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Performance of optimal linear-response processes in driven Brownian motion far from equilibrium
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Considering the paradigmatic driven Brownian motion, we perform extensive numerical analysis on the per-
formance of optimal linear-response processes far from equilibrium. We focus on the overdamped regime where
exact optimal processes are known analytically and most experiments operate. This allows us to compare the
optimal processes obtained in linear response and address their relevance to experiments using realistic parameter
values from experiments with optical tweezers. Our results help assess the accuracy of perturbative methods in
calculating the irreversible work for cases where the exact solution might be difficult to access. For that, we
present a performance metric comparing the approximate optimal solution to the exact one. Our main result is
that optimal linear-response processes can perform surprisingly well, even far from where they were expected.

DOI: 10.1103/PhysRevE.106.064123

I. INTRODUCTION

Finite-time thermodynamic processes are ubiquitous. They
are the way we control real-world systems and their environ-
ments [1–5]. However, the second law of thermodynamics
states that nonequilibrium processes have an unavoidably
higher cost than their quasistatic counterparts. Therefore, a
major goal in science and engineering is understanding and
searching for the minimal waste of resources to achieve a
predetermined task. This leads to the fundamental problem of
efficiency: finding the finite-time process with the minimum
possible cost [6].

Taken in its full generality, the problem of finding opti-
mal finite-time processes is a tough one, with few examples
where exact solutions are known. A paradigmatic case where
such solutions exist is the driven Brownian motion [7,8].
Its relevance is manifested by the number of experiments to
test several different nonequilibrium phenomena. Using col-
loidal particles or beads trapped by optical tweezers, driven
Brownian motion has been used to address fluctuation theo-
rems [9–11], heat engines [12–14], feedback processes [15],
Maxwell’s demons [16], and Landauer’s principle [17–19].

It seems natural to expect that the general features of the
physics of optimal finite-time processes in driven Brownian
systems might shed light on more complicated systems. As
mentioned, exact analytical expressions for optimal processes
are known in this case [7,8]. However, they present unex-
pected features such as jumps and sharp peaks that have
been partially understood physically [20] and represent a real
challenge for experimental implementation. Such counter-
intuitive characteristics have been reproduced by numerical
approaches based on optimal control [21–23], proving to be
robust features [24,25]. However, this has not clarified the role
of unexpected jumps and peaks in the optimal processes.
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At the same time, perturbative approaches have been de-
veloped to provide approximate optimal finite-time protocols.
They express the energetic cost of a given finite-time pro-
cess in terms of functionals of the corresponding protocol,
which are specific for certain regimes. If, on the one hand,
these formulations restrict the optimization problem to limited
nonequilibrium regimes, on the other hand, they provide a
better physical intuition about the energetic cost through the
quantities appearing in the derived functionals. Among these
perturbative formulations, the so-called geometric approach
has attracted considerable attention in the last decade [26–41].
It has been applied to different nonequilibrium situations in
biophysics [34,36,39], magnetic systems [32,33,38], heat en-
gines [37,42], and solid-state physics [43]. It also has been
extended to quantum systems [30,35]. In this approach, the
energetic cost is written as the time integral of a Lagrangian,
understood as a thermodynamic metric [44–46]. The optimal
finite-time processes, then, have the interpretation of being the
corresponding geodesics.

Here, we show that the perturbative approach derived in
Ref. [47] performs quite well beyond its expected range
of validity, while the performance of the geometric ap-
proach, despite its relevance, is generally worse in the far
from equilibrium region. Taking driven Brownian motion in
the overdamped regime as a benchmark, we compare the
performance of exact and approximate optimal protocols ob-
tained from either Ref. [47] or the geometric approach and
present it using realistic numbers, motivated by current ex-
periments. Our extensive numerical analysis shows a clear
advantage of the perturbative formulation in describing the
optimal energetic cost far from equilibrium within a range
of experimentally relevant values of the parameters involved.
Additionally, the optimal protocols of Ref. [47] clearly con-
sist of continuous and smooth versions of the exact optimal
protocols derived in Ref. [7]. Therefore, in addition to being
very attractive for experimental implementations, these ap-
proximate optimal protocols show that even smooth but fast
changes at the right places of the process consist of a good (but
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unexpected) optimization strategy far from equilibrium. This
fact supports the claim that the perturbative approaches, in
contrast to optimal control numerical methods, can potentially
increase our physical understanding of optimal nonequilib-
rium processes.

We try to keep the presentation self-contained, so the
manuscript is organized as follows. In Secs. II and III, we
establish notations reviewing the standard theoretical descrip-
tion of Brownian motion and its corresponding stochastic
thermodynamics, respectively. In Sec. IV, we rederive the
exact optimal protocols [7] for driven Brownian motion in the
overdamped regime and define the performance metric that
we test numerically. In Sec. V, we present the basic elements
of the geometric approach applied to driven Brownian motion
and derive the corresponding optimal protocols, which we use
later in our performance analysis. In Sec. VI, we obtain fast
but weak optimal processes using the approach of Ref. [47]
and obtain their performance far from equilibrium. Finally,
we give our final remarks in Secs. VII and VIII.

II. DESCRIPTION OF BROWNIAN MOTION

A. Langevin equation

If x(t ) is the position at time t of a small particle of mass
m subjected to a potential V (x) and immersed in a liquid with
friction coefficient γ at temperature T , the equation describ-
ing the particle’s motion is given by

m
d2x(t )

dt2
= − d

dx
V [x, λ(t )] − γ

dx(t )

dt
+

√
2kBT γ ξ (t ), (1)

which is known as the Langevin equation. We denote by λ(t )
a possible time dependence through a control parameter. The
last term on the right-hand side, ξ (t ), is the stochastic term.
It describes a stochastic force modeled as a random Gaussian
white noise with zero mean. Mathematically, this corresponds
to

ξ (t ) = 0 (2)

and

ξ (t )ξ (t ′) = δ(t − t ′). (3)

The overbar denotes averages under different realizations of
the white noise.

B. Simulations: Setup and realistic parameters

Optical tweezers are versatile tools used to trap and ma-
nipulate microscopic particles [48–50], from single atoms to
macromolecules like DNA/RNA, up to living cells, and a
wide range of colloidal particles [4,10,12,13].

Motivated by current experiments using optical trapping
and dynamical control to test and explore ideas of nonequi-
librium thermodynamics [51–53], we performed numerical
simulations of a trapped spherical colloidal particle immersed
in water at room temperature, using standard numerical tools
[54].

For sufficiently large colloidal particles (typically with a
radius r in the micrometer range) near the focus of a Gaussian
laser beam, the confining optical potential near the focus can

TABLE I. Parameters used in the numerical simulations. These
are typical values in optical tweezers experiments with colloidal
particles [49].

Physical quantity Representation Value

Particle’s radius r 1 μm
Particle’s density ρ 2.65 g/cm3

Particle’s mass m 11 pg
Friction coefficient γ 1.89×10−8 Ns/m
Medium’s temperature T 300 K
Initial trap stiffness κ 1 pN/μm

be safely approximated by a simple harmonic potential,

V (x, κ ) = κ (x − xc)2

2
, (4)

where κ represents the trapping (stiffness) constant, and xc is
the position of the trap center. The values of the other relevant
parameters in Eq. (1) are shown explicitly in Table I. These are
realistic values commonly used in experimental setups, and
the main results of this present work are obtained using these
values, except where it is mentioned otherwise.

We stress that the values of parameters listed in Table I lead
to overdamped Brownian motion. This is an important point
since the exact optimal protocols we will consider in Sec. IV
are obtained in this regime and will be used as our benchmark.
Nevertheless, our numerical simulations are performed using
Eq. (1), which includes the inertia term. This choice is justified
because inertia is indeed always present in experiments, and
it may play a role even in the overdamped regime when the
processes become fast enough, as those considered in Sec. VI.

III. STOCHASTIC THERMODYNAMICS
OF DRIVEN BROWNIAN MOTION

In the late 1990s, Sekimoto [55] showed that work and heat
can be associated with individual trajectories of a Brownian
particle. In our case, by varying the stiffness parameter κ or
the center position xc in time, the expression of the average
work performed during the process is

〈W 〉 =
∫ τ

0
dt

dλ(t )

dt

〈
∂V (x, λ)

∂λ

〉
, (5)

where λ(t ) denotes a control parameter varied according to a
protocol of duration τ . The symbol 〈.〉 denotes an average over
many microscopic realizations with initial conditions sampled
from an equilibrium distribution.

In the previous expression for 〈W 〉, the potential V could
be substituted by the Hamiltonian H of the system, and the
protocol λ(t ) could be rewritten as

λ(t ) = λi + (λ f − λi )g(s), (6)

where s = t/τ and g(s) describes the time change of λ(t ) with
boundary conditions: g(0) = 0, and g(1) = 1.

Here, we focus on the harmonic potential with time-
dependent stiffness, λ(t ) = κ (t ). Considering xc = 0, we have

064123-2



PERFORMANCE OF OPTIMAL LINEAR-RESPONSE … PHYSICAL REVIEW E 106, 064123 (2022)

the following time-dependent potential:

V [x, λ(t )] = λ(t )x2

2
. (7)

The values chosen for λi, f , corresponding to the initial and
final values, are motivated by the experimental implementa-
tion in optical tweezers. For values too small, the particle may
escape the detection region during the experiment, while for
values too large, the variation of the particle’s position may
become difficult to detect.

We emphasize that we will restrict ourselves to processes in
which the particle starts in equilibrium, and the initial and final
values of λ together with the duration τ of the protocol are the
only boundary conditions. This contrasts with other works in
the literature (see, for instance, Refs. [25,56]) in which a final
equilibrium state is given as a boundary condition. Hence,
in this study, the system is not in thermal equilibrium at the
end of the considered protocols. However, the relaxation that
happens afterwards, keeping λ fixed at λ f , does not change
the work performed since only heat is exchanged at this point.
Thus, our optimization problem seeks an answer to the fol-
lowing problem: how to spend the minimal amount of energy
along a finite-time variation of λ from λi to λ f in a time inter-
val τ given that the system of interest is initially in equilibrium
with λ = λi. We remark that these are the boundary conditions
often used in experiments such as those in Refs. [12,57].

Considering the time-independent version of potential (7),
the Langevin equation, Eq. (1) can be solved to determine the
dependence of the average values with time [58,59]. For a
given out-of-equilibrium initial condition, the averages have a
characteristic time scale that roughly measures the relaxation
time τR to the thermal equilibrium values. A careful analysis
shows that the relaxation time is τR = γ /(2κ ) (see Sec. V for
the details) and using the values in Table I, we find that it is
equal to 9.4 ms for κ = 1.0 pN/μm. This natural time scale
allows the classification of the protocols into slow or fast.
Given an initial trap stiffness, protocols with τ � τR drive the
system to regions far from equilibrium and are considered fast,
while for protocols with τ � τR the system remains close to
equilibrium throughout the process and are considered slow.

As the process approaches the quasistatic limit, the aver-
age work tends to the Helmholtz free-energy difference 
F
between the final and initial equilibrium states, in agreement
with the Kelvin-Planck statement of the second law of ther-
modynamics [60],

〈W 〉 − 
F ≡ 〈Wirr〉 � 0, (8)

where 〈Wirr〉 is the average excess (irreversible) work paid in
a finite-time process.

The expression for F (λ) can be obtained using statistical
mechanics, and it is given by

F (λ) = −kBT ln Z

= −kBT ln
∫

exp[−H (�, λ)/kBT ]d�, (9)

where

Z =
∫

exp[−H (�, λ)/kBT ]d� (10)

is the partition function, H (�, λ) = p2/2m + V (x, λ) denotes
the Hamiltonian of the Brownian particle (which includes
kinetic energy due to what was explained in Sec. II), and �

represents a point (x, p) in phase space. For the harmonic
potential with time-dependent stiffness, the free-energy dif-
ference reads


F (λ) = kBT ln

⎛
⎝

√
λ f

λi

⎞
⎠, (11)

where we used Eqs. (4) and (9), and λi and λ f are the initial
and final values of the stiffness parameter, respectively, as
stated before.

We stress that the particle is out of equilibrium at the
end of the protocols considered here. Thus, the free-energy
difference just presented refers to the final equilibrium state
that the particle will attain after equilibration at the end of the
protocol.

IV. EXACT OPTIMAL PROTOCOLS
IN THE OVERDAMPED REGIME

In some cases, it is possible to derive exact expressions
for the optimal protocols performed in driven overdamped
Brownian motion. In this section, we review the main steps
of the derivation [7] since they will be our benchmark for ana-
lyzing the performance of optimal linear-response processes.
Therefore, following Ref. [7] and restricting ourselves to the
change in the stiffness parameter, Eq. (5) becomes

〈W 〉 = 1

2

∫ τ

0
dt

dλ

dt
〈x2〉 = 1

2

∫ τ

0
dt

dλ

dt
w(t ), (12)

where w(t ) = 〈x2〉. The time evolution of w(t ) can be ob-
tained multiplying the corresponding Fokker-Planck equation
by x2 and integrating over x [7]. This yields

dw

dt
= −2λ

γ
w + 2kBT

γ
. (13)

This differential equation can be solved given an initial
condition w(0). Integrating Eq. (12) by parts, we obtain

〈W 〉 = 1

2

(
λ(t )w(t )

∣∣∣∣
τ

0

−
∫ τ

0
λ

dw(t )

dt
dt

)
. (14)

Isolating λ in Eq. (13) and substituting the result in the
previous expression, we rewrite Eq. (14) as

〈W 〉 = 1

2
[w(t )λ(t ) − kBT ln w(t )]

∣∣∣∣
τ

0

+ γ

4

∫ τ

0

1

w

(
dw

dt

)2

dt .

(15)

To find the optimal protocol, one can first minimize the
integral on the right-hand side. The minimization of this func-
tional corresponds to solving the Euler-Lagrange equation(

dw

dt

)2

− 2w
d2w

dt2
= 0, (16)

whose solution is

w(t ) = c1(1 + c2t )2 . (17)
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FIG. 1. Exact optimal protocol λ∗(t ) given by Eq. (20), and
rewritten as λ∗(s) = λi + 
λ g∗(s), as a function of s = t/τ for
different values of τ . The initial and final values of λ were chosen
as λi = 1.0 pN/μm and λ f = 2.5 pN/μm, and 
λ = λ f − λi. The
faster the protocol is, the greater the initial and final jumps.

The c1 and c2 are constants to be determined. For instance,
if initially the particle is in thermal equilibrium, then w(0) =
c1 = kBT/λi. The other constant, c2, we find by minimizing
the work in Eq. (14) after using Eq. (17) with c1 = kBT/λi,

〈W 〉
kBT

= λ f

2λi
(1 + τc2)2 + (τc2)2γ

λiτ
− 1

2
− ln(1 + c2τ ). (18)

The value of c2 that minimizes the previous expression is
equal to

c2τ = −γ − τλ f + √
γ 2 + 2γ τλi + τ 2λ f λi

2γ + λ f τ
. (19)

Finally, using Eqs. (13), (17), and (19), we obtain the
optimal protocol λ∗(t ) for the time-dependent stiffness,

λ∗(t ) = λi − γ c2(1 + c2t )

(1 + c2t )2
. (20)

We remark that, for t = 0, the expression above leads to

λ∗(0) = λi − γ c2 	= λi.

Thus, the optimal protocol λ∗(t ) has a discontinuity at the ini-
tial time t = 0. The same happens for t = τ , i.e., λ∗(τ ) 	= λ f .
Figure 1 illustrates these discontinuities, showing that they
decrease as the process becomes slower.

In addition, Fig. 1 shows that, for a fixed and not so small
change 
λ = λ f − λi of the control parameter, larger values
of τ lead to a more accentuated curvature of the exact optimal
protocol. This implies that the rate of change dλ∗/dt becomes
stationary (apart from the jumps at the boundaries) as the
process becomes faster. In other words, solution (20) contains
the following physics: a time-dependent rate protocol is not
a good optimization strategy if the protocol time τ becomes
comparable with the relaxation time τR. This will be corrob-
orated by the perturbative approaches discussed in Secs. V
and VI.

We additionally remark that the Gaussian statistics in the
harmonic confinement can be further explored as a comple-
mentary approach to the problem (see, for instance, Ref. [61]).

A. Limiting cases

As verification of expression (18), we can take the limits of
arbitrarily short or long protocol duration. For extremely short
protocols, we have

lim
τ→0

c2τ → 0 (21)

and

〈W 〉
kBT

→ 1

2

(
λ f

λi
− 1

)
, (22)

which is equal to the average work of the instantaneous pro-
tocol, leading to a variation 
λ = λ f − λi, as expected. For
arbitrarily long protocols,

lim
τ→∞ c2τ →

(√
λ f

λi
− 1

)
(23)

and

〈W 〉 → 
F = kBT ln

(√
λ f

λi

)
. (24)

So, the average work in the quasistatic limit is indeed equal to
the free-energy difference.

B. Performance

Equations (18) and (19) give the minimum average work
required to change λ(t ) from λi to λ f in a finite-time pro-
cess of fixed duration τ . In more complex cases, the work
functional (5) may not be so easy to optimize, justifying
the necessity of other optimization methods. To compare
the perturbative approaches of Secs. V and VI with the
analytical solution presented in this section, we define the
performance P as the relative difference between the average
works 〈W 〉approx and 〈W 〉exact performed along the approxi-
mate and the exact optimal protocols, respectively, i.e.,

P = 〈W 〉approx − 〈W 〉exact

〈W 〉exact
. (25)

We say that a method has a good performance when the value
of the relative difference P is sufficiently small.

We take the chance to emphasize how the quantities
〈W 〉exact and 〈W 〉approx are calculated. 〈W 〉exact is computed an-
alytically from Eqs. (18) and (19). 〈W 〉approx is obtained as the
average over several realizations obtained from the numerical
integration of Eq. (1) with a specific choice of λ(t ). In the case
of 〈W 〉exact, λ(t ) is given by Eq. (20), and for 〈W 〉approx, it is
taken from the perturbative descriptions of Secs. V and VI.
This means that the work performed along each microscopic
realization of λ(t ) is calculated in the standard way from the
trajectories generated by Eq. (1), which has the inertia term. In
other words, we stress that in our analyses of the performance
we have never considered approximated expressions for the
average work to compute 〈W 〉approx. Hence, the 〈W 〉approx used
in Eq. (25) is always obtained from averages of distributions
of work values calculated from numerical simulations using
Eq. (1).
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We have also considered the performance coefficient

Q = 〈Wirr〉approx − 〈Wirr〉exact

〈Wirr〉exact
, (26)

which gives the relative difference of the irreversible contri-
butions. According to Eq. (8), each quantity in the previous
expression is obtained subtracting the free-energy difference

F [Eq. (11)] from its corresponding partner in Eq. (25).

V. OPTIMAL SLOWLY VARYING PROCESSES

The first perturbative approach we will discuss describes
the work performed along slowly varying processes. It is
based on linear response theory (LRT) and on the assumption
that, for slow enough processes, the relaxation to equilib-
rium happens much faster than the variation of the control
parameter. In other words, we will deal with near-equilibrium
processes in the vicinity of quasistatic variations. Next, we
reproduce the main steps of deriving the functional measuring
the energetic cost for this class of processes. We will follow
closely Refs. [26,28,43]. For an alternative derivation based
on endoreversibility, see Ref. [62].

In the linear response regime (
λ/λi � 1), we can expand
the Hamiltonian of the system of interest as

H[λ(t )] = H (λi ) + 
λ g(t )∂λH + O(
λ2), (27)

where we used Eq. (6) to express λ(t ) in terms of g(t ). Then,
by using the well-known methods of LRT [63], we obtain
the nonequilibrium average of the generalized force ∂λH ≡
∂H/∂λ,

〈∂λH (t )〉 = 〈∂λH (0)〉eq;λi + χ∞
0 
λg(t )

− 
λ

∫ t

0
dsφ(t − s)g(s), (28)

where 〈·〉eq;λi is the average over the equilibrium canonical
distribution, exp [−H (�, λ)/kBT ]/Z , with control parameter
λ = λi. The second term on the right-hand side describes the
instantaneous response,

χ∞
0 =

〈
∂2H

∂λ2

〉
eq;λi

, (29)

while the last term is the delayed response. The function φ(t )
is the response function [63],

φ(t ) = 〈{∂λH (0), ∂λH (t )}〉;λi (30)

where {·, ·} is the Poisson bracket. Employing Kubo’s for-
mula, we find the relaxation function �(t ),

�(t ) = β
(〈∂λH (0)∂λH (t )〉eq;λi − 〈∂λH (0)〉2

eq;λi

)
, (31)

where φ(t ) = −d�(t )/dt and β = (kBT )−1. Therefore,
Eq. (28) can be rewritten after an integration by parts as

〈∂λH (t )〉 = 〈∂λH (0)〉eq;λi − �̃
λg(t )

+ 
λ

∫ t

0
du �(u)

dg

dt ′

∣∣∣∣
t ′=t−u

, (32)

where �̃ = �(0) − χ∞
0 .

Considering that �(t ) decays sufficiently fast to assume
dg/dt is approximately constant within this time scale, the
convolution in the right-hand side of the previous expression

can be written as [26,28]∫ t

0
du �(u)

dg

dt ′

∣∣∣∣
t ′=t−u

≈ dg

dt

∫ t

0
du �(u)

≈ dg

dt

∫ ∞

0
du �(u), (33)

where we have further assumed that extending the upper limit
to infinity does not change the result significantly [this is prob-
ably justified only in cases where �(t ) decays exponentially].

Applying Eq. (32) and approximation (33) to each in-
finitesimal variation of λ along the protocol λ(t ), and plugging
them into Eq. (5) to compute the work performed, one finally
finds the functional (see Refs. [26,28] for more details)

〈Wirr〉 = 〈W 〉 − 
F

= β(
λ)2

τ

∫ 1

0
ds

(
dg

ds

)2

τR[g(s)] χ [g(s)] (34)

for the so-called irreversible work 〈Wirr〉 [see Eq. (8)].
The quantities τR[g(s)] and χ [g(s)] represent the parametric
change of the relaxation time,

τR(λ) =
∫ ∞

0

�(u)

�(0)
du, (35)

and of the equilibrium fluctuations of the generalized force
∂λH ,

χ (λ) = �(0)/β = 〈(∂λH )2〉eq;λ − 〈∂λH〉2
eq;λ, (36)

along the protocol λ(t ). Due to the parametric change of λ,
we write the averages in the previous expression for a generic
value of λ.

Equation (34) provides the following physics: (i) it pre-
dicts a regime in which the energetic cost scales as τ−1 no
matter the shape of the protocol, (ii) the protocol must be
slowed down where the change of τR · χ [64] increases in
order to minimize the cost, and (iii) the power related to
the irreversible loss of energy resembles Joule heating [it is
proportional to (dg/dt )2], and it is constant along optimal
protocols with single control parameters [26].

The λ∗(t ) that minimizes Eq. (34) can be found via stan-
dard methods of calculus of variations once τR and χ are
known. For the example of driven Brownian motion, exact an-
alytical expressions can be obtained using Eqs. (35) and (36)
as we show next. For more complex situations, analytical ap-
proximations [28] or numerical methods can be used [65]. For
instance, it is shown in Ref. [28] that the relaxation function
can be obtained through a self-consistent phenomenological
approach based on linear-response sum rules.

A. Relaxation function for the stiffening trap

For the harmonic potential with time-dependent stiffness,
the generalized force is simply

∂λH = x2

2
. (37)

Then, according to Eq. (31), the relaxation function in this
case reads

�(t ) = β

4

(〈x(0)2x(t )2〉eq;λ − 〈x(0)2〉2
eq;λ

)
. (38)
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FIG. 2. Comparison between analytical [Eq. (39)] (black solid
line) and numerical calculations (magenta dots) of �̃(t ) =
�(t )/�(0) [Eq. (38)] for the stiffening trap in the overdamped
regime using the parameter values of Table I. Our numerical sim-
ulations integrate Eq. (1) and allow for the numerical calculation of
the averages in Eq. (38). The result shows the complete absence of
damped oscillations.

Hence, the relaxation function is found calculating the
two-point equilibrium correlation of position squared. In
other words, to obtain the relaxation function, we must
measure/calculate the position x(t ) and obtain the correlation
〈x(0)2x(t )2〉eq;λ and the average 〈x(0)2〉eq;λ when the control
parameter is kept fixed at the initial value.

To obtain an analytical expression, note that the trajec-
tory of a particle in a harmonic potential can be found by
solving the Langevin equation, Eq. (1). The average values
can be found using the properties of the thermal noise given
by Eqs. (2) and (3). Additionally, it is necessary to use the
information that the system is initially in thermal equilibrium
and that the initial conditions are distributed accordingly.
Therefore, the relaxation function for the stiffening trap in the
overdamped regime is equal to

�(t ) = �(0)

(
s2es1|t | − s1es2|t |

s2 − s1

)2

, (39)

where

�(0) = 1

2βλ2
, (40)

s1 = −γ /m −
√

(γ /m)2 − 4(λ/m)

2
, (41)

and

s2 = −γ /m +
√

(γ /m)2 − 4(λ/m)

2
. (42)

Figure 2 compares the analytical expression (39) with the
relaxation function obtained from the numerical simulations
of the Langevin equation, Eq. (1). It shows that expression
(39) has a clear overdamped behavior, although it is written
in terms of solutions of Eq. (1). This is due to the parameter
values taken from Table I.

FIG. 3. Comparison between the exact optimal protocol (20)
(blue solid line) and the optimal slowly varying protocol (46) (red
dashed line) as a function of s = t/τ . The relation between λ(s)
and g(s) is given by Eq. (6). The parameters used are τ = 200 ms,
λi = 1.0 pN/μm, λ f = 3.0 pN/μm, and τR(λi ) = 9.4 ms. The ap-
proximate optimal protocol (46) approaches the exact one as τR/τ

decreases.

B. Optimal protocol for the stiffening trap

In order to obtain the optimal protocol for the stiffening
trap, we first use Eqs. (39)–(42) in Eqs. (35) and (36) to obtain
expressions for τR and χ . The latter reads

χ (λ) = 1

4

(〈x(0)4〉eq;λ − 〈x(0)2〉2
eq;λ

) = 1

2(βλ)2
, (43)

and the relaxation time is given by

τR(λ) = γ

2λ
, (44)

when we consider the overdamped limit, i.e., after taking the
limit m → 0 in Eq. (39). Substituting the previous results in
expression (34) for 〈Wirr〉, we obtain

〈Wirr〉 = γ (
λ)2

4βτλ3
i

∫ 1

0
ds

(
dg

ds

)2 1[
1 + 
λ

λi
g(s)

]3 . (45)

The minimum of this functional (after solving the Euler-
Lagrange equation) is found for the protocol [28]

g∗(s) = − λi


λ
+ 1

A(s + B)2
, (46)

where A and B are given by the boundary conditions g∗(0) = 0
and g∗(1) = 1. The protocol (46) is depicted in Fig. 3, where
we see how well it approximates the exact optimal protocol
(20) for a small value of τR/τ .

The numerical analysis of the performance of this opti-
mal protocol is part of our primary goal. This is shown in
Fig. 4, where the coefficients P [Eq. (25)] and Q [Eq. (26)]
are obtained for an extensive variation of the relative change

λ/λi of the control parameter and of the protocol duration
τ . We remind that the work performed along the exact optimal
protocol (20), denoted in Eq. (25) by 〈W 〉exact, is given by
Eq. (18). The quantity 〈W 〉approx used in P (and Q) is obtained
from numerical simulations of Eq. (1) using a time-dependent
stiffness parameter given by Eq. (46). The numerical average

064123-6



PERFORMANCE OF OPTIMAL LINEAR-RESPONSE … PHYSICAL REVIEW E 106, 064123 (2022)

FIG. 4. Performance (a) P (25) and (b) Q (26) of the ap-
proximate optimal protocol (46) derived in Sec. V. We recall that
〈W 〉exact (and 〈Wirr〉exact = 〈W 〉exact − 
F ) is obtained analytically
using Eq. (18). The average work 〈W 〉approx was obtained from 105

trajectories generated numerically using Eq. (1) with the approximate
optimal protocol (46). We have set λi = 1.0 pN/μm and τR(λi ) =
9.4 ms. The other parameters were chosen according to Table I.

leading to 〈W 〉approx was obtained using 105 microscopic real-
izations.

As expected, the optimal protocol (46) performs better in
the regime of slow processes, i.e., when τR/τ < 1. Increasing
both 
λ/λi and τR/τ , we enter the far-from-equilibrium re-
gion, and the performance of Eq. (46) decreases substantially.
The irregular boundaries between regions with different val-
ues of P are a consequence of our finite statistical sample. We
remark that Fig. 4 does not check the range of validity of the
functional (45). Instead, it tells us how well the optimal pro-

tocol obtained from this functional performs when compared
with the protocol obtained from the exact solution (20).

VI. FAST BUT WEAK OPTIMAL PROCESSES

Linear response theory can also be used to describe a
regime that is somewhat complementary to the one described
previously. In other words, we will use LRT to describe a
regime in which the protocols can be arbitrarily fast but
restricted to small variations of the control parameter, i.e.,

λ/λi < 1. The functional for 〈Wirr〉 can be obtained in this
case using, again, the nonequilibrium average (32) of the
generalized force. However, we will keep the convolution in it,
that is, we will not perform the approximation (33) since there
will be no clear time-scale separation between the change in
λ(t ) and the relaxation to equilibrium.

Reference [66] shows that plugging Eq. (32) into Eq. (5)
leads to

〈Wirr〉 = (
λ)2

2

∫ 1

0
ds

∫ 1

0
ds′�[τ (s − s′)]

dg(s)

ds

dg(s′)
ds′ ,

(47)

where s = t/τ , and �(t ) is given again by Eq. (31). An
effective strategy to minimize Eq. (47) is that described in
Ref. [47]. It consists of expanding dg/ds in some basis
of functions in the interval s ∈ [0, 1]. Due to its conve-
nient mathematical properties, a good choice of basis is that
formed by the Chebyshev polynomials Tn(x) [67]. Follow-
ing Refs. [47,67], the truncated and regularized expansion of
dg/ds in a finite number N of polynomials Tn(x) in the interval
[0,1] then reads

dg(s)

ds
=

N∑
n=1

an gN,n Tn(2s − 1), (48)

where an are the coefficients to be determined and the fac-
tors gN,n regularize the truncated expansion [67] to avoid
the Gibbs phenomenon at the extremities of the expansion
interval. Their expression is [67]

gN,n = N − n + 1

N + 1
cos

(
πn

N + 1

)

+ 1

N + 1
sin

(
πn

N + 1

)
cot

(
π

N + 1

)
. (49)

Substituting expression (48) into Eq. (47), we obtain

〈Wirr〉[(
λ)2�(0)/2]−1 =
N∑
n,l

Anlanal , (50)

where the Anl are given by

Anl =
∫ 1

0

∫ 1

0
�̃[τ (s − s′)]

× gN,ngN,lTn(2s − 1)Tl (2s′ − 1)ds′ds, (51)

with �̃(t ) = �(t )/�(0). The irreversible work in Eq. (47)
becomes a finite multidimensional quadratic form whose min-
imum we want to find. The coefficients an that give such
minimum value also have to obey the boundary conditions
g(0) = 0 and g(1) = 1, which work as additional constraints
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FIG. 5. Comparison between the exact optimal protocol (20)
(blue solid line) and the protocol that minimizes Eq. (47) (red dashed
line) as a function of s = t/τ . The relation between λ(s) and g(s) is
given by Eq. (6). These results refer to N = 10, λi = 1.0 pN/μm,
λ f = 1.1 pN/μm, τ = 9 ms, and τR = 9.4 ms. We used the relax-
ation function (39) with the parameter values in Table I.

in our optimization. Using the method of Lagrange multipli-
ers, we can find the coefficients an that provide the optimal
protocol by solving a set of linear algebraic equations.

We remark that the relaxation function �(t ) is the main
physical input to the optimization problem. The factors Anl

crucially depend on the protocol time τ and �(t ). Due to its
relation with the response function (30), �(t ) can be obtained
from experiments when it is not accessible theoretically. This
is an advantage of this approximate method, which can be
readily applied to general potentials for which one does not
have an exact solution for the optimal protocol.

Figure 5 shows the optimal protocol obtained from min-
imizing Eq. (50) for specific values of τ and N . Although
approaching the exact optimal solution (18) in most parts
of the interval, the approximate optimal protocol clearly has
smooth versions of the jumps presented by expression (18).

FIG. 6. Numerical evaluation of the right-hand side of Eq. (50),∑N
n,l Anl anal , for different values of N , i.e., the number of polynomi-

als used in Eq. (48). We used the coefficients an corresponding to the
optimal protocol. The factors Anl were calculated using expression
(39) for �(t ) and the parameter values in Table I. In particular,
λi = 1.0 pN/μm and τ = 9.0 ms.

FIG. 7. Performance (a) P [Eq. (25)] and (b) Q [Eq. (26)] of
the approximate optimal protocol derived in Sec. VI. We recall that
〈W 〉exact (and 〈Wirr〉exact = 〈W 〉exact − 
F ) is obtained analytically
using Eq. (18). The average work 〈W 〉approx was obtained from 105

trajectories generated numerically using Eq. (1) with the approximate
optimal protocol that minimizes the functional (47) (see the dashed
line in Fig. 5). We have set λi = 1.0 pN/μm and τR(λi ) = 9.4 ms.
The other parameters were chosen according to Table I.

As shown in Ref. [47], such smooth jumps decrease as the
value of τ increases and the process becomes slower, in agree-
ment with the behavior of the exact solution (18). Reference
[47] also shows that these smooth but steep features become
sharper as the number of polynomials in Eq. (48) increases,
providing a better agreement with the exact solution. How-
ever, Fig. 6 shows that the value of 〈Wirr〉 given by Eq. (47)
does not change considerably for N � 10. In other words, the
optimization method just described is already efficient for low
values of N .
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(a) (b)

FIG. 8. Average work [Eq. (5)] as a function of λ f for τ = 9.0 ms and λi = 1.0 pN/μm. The other parameters were chosen according to
Table I. The protocol λ(t ) increases the stiffness in (a) and decreases it in (b). The black solid line shows Eq. (18). The blue dashed line shows
Eq. (47) for its optimal protocol with N = 10. Using this protocol, we have simulated the Langevin dynamics, using Eq. (1), and obtained the
average work shown in magenta dots using 104 trajectories. The good performance of the approximate optimal protocol goes beyond the range
of validity of expression (47).

Figure 7 shows the performance coefficients P [Eq. (25)]
and Q [Eq. (26)] of the approximate optimal protocols that
minimize Eq. (47) for an extensive variation of the relative
change 
λ/λi of the control parameter, and of the protocol
duration τ . Analogously to the results of Fig. 4, the work
performed along the approximate optimal protocol was ob-
tained from the numerical simulations of Eq. (1) using 105

trajectories. Again, the performance is excellent in the region
of 
λ/λi � 1. Nevertheless, it remains very good in most of
the far-from-equilibrium region. This is in clear contrast to the
performance of optimal protocols obtained in Sec. V using the
geometric approach.

The outstanding performance of the protocols minimizing
Eq. (47) far from equilibrium is substantiated in Fig. 8. There,
it is shown that when we drive the Brownian particle using the
approximate optimal protocols, the work performed is almost
indistinguishable from that using the exact optimal protocol

FIG. 9. Comparison between the excess power [Eq. (52)] along
the exact optimal protocol (20) (black dashed line) and the optimal
slowly varying protocol (46) (red solid line). The parameters are τ =
500 ms, τR = 9.4 ms, λi = 1.0 pN/μm, and λ f = 3.0 pN/μm.

(18), even when 
λ/λi > 1. The validity of Eq. (47) is, how-
ever, restricted to a small range. Figures 8(a) and 8(b) depict,
respectively, work values when the protocol λ(t ) increases and
decreases the value of the stiffness parameter.

VII. EXCESS POWER

Figures 9–11 show the comparison between the exact ex-
cess power, i.e., the excess power along the exact optimal
protocol (20), and that obtained from the approximate optimal
protocols of Secs. V and VI. By excess power, we mean the
quantity whose integral gives the irreversible work 〈Wirr〉 =
〈W 〉 − 
F . For instance, Eq. (5) gives the total work as the
integral of the total power. Thus, the excess power does not
account for the power delivered to change the free energy.

FIG. 10. Excess power [Eq. (52)] for different optimal proto-
cols using parameters τ = 10 ms, τR = 9.4 ms, λi = 1.0 pN/μm,
and λ f = 1.2 pN/μm. The red solid line and the blue dashed line
depict the excess power along the protocols minimizing Eq. (47) with
N = 13 and N = 7, respectively. The black dashed line depicts the
excess power along the exact optimal protocol (20).
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FIG. 11. Zoom-in of Fig. 10. The excess power [Eq. (52)] along
the approximate optimal protocols of Sec. VI oscillates around the
corresponding value of excess power along the exact optimal proto-
col (20). As N increases, the oscillations decrease in the central part
of the protocol.

Mathematically, this can be translated as

〈Ẇirr〉 = dλ

dt

(〈
∂H

∂λ

〉
− ∂F

∂λ

)
, (52)

where ∂F/∂λ denotes the derivative of the free energy. Both
〈∂λH〉 = 〈x2〉/2 and ∂λF must be evaluated along the protocol
λ(t ).

Reference [26] shows that the functional (34) for a single
control parameter predicts a constant excess power along the
optimal protocol. Although this reveals an important feature
of the physics of slowly varying optimal protocols, it remains
to be verified whether this also applies to other nonequilib-
rium regimes. Figure 9 compares the excess power [Eq. (52)]
obtained from the numerical simulations of Eq. (1) using the
optimal protocol (46) and the exact optimal protocol (20) for
τR/τ < 1. The initial variation is expected since in the exact
dynamics there is no driving exactly before the process begins.

Figures 10 and 11 compare the numerical calculations of
the excess power using the approximate optimal protocol that
minimizes Eq. (47) in the regime of fast but weak processes.
The exact optimal protocol leads once more to a constant
value, whereas the approximate one yields oscillations around
this value. As N increases, our results point to a decrease of
the oscillations taking place in the central part of the protocol,
becoming, however, more salient at the extremities. It remains
to be verified whether the results of this section are a conse-
quence of the quadratic confinement of the Brownian motion
[23,39,68].

VIII. CONCLUSION

Using an overdamped driven Brownian particle as a bench-
mark, we compared the performance of two classes of

approximate optimal protocols to the exact optimal (analytic)
solution, performing numerical simulations with realistic pa-
rameters and presenting it in units and scales relevant to
current experiments. Generally, the approximate protocols
have excellent performances in the regions where they were
designed. However, one of our main results is how effectively
good the performance can be even far outside the region where
the approximation is expected to be valid. Hence, our results
go beyond determining the range of validity of the perturba-
tive approaches. Moreover, due to the difficulties controlling
the approximations involved in the linear-response descrip-
tions (see Refs. [36,69]), this numerical determination is a
welcome achievement in itself.

Our analysis shows a clear advantage of the perturbative
formulation in describing the optimal energetic cost far from
equilibrium compared to the geometric approach. In particu-
lar, we verified that the performance of protocols derived from
the geometric methods decreases considerably as the duration
of the process becomes comparable to the relaxation time.

Despite underperforming in the region of slowly varying
processes, the linear response method for fast but weak opti-
mal protocols performs exceptionally well in other regions.
Furthermore, these approximate optimal protocols can be
more easily implemented experimentally due to their smooth
character. At first this might be taken as a weak claim since the
exact optimal protocol could also be smoothed out. However,
due to the singular character of the jumps, it is not obvious
that simple smooth versions of them would also perform well.
Therefore, we consider this a nontrivial result obtained from
the linear-response approach of Sec. VI. Indeed, as shown in
Ref. [70], we could argue that the smoothing we get here is
not arbitrary, but one obtained from an optimization procedure
that captures certain symmetries.

In this case, the excess power oscillates and can even show
negative values. This suggests that nonmonotonic driving
might do a good job far from equilibrium as long as it com-
bines oscillations with a steady change, as shown in Figs. 5
and 11. However, we emphasize that the oscillations are not
arbitrary but guided by the optimization of Eq. (47) [70], and
therefore it is worth investigating further. This fact supports
the claim that the perturbative approaches may increase our
physical understanding of optimal nonequilibrium processes
compared to purely numerical optimization methods.
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