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Connections between efficient control and spontaneous transitions in an Ising model
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A system can be driven between metastable configurations by a time-dependent driving protocol, which uses
external control parameters to change the potential energy of the system. Here we investigate the correspondence
between driving protocols that are designed to minimize work and the spontaneous transition paths of the system
in the absence of driving. We study the spin-inversion reaction in a 2D Ising model, quantifying the timing of
each spin flip and heat flow to the system during both a minimum-work protocol and a spontaneous transition.
The general order of spin flips during the transition mechanism is preserved between the processes, despite
the coarseness of control parameters that are unable to reproduce more detailed features of the spontaneous
mechanism. Additionally, external control parameters provide energy to each system component to compensate
changes in internal energy, showing how control parameters are tuned during a minimum-work protocol
to counteract underlying energetic features. This paper supports a correspondence between minimum-work
protocols and spontaneous transition mechanisms.
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I. INTRODUCTION

Quantifying the dynamics and energetics of a system as it
undergoes a spontaneous transition between metastable states
is of interest to the natural sciences due to the ubiquity of
such activated processes throughout chemistry and biology
[1–3]. The system typically overcomes a free-energetic barrier
separating metastable states in its high-dimensional config-
uration space, requiring collective motion of many degrees
of freedom and heat flow from the environment to increase
the system’s internal energy (in reactions with an energy
barrier). Characterizing the thermodynamics and kinetics of
the collective variables involved in the motion is therefore
of interest [4–7]. A system can also be driven through its
configuration space through time-dependent variation of ex-
ternal control parameters that provide an energetic bias to
(sets of) collective variables. Excess work (work above the
equilibrium free-energy change) is done on the system during
a protocol depending on how the system is driven, mak-
ing it a target for optimization [8,9]. Here, we investigate
the correspondence between driving protocols that minimize
work in the long-duration limit and the spontaneous transi-
tion mechanism through configuration space, hypothesizing
that minimum-work protocols effectively make use of spon-
taneous fluctuations by providing work to each degree of
freedom in accordance with its required heat intake during a
spontaneous transition.

Driving protocols can be implemented in experiment
and simulation [10–15]; coupled with theoretical advances
[16–18], driving protocols are a widely applicable tool for
extracting equilibrium thermodynamic information about a
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variety of microscopic systems. The ability to estimate equi-
librium properties is perhaps surprising since the system is out
of equilibrium throughout the driving protocol, and therefore
kinetic aspects of the system’s response to control-parameter
perturbations are highly relevant [8,18,19].

The excess work on the system during a driving pro-
tocol performed in long duration can be approximated by
linear-response theory [9], yielding a geometry in control-
parameter space with a generalized friction metric that
quantifies the system’s resistance to changes in control param-
eters. This approximation also yields an intuitive description
of minimum-work protocols as geodesics (shortest paths) be-
tween endpoints in control-parameter space that minimize
resistance to driving.

The generalized friction captures local features of the
system’s free energy and dynamic relaxation throughout
collective-variable space; these features are also relevant to
characterizing transient dynamics during a spontaneous tran-
sition path [20–23]. Intuitively, if the system must overcome a
free-energy barrier during the reaction, the spontaneous tran-
sitions are likely to pass through a relatively low-free-energy
region of collective-variable space to reduce heat absorption
during the transient dynamics. It seems similarly intuitive that
a minimum-work protocol would drive the system through
the same low-free-energy region to reduce the work done
that increases the system’s energy. This leads us to hypoth-
esize that protocols designed to minimize frictional resistance
may also drive the system along the same configuration-space
pathways favored by spontaneous transitions. This hypothesis
is supported by Ref. [24], where a minimum-work protocol
designed to invert the magnetization of a large 2D Ising model
showed strong correspondence with the spontaneous transi-
tion pathways characterized by a minimum-free-energy path
[25].
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Theoretical descriptions of minimum-work protocols and
spontaneous transitions differ in several ways. Minimum-
work protocols are performed in a fixed duration with
endpoints defined in control-parameter space, while sponta-
neous transition paths occur in variable duration with fixed
endpoints in configuration space. Protocols exchange work
with the system throughout the protocol and drive it out of
equilibrium, while there is no work performed on the system
during a spontaneous transition that occurs when the system
is at equilibrium.

Nevertheless, the processes share some common features
that suggest deeper connections. Both processes share the
same configuration space, with internal energy coupling
the system’s many degrees of freedom. With an appropri-
ate choice of control parameters, the endpoint distributions
of the protocol can approximate the respective unperturbed
distributions in metastable basins surrounding transition-
path endpoints, providing at minimum a control-parameter
space capable of distinguishing metastable conformations.
Additionally, reweighting observations of the system state
throughout the protocol using excess work allows estimation
of equilibrium properties of the unperturbed system (such as
the potential of mean force) [17,18], which also yields insight
into the spontaneous transition mechanisms [11].

The choice of control parameters and manner of driving
a system affects the efficiency of minimum-work protocols
and estimation of equilibrium properties [26–30], and simi-
larly the choice of collective variables affects the information
that can be gained about a spontaneous transition [4,31,32].
Physically intuitive optimization criteria for characterizing
spontaneous transitions are still in development [5], and we
are interested in whether minimizing work in an appropriately
chosen control-parameter space can provide a thermodynamic
criterion for optimizing paths describing a spontaneous transi-
tion. Ultimately, we aim to find some correspondence between
minimum-work protocols and spontaneous transitions: How
could minimum-work protocols be used to learn about the
spontaneous transition mechanism, and how could the spon-
taneous transition mechanism be used to design efficient
protocols?

We examine the spin-inversion mechanism in a 3 × 3 Ising
model (Fig. 1) [33], comparing the transition mechanism and
its energetic cost during a spontaneous transition and a proto-
col designed to minimize work. We find that the two processes
show similar orders of spin flips and corresponding internal
energy flows to the system, suggesting that designed proto-
cols using the generalized friction metric capitalize on some
important system features that correspond to the spontaneous
transition mechanism.

II. MODEL SYSTEM AND THEORETICAL BACKGROUND

We study a 3 × 3 Ising model with fixed antisymmetric
boundary conditions [33], illustrated in Fig. 1(a). The spins
are ferromagnetically coupled, with spin configuration σ hav-
ing internal energy

Eint (σ) ≡ −J
∑
{i, j}

σiσ j, (1)

all-down configuration all-up configuration

(a)

(b) (c)

FIG. 1. (a) Schematic of 3 × 3 Ising model with nine fluctuat-
ing spins (colors) and 12 fixed boundary spins (gray), shown in
metastable all-down and all-up configurations. Spins are colored ac-
cording to their symmetry type. (b) Change in mean internal energy
(blue), entropy (orange), and free energy (grey) of the system as a
function of reaction coordinate ln[q/(1 − q)] during the transition-
path ensemble. (c) Designed protocol [33] for driving spin inversion
using four magnetic fields corresponding to colors in (a).

where J = 1 kBT is the coupling coefficient for Boltzmann
constant kB and temperature T , σi ∈ {−1, 1} is the orientation
of spin i, and

∑
{i, j} denotes a sum over nearest-neighbor spin

pairs. The probability that the system is in state σ evolves
according to the master equation

dt p(σ ) =
∑
σ ′

Tσσ ′ p(σ ′). (2)

The σ ′ → σ transition rates obey single-spin-flip Glauber dy-
namics [34],

Tσσ ′ = 1

9

1

1 + eβ[Eint (σ)−Eint (σ ′ )] , (3)

with Tσσ = −∑
σ ′ Tσ ′σ . The prefactor is in units of inverse

attempted spin flips and the Glauber acceptance probability
enforces detailed balance [35].

A. Transition-path ensemble for the Ising model

The Ising system has two energetically stable configura-
tions, with spins either all down or all up, which are chosen as
the endpoints of the reaction [Fig. 1(a)]. The spontaneous tran-
sition is described by the transition-path ensemble [36,37],
the set of all trajectories that transit from all down to all up
without visiting either state in between. The transition-path
ensemble is characterized by the committor q(σ ), the proba-
bility that a trajectory initiated from microstate σ reaches the
all-up configuration before returning to the all-down configu-
ration. It can be calculated in discrete systems by solving the
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recursion relation [37]

0 =
∑
σ ′

Tσ ′σq(σ ′), (4)

with boundary conditions q(σd ) = 0 for σd the all-down con-
figuration and q(σu) = 1 for σu the all-up configuration. The
committor projects the state space onto the unit interval,
q(σ ) ∈ [0, 1], and serves as a reaction coordinate describing
the transition, also allowing calculation of various reaction
properties [37,38].

For the Ising system, the transition-state ensemble [set of
configurations with q(σ ) ≈ 0.5] poses an internal-energy bar-
rier (compared to the configuration with q(σ ) = 0) of 8 kBT
and has entropy ≈3 kB, combining to yield a free-energy bar-
rier of ≈5 kBT [Fig. 1(b)]. Due to the system symmetry, there
is no energy difference between reaction endpoints. The mean
first-passage time for the reaction is ≈1890 attempted spin
flips, and the mean transition-path duration is ≈89 attempted
spin flips [38].

The system dynamics in the transition-path ensemble
satisfy modified transition rates [38,39]. A trajectory is ini-
tialized in the all-down configuration σd, then transitions to σ

with probability

pinitial
R (σ) = Tσσd q(σ )∑

σ ′′ Tσ ′′σd q(σ ′′)
, (5)

where the denominator normalizes over all possible tran-
sitions out of the all-down configuration, and subscript R
indicates the reactive transition-path ensemble. Subsequent
transitions in the forward transition-path ensemble obey

T R
σσ ′ = Tσσ ′

q(σ )

q(σ ′)
, (6)

until the system reaches the all-up configuration. These mod-
ified transition rates are used to directly generate an ensemble
of transition paths. The transition-path ensemble has a steady-
state probability distribution,

pR(σ) = π (σ)q(σ)[1 − q(σ )]

pR
, (7)

where

π (σ) = eβ[F−Eint (σ )] (8)

is the equilibrium probability of σ with free energy F =
−kBT ln

∑
σ e−βEint (σ), and

pR =
∑

σ

π (σ)q(σ )[1 − q(σ )] (9)

is the probability a system at equilibrium is currently on
a reactive trajectory, which normalizes the state distribution
[Eq. (7)] during the transition-path ensemble.

B. Minimum-work protocol for Ising model

In addition to the spontaneous transition, we consider driv-
ing the spin inversion using a set of time-dependent applied
magnetic fields h(t ) imposing external energy

Eext (σ, h) = −hT · X (σ), (10)

the product of each magnetic field hi with the total magneti-
zation Xi(σ) of spins it controls. Thus, the total energy is

Etot (σ, h) = Eint (σ) + Eext (σ, h), (11)

the sum of the internal energy Eint (σ) arising from the cou-
pling between spins [Eq. (1)] and external energy Eext (σ, h)
arising from the system-controller coupling [Eq. (10)]. During
a spontaneous transition, the system is in equilibrium and ex-
ternal energy is zero (h = 0), while during a control protocol,
work is done on the system by changing the external energy
through changes in fields h.

The spin magnetizations serve as both collective variables
used to describe the spontaneous transition and as conjugate
forces Xi = −∂Etot/∂hi to the control parameters. The system
magnetization is inverted by changing the magnetic fields
from hi(t = 0) = −0.5 kBT for all i (favoring the all-down
configuration) to hi(t = �t ) = 0.5 kBT (favoring the all-up
configuration).

For long-duration protocols, the excess power to the system
at time t is approximated using linear-response theory [9] as

〈Pex(t )〉� ≈
∑

i j

ḣi(t )ζi j (h(t ))ḣ j (t ), (12)

where subscript � indicates an average over the control pro-
tocol. Here, ζ(h) is the generalized friction metric at h, given
by the integral of the temporal correlation function between
conjugate forces,

ζi j (h) ≡
∫ ∞

0
dt〈δXi(0)δXj (t )〉h. (13)

The generalized friction is a Riemannian metric that pro-
vides a measure of distance between equilibrium ensembles
in control-parameter space, where the mean excess work

〈W ex〉 ≈
∫ �t

0
dt hT(t ) · ζ(h(t )) · h(t ) (14)

is related to the length of the protocol curve in control-
parameter space. This geometric interpretation has impli-
cations for our understanding of minimum-work protocols:
minimum-work protocols in the long-duration limit are
geodesics (shortest paths) between control-parameter end-
points, which implies that they are independent of protocol
duration. The linear-response approximation therefore allows
us to find minimum-work protocols for any protocol dura-
tion sufficiently long that the system is in the linear-response
regime. In previous work [33], we used the string method to
numerically solve the Euler-Lagrange equation for Eq. (14),
which identifies the minimum-work protocol [Fig. 1(c)] that
drives the system using four magnetic fields corresponding
to the four colors in Fig. 1(a), a relatively low-dimensional
control-parameter space that biases all spins while preserv-
ing the symmetry of the boundary spins. Here, we compare
the minimum-work protocol to the spontaneous transition
mechanism.
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FIG. 2. Trajectory ensembles from the minimum-work protocol
and transition-path ensemble. (a) Seven sample trajectories generated
by a minimum-work protocol (orange) and from the transition-path
ensemble (dark blue), projected onto the committor q(σ). The tra-
jectory time is scaled by the mean duration 〈�t〉 of trajectories in
the respective ensemble. (b) Distribution of start and end configura-
tions for trajectories in each ensemble. (c) Distribution of trajectory
durations for each ensemble.

III. TRANSITION MECHANISM FOR SPIN INVERSION

A. Reaction endpoints

The ensemble of system trajectories generated by a
minimum-work protocol are equal in duration and differ in
their start and end configurations, while trajectories making
up the transition-path ensemble have the same endpoints (the
all-down and all-up configurations) but differ in duration, as
illustrated in Fig. 2.

The control parameters at the protocol endpoints are cho-
sen to restrain the system (when at equilibrium) to the
all-down and all-up configurations, respectively. The system
begins the protocol in equilibrium (dominated by the all-down
configuration) but does not reach the equilibrium distribution
by the end of a finite-duration protocol; for the sufficiently
long protocol considered here (�t = 1000 attempted spin
flips [33]), at the protocol’s end the system will be close to
equilibrium and therefore primarily occupy the all-up config-
uration. Figure 2(b) shows that the distribution of committor
values for configurations at the start and end of the designed
protocol of this duration are highly peaked in the q = 0 and
q = 1 states, respectively, indicating that the trajectories gen-

erated by a protocol of this duration overwhelmingly transit
between the reaction endpoints.

B. Reaction coordinate

Characterizing the system trajectory between the protocol
endpoints requires a parametrization of configurations along
the trajectory. The natural one-dimensional parametrization
for the transition-path ensemble is the committor [4,31]; in
contrast, for minimum-work protocols the scaled protocol
duration t/�t ∈ [0, 1] is a natural parametrization since all
trajectories are of equal duration and the control parameters
have the same value at time t for all repetitions of the proto-
col, providing a similar force to the system at that time. We
use both methods of parametrizing the trajectory ensembles,
analyzing trajectories as a function of trajectory time and as a
function of the committor.

We divide the range of committor values into discrete bins,
grouping together all configurations from each trajectory that
fall in the same bin. Since the committor typically increases
rapidly around an energy barrier [40], bins spaced linearly in
the committor coordinate tend to underemphasize the varia-
tion of configurations at the start and end of the transition
mechanism. To make this variation more visible, we use a
nonlinear transformation of the committor:

f (σ) = ln
q(σ )

1 − q(σ )
. (15)

Such an invertible transformation of the committor does not
affect the information contained in the one-dimensional co-
ordinate, so f (σ) remains a sufficient reaction coordinate for
characterizing reaction details [39].

The average of arbitrary observable A at transformed com-
mittor value f0 is

〈A〉 f0 = 〈A 1 f0 ( f )〉
〈1 f0 ( f )〉 (16)

for the indicator function

1 f0 ( f ) =
{

1 f ∈ [ f0 ± � f /2)

0 otherwise
(17)

that selects states in the bin of width � f centered at f0. Angle
brackets denote an average over all states in the appropriate
trajectory ensemble,

〈A〉 = 1

Ntraj

Ntraj∑
n=1

1

M (n)

M (n)∑
m=0

A(n)(tm), (18)

for Ntraj trajectories in the sample, M (n) attempted spin flips in
the nth trajectory, and A = A(n)(tm) at time tm during the nth
trajectory.

We also use the scaled trajectory time τ0 ∈ [0, 1] to
parametrize the ensembles, the proportion t/�t of time
elapsed in the current trajectory of duration �t . The con-
ditional mean in each bin is first determined for a single
trajectory:

〈A(n)〉τ0 =
∑M (n)

m=0 A(n)(tm)1τ0 (tm/�t )∑M (n)

m=0 1τ0 (tm/�t )
. (19)

064124-4



CONNECTIONS BETWEEN EFFICIENT CONTROL AND … PHYSICAL REVIEW E 106, 064124 (2022)

1 2 3

4 5 6

7 8 9

(a) (b)

FIG. 3. (a) Symmetry operations for 3 × 3 Ising model: a hori-
zontal reflection, a vertical reflection, and a 180o rotation. (b) Color
coding for nine different spin types.

This mean is then averaged over all trajectories to ensure
that longer trajectories with more states in each bin do not
dominate the mean [41]:

〈A〉τ0 = 1

Ntraj

Ntraj∑
n=1

〈A(n)〉τ0 . (20)

This averaging ensures that each trajectory has equal weight
in the ensemble average, despite the variety of trajectory du-
rations in the transition-path ensemble [Fig. 2(c)].

C. Symmetry-breaking of trajectories

The 4D minimum-work protocol preserves the symmetry
imposed by the boundary conditions, but there is no guarantee
that the transition-path ensemble preserves this symmetry.
We therefore perform symmetry operations (Fig. 3) on each
trajectory to resolve differences in the flip timing of spins
of the same color that would otherwise be obscured by the
system’s underlying symmetry.

For each trajectory, spins are initially ordered according to
the proportion of time spent in the up orientation, where �i is
an integer indicating the order in which spin i flips during the
trajectory. A symmetry operation is chosen that minimizes∑

i∈[1,2,4]

�i −
∑

j∈[6,8,9]

� j (21)

to generally place spins that flip earlier in the trajectory in
the upper left corner and spins that flip later in the lower right.
[Numbers in each summation indicate the corresponding spins
in Fig. 3(b).] The chosen symmetry operation is applied to
the entire trajectory, then mean properties of each spin are
averaged over all trajectories.

D. Transition mechanism

Figure 4 shows the mean state of each spin set during
the 4D fully optimized protocol and during the transition
path as parameterized by the scaled transition-path time and
transformed committor. The two methods of parametrizing the
reaction show qualitative similarities in the timing of changes
to each spin’s mean state. The mean system state during the
4D fully optimized protocol and during the transition-path
ensemble show similar characteristics. In general, the green

FIG. 4. Mean magnetization of each spin [colors in Fig. 3(b)] at
(a), (c) scaled trajectory time t/�t and (b), (d) transformed com-
mittor ln[q/(1 − q)] during the (a), (b) minimum-work protocol and
(c), (d) transition-path ensemble.

spins (which are initially energetically frustrated due to the
adjacent boundary spins of opposite sign) flip relatively early
in both processes (i.e., cross zero average magnetization for
t/�t < 0.5 and ln[q/(1 − q)] < 0), and the blue spins (which
end in an energetically frustrated orientation) flip relatively
late. The red and black spins flip throughout the middle of the
protocol.

However, the finer details of the transition mechanism dif-
fer between the transition-path ensemble and minimum-work
protocol. In the minimum-work protocol, both green spins flip
early, then all red and black spins flip, then finally both blue
spins. Spins in the same spin set flip at approximately the same
time, reflecting the symmetry of the driving protocol. In con-
trast, the transition-path ensemble shows symmetry breaking
for spins in the same spin set: a green and red spin flip first;
followed by a second red spin; then the second green, first
blue, and black spins; then the third red spin; and, finally, the
fourth red and second blue spins.

The differences in the detailed mechanisms are likely due
to the constraint on driving in the 4D control parameter space
where, e.g., all four red fields are changed in the same way
throughout the protocol. With this constraint, it is not possible
for the protocol to drive one spin to the up orientation inde-
pendently of other spins in the same spin set. The resulting
protocol in the 4D space is therefore symmetric in the identity
of each of the spins, whereas this symmetry is broken in
the transition-path ensemble. However, the general feature of
green spin(s) flipping early and blue spin(s) flipping late is
preserved in both processes, reflecting the bias imposed by the
fixed boundary spins that affects both the geometry of control-
parameter space and the spontaneous transition mechanism.

Figure 5 shows the overall order of spin flips during the
trajectory by plotting the distribution of the spin-flip order
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FIG. 5. Distribution of spin-flip order �i for each spin type during
the (a) minimum-work protocol and (b) transition-path ensemble.
Each histogram shows the distribution of the spin-flip order for a
given spin, with spins in the same set separated based on their
flipping order in the trajectory. Colors of each histogram correspond
to spins in Fig. 3(b).

�i of each spin type. The minimum-work protocol preserves
the order across all trajectories, with both green (blue) spins
flipping first (last), and red and black spins all flipping in
between. [The symmetry operations that attempt to place the
first spin flips in the upper-left corner and last spin flips in
the bottom right does not accomplish this perfectly for the
minimum-work protocol: in approximately 20% of trajecto-
ries, the light green (light blue) spin flips before the dark green
(dark blue).]

The transition-path ensemble spin-order distributions show
higher diversity. The upper-left red and green spins pre-
dominantly flip first, and the lower-right blue and red spins
predominantly flip last, but the order of other spins is more
variable. This indicates that there are many paths taken (with
significant probability) with differing spin-flip orders. It is
possible that the transition-path ensemble mechanism in this
system cannot be characterized by a single ordering of spin
flips, and instead some other physically intuitive collective
variables may better summarize the variety of transition paths.

IV. ENERGY FLOWS

A. Theoretical description

Control protocols produce changes in the system configu-
ration by doing work. Transition paths overcome an energy
barrier by waiting for a sequence of fluctuations from the
environment that provide the necessary energy as heat to the
system. It seems intuitive that if the system must overcome
the same internal energy barrier while changing between
collective-variable endpoints, then a good control protocol
would provide this energy to the system as work rather than
waiting for the appropriate (rare) thermal fluctuations from the
environment, essentially flattening the total energy landscape
along the path the system takes through configuration space.
Here, we analyze the energy flows into the system during
both processes. Note that the equilibrium ensemble has no
net heat flow; however, the ensemble of forward transition

paths breaks time-reversal symmetry (the time reverse of each
forward transition path is a reverse transition path that is not
included in the calculation) and so permits net heat flow.
Analyzing energy flows in the transition-path ensemble has
been discussed previously [42,43], where energy flows are
shown to be helpful for determining collective variables that
may be relevant to the reaction and analyzing their role in the
mechanism.

The heat flow to the system is the total energy change when
the system changes state. For a transition path, the heat flow
is the change in internal energy,

QR = Qint (22a)

= �Eint, (22b)

while the heat flow for a control protocol changes both the
internal [Eq. (1)] and external energy [Eq. (10)]:

Q� = Qint + Qext (23a)

= �Eint + �Eext. (23b)

Control protocols and transition paths share the internal-
energy landscape Eint. Therefore, we analyze changes in
internal energy during both processes to better understand
how the system overcomes the (fixed) internal-energy barrier.
Additionally, since we hypothesize that the control parameters
provide the necessary energetic bias to push the system into
high-internal-energy configurations, we calculate the change
in external energy for each spin and compare to the changes
in internal energy during the minimum-work protocol.

Since the single-spin-flip dynamics are multipartite (where
only one spin flips in a given time step while all others remain
stationary) [44,45], the total heat flow can be split into contri-
butions from each spin to better understand the energetic costs
associated with each spin’s dynamics during the mechanism.
The mean heat flow to spin σi during a trajectory is

〈Qi〉 f0 = 1

Ntraj

Ntraj∑
n=1

M (n)−1∑
m=0

Qi
σ

(n)
m+1,σ

(n)
m

1 f0

(
1

2
[ f (tm+1) + f (tm)]

)
,

(24a)

〈Qi〉τ0 = 1

Ntraj

Ntraj∑
n=1

M (n)−1∑
m=0

Qi
σ

(n)
m+1,σ

(n)
m

1τ0

( 1
2 [tm+1 + tm]

�t

)
(24b)

where Qi
σ

(n)
m+1,σ

(n)
m

is the heat flow (Eq. (22) for the transition-

path ensemble and Eq. (23) for the minimum-work protocol)
due to spin i flipping in step tm → tm+1 during the nth tra-
jectory (equaling zero if spin i does not flip). If heat flow is
positive into spin i, i.e., 〈�Ei

int〉 > 0, this suggests that spin i
flipping primarily activates the system towards the energy bar-
rier, while 〈�Ei

int〉 < 0 implies that flipping of spin i primarily
relaxes the system to the product [42].

B. Energy flows to spins

Figure 6 shows the mean heat flow during the minimum-
work protocol and during a transition path. When the system
moves during the minimum-work protocol, some of the heat
flow changes internal energy and some changes external en-
ergy [Figs. 6(a) and 6(b)]. The change in internal energy
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FIG. 6. Heat flow to each spin during the minimum-work protocol and the transition-path ensemble. (a), (b) External heat flow β〈Qi
ext〉

(dashed) and internal heat flow β〈Qi
int〉 (solid) due to magnetization change in σi during the minimum-work protocol as a function of (a) scaled

trajectory time t/�t and (b) transformed committor ln[q/(1 − q)]. (c), (d) Internal heat flow β〈Qi〉R due to magnetization change in σi during
the transition-path ensemble as a function of (c) scaled trajectory time t/�t and (d) transformed committor ln[q/(1 − q)].

for the green spins is positive during the first half of the
protocol, for the blue spins is negative during the second half
of the protocol, and for red and black is zero throughout
the protocol. The changes in internal energy for the blue
and green spins are compensated by changes in the external
energy: the external energy decreases on average when green
spins flip (increasing the internal energy) and increases on
average when blue spins flip (decreasing internal energy).
This demonstrates how external energy is provided to the sys-
tem, allowing it to access high-internal-energy configurations
during the protocol. When control parameters do work, they
change only the external energy; therefore, the energetic bias
driving the system to access high-internal-energy configura-
tions is provided by control parameters. Additionally, spins
of the same type have nearly identical energy flows during
the protocol, again reflecting the symmetry of the control
parameters.

Figures 6(c) and 6(d) show the heat flow (change in
internal energy) during the transition-path ensemble for
both scaled transition-path time and transformed committor.
The symmetry-breaking observed in the reaction mechanism
(Fig. 4) is also reflected in the changes in internal energy dur-
ing the transition path. The first green and first red spins take
in energy on average early in the transition path, bringing the
system out of the all-down configuration into higher-internal-
energy configurations. Similarly, at the end of the transition
path, the second blue and last red spin release energy as the
system reaches the low-internal-energy all-up configuration.
Throughout the middle of the protocol, the other spins on
average take in or release heat. In general, if a spin flips in
the first half of the trajectory, the heat flow is positive; if

it flips in the second half of the trajectory, the heat flow is
negative.

The heat flow during the transition-path ensemble also
demonstrates differences in how the scaled transition-path
time and transformed committor provide information about
the mechanism. While the mean state in these coordinates
looks qualitatively similar (Fig. 4), it is harder to visualize
the heat flows using the scaled transition-path time than the
transformed committor. The heat flow into the system during
the first step out of the all-down configuration and the heat
flow out of the system during the final step into the all-up
configuration inevitably occur in the first and last bins of the
scaled transition-path time, leading to heat flow being highly
peaked at these times. Throughout the middle of the transition
path, heat flow is less than at the start and end for two rea-
sons: First, some of the internal-energy changes for transitions
throughout the trajectory are zero and thus do not contribute
to the heat flow; second, linearly rescaling the transition-path
time can result in a specific spin flip occurring at a wide range
of scaled transition-path times irrespective of its flip order
in the trajectory, which spreads out the heat flow associated
with any given spin flip over multiple scaled-trajectory-time
bins. In contrast, the transformed committor groups together
configurations with similar reaction progress independent of
the time that the system takes to reach the state in a given
trajectory, and therefore heat flows to the different spins hap-
pen at distinct values of the transformed committor. For these
reasons, parametrizing system properties in the transition-path
ensemble using the transformed committor gives more insight
than the scaled trajectory time: the committor is a natural
measure of the system’s progress between reaction endpoints.
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V. DISCUSSION

We undertook the first systematic comparison of
minimum-work protocols, determined by the generalized
friction metric, and spontaneous transition paths in
collective-variable space. We found intuitive ways to compare
the two conceptually different processes that reveal qualitative
similarities. We have investigated the transition mechanism
for spin inversion in a 3 × 3 Ising model during the fully
optimized 4D protocol and during a spontaneous transition
path. During the minimum-work protocol, work is done on
the system, which provides an energetic bias that drives
the system over the energy barrier. In the transition-path
ensemble, the system must wait for appropriate fluctuations
of heat from the environment to overcome the same barrier.

The minimum-work protocol shows a clear transition
mechanism, with both green spins (initially frustrated) tak-
ing in energy as they flip first, red and black spins flipping
throughout the middle of the protocol with minimal energetic
cost, and finally the blue spins (frustrated in the final configu-
ration) flipping and releasing energy. This ordering preserves
the symmetry of different spin types and is conserved across
all trajectories (Fig. 5). The transition-path ensemble shows
a wider diversity of transition paths that break the underlying
symmetry of spin types. The first two spin flips are usually one
green and one red spin, taking in energy. The next five steps
have many orders of spin flips and the final two steps involve
flipping a red and blue spin, releasing heat.

The internal energy barrier of 8 kBT is consistent between
the two processes, but the overall manner in which the system
overcomes the barrier differs. A significant factor affecting
the comparison is the constrained symmetry of the 4D proto-
cols, which prevents the controller from pushing on one spin
differently than its symmetric counterpart(s). The transition-
path ensemble shows symmetry breaking between spins of
the same type, in both the spin-flip order and the energetic
cost. To recapitulate this symmetry breaking during control
requires a higher-dimensional protocol. The minimum-work
protocol in 9D space is too computationally expensive to
compute using the same methods used to generate the 4D
fully optimized protocol. Minimum-work protocols using the
linear-response approximation in higher-dimensional spaces
have been computed (e.g., a 100D protocol in Ref. [24]), but
under the assumption that relaxation time is constant through-
out control-parameter space so that the friction metric can be
approximated as proportional to the force covariance matrix,
significantly reducing computational cost. The assumption of
constant relaxation time throughout control-parameter space
does not hold for this system.

It is also interesting to compare our results in the 3 ×
3 Ising model with previous results in an analogous but
larger system [24,25]. The minimum-work protocols for both
systems are qualitatively similar, with fields near initially
anti-aligned edges (for green spins in our model) flipping
early in the protocol and fields near initially aligned edges
(for blue spins) flipping later in the protocol (the constraint
on our control-parameter space is well-suited to reproducing
the same mechanism in the smaller model). The spontaneous

transitions in our small model are qualitatively similar to the
minimum-work protocol despite variation in spins of the same
type; in the larger model, the correspondence is even stronger,
with both the minimum-work protocol and spontaneous tran-
sition path flipping all symmetrically situated spins at the
same time.

The choice of control parameters and their ability to effect
change in collective variables that are relevant to describing
the reaction mechanism is an important factor in the com-
parison. The 4D protocol studied here cannot reproduce the
dynamics in the transition-path ensemble because some of
the relevant information is coarse grained. The Ising model
has 29 = 512 configurations, but only 168 are unique under
the symmetry operations. Each of these has a unique com-
mittor value, indicating that the specific geometry of each
state is relevant to parametrizing the committor. On the other
hand, the 4D magnetization vector (the conjugate force for
the control parameters) has only 5 × 3 × 3 × 2 = 90 unique
values, representing the possible respective magnetizations of
the collections of red, green, blue, and black spins. Thus,
there is loss of information about the transition mechanism
in the 4D collective-variable space. This information loss is
analogous to the construction of, e.g., a free-energy surface in
a low-dimensional collective-variable space; a poor choice of
collective variables may inaccurately reproduce free-energy
barriers and transition pathways, yet some relevant informa-
tion about the transition mechanism can still be gleaned from
such studies. Choosing control parameters that drive all col-
lective variables that are relevant to the reaction would allow
a closer comparison with the transition-path ensemble.

The minimum-work protocol seems to drive the system
through a specific set of configurations, providing a clear
single transition mechanism and accompanying energy flow.
In contrast, for this system the transition-path ensemble has
a variety of transition mechanisms which makes it difficult to
identify any one dominant path. In other model systems where
the transition-path ensemble is such that reactive trajectories
tend to follow the same path (i.e., lie in a “transition tube”)
and control parameters are chosen to push on the relevant col-
lective variables to describe the transition (i.e., calculate the
committor), a stronger correspondence may be observed. Sim-
ilar comparison of minimum-work protocols in other model
systems and with different functional forms of the external
energy would be valuable for further elucidating the con-
nections between efficient control and spontaneous transition
paths.
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