and

b1(t ) = γ (eβ2τ − 1)(β1T2 − β2T1)e−2β1(t−τ/2)

β1β2(e(β1+β2 )τ − 1)
+ γ T1

β1
(13)

and

b2(t ) = γ (eβ1τ − 1)(β2T1 − β1T2)eβ2τ−2β2(t− τ
2 )

β1β2(e(β1+β2 )τ − 1)
+ γ T2

β2

(14)

for variances, respectively, where F1(t, α) = ∫ t
0 eβ1t ′

h1(t ′)dt ′

and F2(t, α) = ∫ t
τ/2 eβ2(t ′− τ

2 )h2(t ′ − τ
2 )dt ′ are arbitrary func-

tions representing the contribution of time dependent drivings.
The above expressions allow the calculation of all ther-
modynamic quantities. Starting with the work (actually the
power) definition given by the left side of Eq. (5) together
with Eqs. (11) and (12) averaged over a complete period,
its expression in the first and second stages are given,
respectively, by

Ẇ 1 = − f1

τ

∫ τ
2

0
h1(t )e−(γ+α f1 )t

×
(

f1F1(t, α) + f2e
(γ+α f1 )τ

2 F2(τ, α) + f1F1
(

τ
2 , α

)
e

τ
2 [2γ+( f1+ f2 )α] −1

)
dt

(15)
and

Ẇ 2 = − f2

τ

∫ τ

τ
2

h2(t )e−(γ+α f2 )(t− τ
2 )

×
(

f2F2(t, α) + f1e
(γ+α f2 )τ

2 F1
(

τ
2 , α

)+ f2F2(τ, α)

e
τ
2 [2γ+( f1+ f2 )α] − 1

)
dt

(16)
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and, respectively, hold valid for all periods and time dependent
drivings fihi(t )’s. In contrast to collisional engines in which
α = 0 [20,22], they do not present a quadratic dependence on
forces f1 and f2, but reduce to them in such a limit.

Analogously, having expressions for 〈v2
1〉(t ) and 〈v2

2〉(t ),

averages Q̇1 (Q̇2) are obtained as a sum of two terms: Q̇1 =
Q̇1 f + Q̇ f1, f2,T1

(Q̇2 = Q̇2 f + Q̇ f1, f2,T2
); the former component

is given by Q̇1 f = ∫ τ/2
0 〈v1〉2(t )dt/τ [Q̇2 f = ∫ τ

τ/2〈v2〉2(t )dt/τ ]
and accounting to the contribution for heat due to drivings,
whereas the latter Q̇ f1, f2,T1

reads Q̇ f1, f2,T1
= ∫ τ/2

0 b1(t )dt/τ −
γ T1

2 and describes the interplay between strength forces fi’s,
temperatures of reservoirs Ti’s, and α. From expressions for
bi(t )’s, each above component is given by

Q̇ f1, f2,T1
= (e(1+α f1 )τ − 1)(e(1+α f2 )τ − 1)[α( f1T2 − f2T1) + T2 − T1]

2τ (eτ [α( f1+ f2 )+2] − 1)(1 + α f1)(1 + α f2)
(17)

and Q̇ f1, f2,T1
= −Q̇ f1, f2,T2

. Due to the continuity of the prob-
ability distribution, it follows that U1(τ/2) = U2(τ/2) and
U2(τ ) = U1(0) and therefore Q̇1 + Q̇2 + Ẇ 1 + Ẇ 2 = 0, in
consistency with the first law of thermodynamics. Finally,
having Q̇i’s, the steady entropy production is promptly ob-
tained from Eq. (7) and given by Q̇1/T1 + Q̇2/T2.

A. Constant and linear drivings

In order to compare our new ingredient with previous col-
lisional engines [20–22], analysis will be exemplified for the
two simplest kinds of drivings: constant and linear ones. Both
of them have strengths f1 and f2, with the former being time
independent at 0 < t � τ/2 and τ/2 < t � τ , respectively,
whereas the latter is given by

hi(t ) =
⎧⎨⎩γ t, 0 � t < τ/2,

γ (t − τ/2), τ/2 � t < τ.

(18)

Thermodynamic quantities are directly evaluated from
Eqs. (16) and (17). Previous works have shown that both
drivings can be used for projecting the system as an engine, in
which the constant driving is always more advantageous for
enhancing the power output and efficiency and such latter one
substantially decreasing upon the difference of temperature
increases.

B. Efficiency

In several cases, the entropy production assumes the
generic bilinear form JlFl + Jd Fd . It has been used for de-
scribing several models in nonequilibrium thermodynamics,
such as linear stochastic thermodynamics [2,11,33], systems
in contact presenting a single work source and heat source
[34], work-to-work transducers [6,7,35–37], and others. A
common definition of efficiency in such cases is given by the
ratio between entropy production components −Jl Fl/Jd Fd ,
describing the partial conversion of one type of energy, ex-
pressed in terms of a driving force Fd with corresponding flux
Jd into another one, characterized by a load force Fl and flux
Jl . On the other hand, the class of engines we are investigating
can be associated with three thermodynamic forces (two of
them are related to f1, f2 and the third with the difference
of temperatures), implying the usage of the above ratio as a
dubious measure of the system performance for T1 �= T2. For
this reason, we consider a definition of efficiency given by

[13,20,21]

η = − P
Ẇ 1 + Q̇1�(−Q̇1) + Q̇2�(−Q̇2)

, (19)

also expressing the partial conversion of a given amount of en-
ergy under the form of input heat Q̇1�(−Q̇1) + Q̇2�(−Q̇2) <

0 [�(x) being the Heaviside function] plus input work Ẇ 1 <

0 into power output P ≡ Ẇ 2 � 0. Equation (19) reduces to
the previous definition for �T = T1 − T2 = 0 in which output
and input works are related to fluxes as P = −T Jl Fl and
Ẇ 1 = −T Jd Fd [11,13,21,22]. Since realistic engines operate
at finite time, we are going to exploit distinct routes for op-
timizing the system performance for finite τ : by maximizing
η and P with respect to the f2/ f1 and α. Although they can
be directly performed from the expressions for P and η from
Eqs. (16) and (19), respectively, expressions for maximized
quantities may be little instructive, due to the complex inter-
play between α and f2. For this reason, in the next section, we
shall present distinct approaches and reasonings for obtaining
some maximized quantities with respect to α (for fixed ratio
f2/ f1, here undertaken by taking f2 fixed and f1 = 1) and
optimized f2 (for fixed α and f1).

C. Linear approximation for the power output

In order to obtain some insight into the interplay be-
tween α, fi’s, and Ti’s, a linear analysis will be performed
for small α, in which the average P is decomposed in the
following way:

P ≈ P0 + αPα, (20)

where P0 accounts for the average power (calculated at
the second stage) for the couplingless case. According to
Refs. [20,21], P0 can be expressed in terms of Onsager coef-
ficients, P0 = −T2(L21 f1 + L22 f2) f2, where each coefficient
L2i is given by

L22 = m

T2τ (eγ τ − 1)

[ ∫ τ

τ/2
h2(t )e−γ t dt

∫ τ

τ/2
h2(t ′)eγ t ′

dt ′

+ (eγ τ − 1)
∫ τ

τ/2
h2(t )e−γ t

∫ t

τ/2
h2(t ′)eγ t ′

dt ′dt

]
,

L21 = meγ τ

T2τ (eγ τ − 1)

∫ τ/2

0
h1(t ′)eγ t ′

dt ′
∫ τ

τ/2
h2(t )e−γ t dt .

(21)
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In a similar fashion, expressions for the average work in the first stage assume the form Ẇ 10 = −T1(L11 f1 + L12 f2) f1, also
expressed in terms of Onsager coefficients L1i’s given by

L11 = m

T1τ (eγ τ − 1)

[
(eγ τ − 1)

∫ τ/2

0
h1(t )e−γ t

∫ t

0
h1(t ′)eγ t ′

dt ′dt +
∫ τ/2

0
h1(t )e−γ t dt

∫ τ/2

0
h1(t ′)eγ t ′

dt ′
]
,

L12 = m

T1τ (eγ τ − 1)

∫ τ/2

0
h1(t )e−γ t dt

∫ τ

τ/2
h2(t ′)eγ t ′

dt ′. (22)

Reciprocal relations for cross coefficients L12 and L21 are derived when drivings are reversed and indices 1 ↔ 2 exchanged
[21,38]. The linear contribution Pα can also be expressed in the following generic form:

Pα = T2 f2
(
L̃222 f 2

2 + L̃211 f 2
1 + L̃221 f2 f1

)
, (23)

where general expressions for coefficients L̃2 jk’s are listed in Appendix A 1 (A 2) for generic (constant and linear drivings),
respectively. However, in contrast to Onsager ones, the above coefficients L̃i jk’s do not necessarily satisfy the standard reciprocal

relations [20,21,38]. Analogous to Pα , the linear contribution for Ẇ 1α can also be expressed in following form given by
˜̇
W 1α =

T1 f1(L̃111 f 2
1 + L̃221 f 2

2 + L̃112 f2 f1), whose coefficients L̃1 jk’s are also listed in Appendix A 1. From Eq. (23), the optimal force
f2P providing maximum power PP is straightforwardly obtained and given by

f2P = −(L22 + α f1L̃221)

3αL̃222

[
1 −

√
1 − 3α f1L̃222(L21 + α f1L̃221)

(L22 + α f1L̃221)2

]
, (24)

with associate PP reading

PP

T2
= 2(α f1L̃221 + L22)2(α f1L̃221 + L22 −A) − 3α f1L̃222(α f1L̃211 + L21)(3α f1L̃221 + 3L22 − 2A)

27α2L̃2
222

,

respectively, where parameterA readsA =
√

(α f1L̃221 + L22)2 − 3α f1L̃222(α f1L̃211 + L21). Note that one recovers expressions
2 f2P = −L21/L22 and PP = T2L2

21 f1/4L22 as α = 0.

D. Approximate descriptions for maximum efficiencies

Since the average heat components Q̇1 f and Q̇2 f are always
positive, the system solely will receive heat from the ith ther-
mal bath from a temperature difference �T in which Q̇i =
Q̇i f + Q̇ f1, f2,Ti

< 0. Giving that the above condition is always
fulfilled for large �T and by the fact that the power output
P does not depend on the temperatures, the efficiency of
thermal engines for α = 0 always decreases when compared
to its corresponding work-to-work converter ηwtw = −P/Ẇ 1.
However, a coupling between drivings and velocities makes
it possible to (properly) adjust the coupling ensuring a maxi-
mum efficiency. Despite the complex interplay between α and
f1, f2 leading to very cumbersome expressions for maximized
quantities (above all the efficiency), it is possible to predict
optimized expressions for efficiency by means of two simple
reasonings, described as follows: the first is similar to the
previous one in which one assumes the following expansions
for Q̇1 and Q̇2:

Q̇1 = Q̇10 + α
˜̇
Q1α, Q̇2 = Q̇20 + α

˜̇
Q2α. (25)

By inserting the above expressions in Eq. (19) and considering
up to the linear term, the efficiency is also given by η ≈ η0 +
αηα , where η0 and ηα read

η0 = − P0

Ẇ 10 + Q̇10�(−Q̇10) + Q̇20�(−Q̇20)
(26)

and

ηα = Pα − η0[Ẇ 1α + Q̇1α�(−Q̇10) + Q̇2α�(−Q̇20)]

Ẇ 10 + Q̇10�(−Q̇10) + Q̇20�(−Q̇20)
, (27)

respectively. Note that η0 solely depends on zeroth order
quantities (as expected), whereas ηα depends on η0, Ẇ iα’s,
and Q̇iα’s. Maximization of η with respect to f2, providing
f2mE , can be calculated from Eqs. (26) and (27).

Although providing a first insight about the influence of
α, Eqs. (24)–(27) are very cumbersome and rather few are
instructive. Contrariwise, for the case in which the above
approximation (for small α) is not valid, maximization of
efficiency can be carried out by means of a simple argu-
ment, as described as follows: let us consider the situation
in which the power output monotonically increases (this is
promptly verified for the drivings considered here) upon α

being varied. In such a case, the efficiency can be enhanced
by searching for the optimal coupling αE , in which the net ex-
changed heat Q̇i, given by Q̇i f + Q̇ f1, f2,Ti

, vanishes. In certain

cases, the average heat component Q̇ f1, f2,Ti
dominates over Q̇i f

(|Q̇ f1, f2,Ti
| � Q̇i f ). Although this is verified for sufficiently

large |�T | and fixed f1, f2, such a condition can be fulfilled
for other interplay among parameters. Hence, from Eq. (17),
when this is indeed the case, the optimal coupling αE is
given by

αE = T1 − T2

f1T2 − f2T1
. (28)
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(a)

(b)

FIG. 1. For constant (a) and linear (b) drivings, the depiction
of power output P (continuous) and those from a linear analysis
(dashed), where squares correspond to f2P’s ensuring maximum
power PP’s. Parameters: m = τ = γ = 1; f1 = 1.

Note that such an above approximate expression for αE is gen-
eral and expresses the interplay among driving strengths and
temperatures and approaches zero as �T → 0 for finite f1 −
f2. Thus it suggests that forces proportional to the velocity can
increase the efficiency under a suited choice of temperatures
and forces, in which the corresponding maximum efficiency
ηαE , f1, f2,�T reduces to the work-to-work converter expression:

η̄ f2, f1,�T = − P
∗
E

Ẇ
∗
1E

, (29)

with P∗
E = P( f1, f2,�T, τ ) and Ẇ

∗
1E = Ẇ 1( f1, f2,�T, τ )

denoting theP and Ẇ 1 evaluated at α = αE . Note that Eq. (29)
solely depends on f1, f2, τ , and �T . The efficiency can
also be maximized with respect to f2 (for fixed �T ) or �T
(for fixed f2). Although it can be directly carried out by a

(a)

(c) (d)

(b)

FIG. 2. For constant (top) and linear (bottom) drivings, the de-
piction of efficiency η for representative values of α and distinct
�T ’s. In (a)/(c) and (b)/(d), T1 reads T1 = 2.0 and T1 = 1.75, re-
spectively. Squares denote the associate maximum efficiencies (with
respect to the f2). Parameters: m = τ = γ = f2 = 1.

FIG. 3. For constant (top) and linear (bottom) drivings, the de-
piction of power output P in the plane ( f2, α). For each α, red
lines denote the locus ( f2P,PP) of maximum P with respect to f2.
Parameters: m = τ = γ = 1; f1 = 1.
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FIG. 4. For the same parameters of Fig. 2, the efficiency phase diagrams α versus f2 for �T = 0.25 (left) and −0.25 (right) for constant
drivings. Continuous, dashed, and dotted lines correspond to the maximization with respect to f2 (fixed α), α (fixed f2), and approximate
[from Eq. (28)], respectively. “Squares” denote the simultaneous maximization with respect to α and f2.

simultaneous maximization of Eq. (19), an approximate ex-
pression for (simultaneous) maximum efficiency η∗

f1,θ
(θ = f2

or �T ) is obtained by searching for f2 or �T that maximizes
Eq. (29):

η∗
f1,θ

= − P
∗
mE

Ẇ
∗
1mE

, (30)

where P∗
mE = P( f1, θE , τ ) and Ẇ

∗
1mE = Ẇ 1( f1, θE , τ ) denote

the P and Ẇ 1 evaluated at α = αE and f2 = f2E (θ = �T ) or
�T = �TE (θ = f2), respectively.

III. RESULTS

In all cases, analysis will be carried out for constant and
linear drivings and the following parameter choices m = τ =
γ = f1 = 1. Expressions for Onsager and coefficients from
the linear analysis are listed in Appendix A 2. In the first
round of analysis, the influence of α over the power output
P and efficiency η is exemplified for some sets of parameters,

as depicted in Figs. 1 and 2 for constant and linear drivings.
P (Fig. 1) monotonically increases with the absolute value
of α, having this feature captured by the linear analysis for
small α. Consequently, apart from the increase of power as
the absolute value of α increases, there is no optimal coupling
leading to maximum power, implying its maximization solely
with respect to the force f2 in which PP.

The influence of α over the efficiency is more revealing
and exemplified in Fig. 2 for two representative temperature
differences: �T = 0.25 (T1 > T2) and �T = −0.25 (T1 < T2).
In both cases, efficiencies are rather small when α = 0 (cou-
plingless case) and an optimal coupling between driving and
velocities ensures their substantial increases (see, e.g., dashed
lines). Also, efficiency curves behave quite differently with
respect to α = 0. This is due to the influence of parameters
(mainly f2, α, and �T ) on P/Ẇ 1 and the amount of a re-
ceived heat [see, e.g., the denominator from Eq. (19)] and it
is more significant for linear drivings (see, e.g., Fig. 2), where

efficiencies are just smaller [20,22]. While P and Ẇ
∗
1 always

increase with the absolute value of α, there is an optimal

FIG. 5. For the same parameters of Fig. 2, the efficiency phase diagrams α versus f2 for �T = 0.25 (left) and −0.25 (right) for linear
drivings. Continuous, dashed, and dotted lines correspond to the maximization with respect to f2 (fixed α), α (fixed f2), and approximate
[from Eq. (28)], respectively. “Squares” denote the simultaneous maximization with respect to α and f2.
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FIG. 6. Comparison among logarithm plots of αE obtained from
Eq. (28) (dashed lines) and from direct maximization of Eq. (19) for
constant (circles) and linear (stars) drivings. Parameters: T2 = 1.5,
m = τ = γ = 1, f1 = 1, and f2 = −0.75.

coupling αE controlling and decreasing the amount of
“wasted” average heat and thereby providing a larger effi-
ciency. In particular, the optimal coupling αE is positive and
negative for T1 > T2 and T1 < T2, respectively.

For the above set of parameters, a global overview about
the role of α is shown in Figs. 3–5 for heat maps (phase
diagrams) of P and η for linear and constant drivings. As
in Fig. 1, P monotonically increases with the coupling and
providing, for all values of α, optimal f2P’s ensuring maximal
PP (red lines). Contrasting to the power output, in which a
simultaneous maximization of power is not possible, efficien-
cies’ phase diagrams (Figs. 4 and 5) exhibit a central region
in which it is simultaneously maximized. Maximum lines
behave differently, reflecting the distinct dependence between
η with α and f2. They meet at the vicinity of global maximum.
Approximate curves (dotted lines), obtained from Eq. (28),
approach to exact ones (dashed) as �T is raised. They
are always closer to each other for linear than for constant
drivings. The reliability of Eq. (28) is reinforced and com-
plemented in Fig. 6, in which the optimal αE approaches that
obtained from the direct maximization of efficiency as |�T |
rises. Figure 7 compares maximum efficiencies obtained from
direct maximization of Eq. (19) with η̄ f2, f1,�T and η∗

f1,�T ,
given by Eqs. (29) and (30), respectively. Note the excellent
agreement between exact and approximate expressions (de-
viations among curves are almost imperceptible), reinforcing
the search for optimal parameters for maximum efficiencies.
At the vicinity of optimal couplings, they are substantially
larger than η̄ f1,�T = 0.4049/0.0555 and 0.1822/0.0151 (see,
e.g., Fig. 2), obtained for the couplingless constant and linear
cases for �T = 0.25 and 1, respectively.

Finally, the influence of temperature sets is illustrated in
Fig. 8 for constant drivings [similar results (not shown) are
obtained for linear drivings] for T1 = T2 + �T and T2 = 1.
At least for the set of parameters considered, a simultaneous
maximization of efficiency (with respect to �T and f2) is
absent and only the maximization with respect to f2 can be
carried. However, the coupling allows a suitable choice of

(a)

(b)

FIG. 7. For the same parameters from Figs. 4 and 5, the main
panels show efficiency maxima η̄ f2, f1,�T versus f2 for distinct �T ’s
for constant (top) and linear (bottom) drivings, respectively. Inset:
results for the same �T but for T1 = 0.1, 1, 1, and 1.25, respec-
tively. Stars denote the prediction from Eq. (30) for maximized
efficiencies η̄∗

θ, f1
’s. Continuous and dashed lines correspond to exact

and efficiencies evaluated from Eq. (29), respectively.

temperature difference in order to enhance the system perfor-
mance or even project it with a desirable power and efficiency.

IV. CONCLUSIONS

Collisional Brownian engines constitute a very simple
class of machines having thermodynamic properties exactly
obtained, irrespective the driving, temperature of thermal
baths, and the duration of each stage. Notwithstanding, its
performance can decrease substantially depending on the way
it is projected (period, duration of stage, temperature of baths,
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FIG. 8. For constant drivings, the efficiency phase diagram �T
versus f2. Continuous line denotes the maximization with respect to
the f2 (fixed �T ). Parameters: T1 = T2 + �T and T2 = 1.

and drivings). In order to address possible improvements in
such class of systems, we introduced a velocity driving com-
ponent and its influence was analyzed from the framework
of stochastic thermodynamics. Results for constant and linear
drivings reveal that it can be conveniently considered in order
to optimize efficiency, even for large temperature differences

between thermal reservoirs, where the couplingless engine
operates very inefficiently. Distinct maximization routes
were considered and substantial improvements can be gained.
Despite the absence of a simultaneous maximization for the
power output for constant and linear drivings, we underscore
a reliable choice of coupling α for ensuring a compromise
between the power output and efficiency.

As potential perspectives of the present work, it might be
interesting to address other kinds of maximizations, such as
by holding the dissipation fixed as well as the influence of
the coupling between driving and velocity in such cases. The
extension of our collisional approach for massive Brownian
particles also constitutes an interesting extension, in order to
compare the performances of such engines. Finally, recent
results [37,39] have addressed new mechanisms for the se-
lection of certain states, by considering time variations of the
temperature. A simpler alternative might be changing the tem-
perature under a sequential approach, such as those considered
in the present manuscript.
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APPENDIX

1. Coefficients of the linear approximation for small couplings

Below, we list the expressions for coefficients L̃i jk’s from the linear expansion of P and Ẇ 1 for generic drivings h1(t )
and h2(t ):

L̃111 = α

2τT1

∫ τ
2

0
e−γ t

[
F1

(
τ
2 , 0

)
[eγ τ (2t + τ ) − 2t]

(eγ τ − 1)2 + 2tF1(t, 0)

]
dt, (A1)

L̃112 = α e
3γ τ

4 sinh
(

γ τ

4

)
γ 2τ (eγ τ − 1)2T1

{
γ τF1

(
τ

2
, 0

)
+ F2(τ, 0)

[
4 sinh

(
γ τ

2

)
− γ τ

]}
, (A2)

L̃122 = αeγ τ
(
e

γ τ

2 − 1
)
F2(τ, 0)

2γ (eγ τ − 1)2T1
, (A3)

L̃222 = α

2τ (eγ τ − 1)2T2

∫ τ

τ
2

e
1
2 γ (τ−2t )

[
F2(τ, 0)[2t (eγ τ − 1) + τ ] − (eγ τ − 1)2(τ − 2t )F2(t, 0)

]
dt, (A4)

L̃221 = α
[
coth

(
γ τ

4

) − 1
]
sech2

(
γ τ

4

){
F1

(
τ
2 , 0

)[
4 sinh

(
γ τ

2

) − γ τ
] + γ τF2(τ, 0)

}
16γ 2τT2

, (A5)

and

L̃211 = α eγ τ
(
e

γ τ

2 − 1
)
F1

(
τ
2 , 0

)
2γ (eγ τ − 1)2T2

. (A6)

2. Coefficients of the linear approximation for constant and linear drivings

As stated in the main text, by inserting explicit expressions for drivings h1(t ) and h2(t ), Onsager coefficients Li j’s and
coefficients L̃i jk’s can be straightforwardly obtained from Eqs. (21) and (22) and (A1)–(A6), respectively. For constant drivings,
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we arrive at the following expressions:

T1L11 = T2L22 = 1

γ

(
1

2
− tanh

(
γ τ

4

)
γ τ

)
, T1L12 = T2L21 = 1

γ 2τ
tanh

(γ τ

4

)
(A7)

for Onsager ones and

T1L̃111 = T2L̃222 = γ τ
[
sech2

(
γ τ

4

) + 4
] − 16 tanh

(
γ τ

4

)
8γ 3τ

, (A8)

T1L̃122 = T2L̃211 =
[
4 sinh

(
γ τ

2

) − γ τ
]
sech2

(
γ τ

4

)
8γ 3τ

, (A9)

T1L̃112 = T2L̃221 = tanh
(

γ τ

4

)
γ 3τ

(A10)

for the linear contribution of α. Similarly, for linear drivings, their expressions are listed below:

T1L11 = T2L22 = γ τ (γ τ − 2) + 2(4 − γ τ ) tanh
(

γ τ

4

)
8γ 3τ

, T1L12 = T2L21 = (γ τ − 4) tanh
(

γ τ

4

) + γ τ

4γ 3τ
(A11)

for Onsager ones and

T1L̃111 = −γ 2τ 2 + e
3γ τ

2 [γ τ (γ τ − 8) + 24] + eγ τ [γ τ (γ τ − 4) − 24] − 3 e
γ τ

2 [γ τ (γ τ − 4) + 8] + 24

8γ 4τ
(
e

γ τ

2 − 1
)(

e
γ τ

2 + 1
)2 , (A12)

T1L̃122 = T2L̃211 =
(
e

γ τ

2 − 1
)[

2 e
3γ τ

2 (γ τ − 4) + 2 eγ τ (γ τ + 4) + e
γ τ

2 [γ τ (γ τ − 4) + 8] − 8
]

4γ 4τ (eγ τ − 1)2 , (A13)

and

T1L̃112 = T2L̃221 =
[
γ τ + (γ τ − 4) tanh

(
γ τ

4

)]
4γ 4τ

(A14)

for the linear contribution in α.
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