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Most probable path of an active Brownian particle
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In this study, we investigate the transition path of a free active Brownian particle (ABP) on a two-dimensional
plane between two given states. The extremum conditions for the most probable path connecting the two states
are derived using the Onsager–Machlup integral and its variational principle. We provide explicit solutions
to these extremum conditions and demonstrate their nonuniqueness through an analogy with the pendulum
equation indicating possible multiple paths. The pendulum analogy is also employed to characterize the shape of
the globally most probable path obtained by explicitly calculating the path probability for multiple solutions. We
comprehensively examine a translation process of an ABP to the front as a prototypical example. Interestingly,
the numerical and theoretical analyses reveal that the shape of the most probable path changes from an I to a U
shape and to the � shape with an increase in the transition process time. The Langevin simulation also confirms
this shape transition. We also discuss further method applications for evaluating a transition path in rare events
in active matter.
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I. INTRODUCTION

Active matter, such as a flock of birds, a school of fish, and
bacteria, has attracted significant study interest in statistical
mechanics in the past 20 years [1–3]. Accordingly, several
active particle models have been proposed to numerically
reproduce a collective behavior. One of the simplest models
is the active Brownian particle (ABP) modeled using the
Langevin equations. In an ABP, a particle moves at a constant
speed along a randomly changing direction [4]. Interestingly,
active matter collective behaviors, such as motility-induced
phase separation, have been examined using ABP mod-
els [5,6]. The statistical properties of a single ABP, including
self-diffusion and the hydrodynamic interactions between par-
ticles and a wall, have also been investigated [7,8].

Among the various active particles, biological and arti-
ficial microswimmers, such as bacteria and self-propelled
Janus particles, have been intensively studied [9–15]. As
indicated by the scallop theorem [16,17], the surrounding
fluid of these microswimmers limits their motility and results
in an abundantly dynamic behavior that often necessitates
the reproduction of precise numerical calculations [18–21].
The hydrodynamic effects are often masked under strong
fluctuations by noisy environments, such as the simple ther-
mal fluctuations generated by the fluctuation–dissipation
theorem [22,23]. In addition, active system fluctuations are in-
trinsic and essential, as observed in bacterial run-and-tumble
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motions [2] and the noisy background flow field induced by
the surrounding active particles.

Herein, we focus on the transition of a stochastic active par-
ticle from the initial position, xi, to an arbitrary final position,
x f , with time, t f , and consider the conditional probability,
P (x f , t f |xi ), of the transition. The xi → x f transition may
be a rare event when the conditional probability is minimal.
Although these rare transitional events have minor probabil-
ities, they are essential for the survival of microswimmers
because such events may result in the diversification of their
habitats. One of the major problems associated with these rare
events is the extraction of the most probable path [24–30].
This path is the transition path exhibiting the highest path
probability among the paths connecting the given initial and
final states. Alternatively, the most probable path is a typical
path of an atypical transition with a tiny conditional probabil-
ity P (x f , t f |xi ).

Theoretical concepts, such as the path probability and
the Onsager–Machlup (OM) integral, can be used to cal-
culate the most probable path for the arbitrary initial and
final states [31–34]. The most probable path of the transi-
tions in case of a simple double-well potential is investigated
through numerical calculations [27] and experimental obser-
vations [29]. Several researchers have discussed the structural
transitions of protein folding [26,30,33]. Notably, a chemical
kinetic model was analyzed using the most probable path [28].

Further, several studies have introduced the OM integral
for an active matter system [35–40] and used it to calculate
the conditional probability of the ABP at short times [37] and
the escape rate of the run-and-tumble particle under trapping
potential [36] with saddle-point approximation. In addition,
the most probable path of the ABP embedded in case of
double-well potential is numerically calculated under a small
translational noise limit [38]. Nonetheless, the abovemen-
tioned studies could not fully understand the exact shape of
the transition path because the OM integral minimizer obeys
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nonlinear equations, with solutions not as unique as those
discussed herein do. Our study provides analytical solutions,
calculates the most probable path, and classifies its shape for
the transition process of a free ABP.

Here, we derive the path probability written by the OM
integral from the Langevin equations for the positions and
orientation of the ABP. We deduce the most probable path
using the variational principle of the OM integral because the
minimum OM integral results in the maximum path probabil-
ity. We also discover that these extremum conditions for the
most probable path are analogous to the pendulum equation,
enabling formal analytical solutions. However, analytically
determining the unknown coefficients for arbitrary boundary
conditions are not feasible; hence, we numerically resolve the
equations to obtain multiple solutions from a unique boundary
condition. Finally, we demonstrate the exact shape of the most
probable path in the case of a translation to the front.

We also review the original equations of the single ABP
in the next section. Subsequently, the OM integral and the
derivation of the extremum conditions for the most probable
path are explained in Sec. III. Their analytical solutions are
presented in Sec. IV. The numerical solutions for the specific
boundary condition are discussed in Sec. V. Section VI de-
scribes the phase diagram of the most probable path shape for
various boundary condition values. Finally, Sec. VII provides
the summary and discussions.

II. ACTIVE BROWNIAN PARTICLE

This section summarizes the model equation for an ABP,
which is a simple, but canonical model for an active particle.
Let us consider an ABP moving in a two-dimensional (2D)
space (x, y), as shown in Fig. 1. The ABP actively moves
along the particle orientation, θ , with a constant propulsion
speed, U . The orientation, which is the θ (and position x and
y), experiences the noise caused by its activity or the thermal
motions of a surrounding fluid. Therefore, this orientation
noise results in the angle diffusion of the ABP. The ABP
position x(t ), y(t ) and orientation θ (t ) dynamics are described
using the following Langevin equations [3]:

ẋ = U cos θ + ξx(t ), (1)

ẏ = U sin θ + ξy(t ), (2)

θ̇ = ξθ (t ), (3)

where the dot represents the time derivative. ξα (t ) (α, β =
x, y, θ ) is the Gaussian white noise satisfying conditions
〈ξα〉 = 0 and 〈ξα (t )ξβ (0)〉 = 2Dαβδ(t ), where Dαβ is a posi-
tive definite diffusion tensor.

Here, we assumed that an isotropic diffusion tensor, that is,
Dxx = Dyy = Dt , Dθθ = Dr , and the other components vanish.
In the case of the thermal noise for a sphere with a radius,
a, in a viscous fluid with viscosity, η, we deduced Dt =
kBT/(6πηa) and Dr = kBT/(8πηa3) [23,41], where kB is the
Boltzmann constant, and T is a temperature characterizing the
noise magnitude. In the Appendix C, an anisotropic diffusion
tensor (e.g., Dxx �= Dyy) is considered for an ellipsoid-shaped
ABP.

FIG. 1. An ABP is at (x, y) in the 2D space where it moves with
a constant propulsion speed, U , and an orientation, θ , which is the
angle from the x axis. The position and the orientation randomly
fluctuate under thermal or active noise. Therefore, the single ABP
dynamics is written as shown in Eqs. (1)–(3). The rare events, where
the ABP is obtained at xi, yi, θi at the initial time and x f , y f , θ f at the
final time t f , are analyzed using the OM integral given in Eq. (4) and
the most probable path obeying Eqs. (5)–(7).

Equations (1)–(3) represent a single free ABP. Therefore,
we generalized it to more complicated cases, where the poten-
tial force and the background flow are considered by replacing
the drift velocity. Section VII discusses this generalized case.

III. ONSAGER–MACHLUP VARIATIONAL PRINCIPLE

Let us consider the following situation: we determined the
ABP at the initial state xi, yi, θi at t = 0 and the final state
x f , y f , θ f at t = t f . This transition from the initial to the final
state is a rare event emerging from the noise. The problem
considered here is the most probable transition path between
these two states (Fig. 1).

This section presents a framework for calculating the most
probable path of the ABP using the OM integral and its varia-
tional principle. This principle leads to equations determining
the most probable path for the transition between the arbitrary
initial and final states.

A. Onsager–Machlup integral

The path probability, P[x(t ), y(t ), θ (t )], which is the
probability of a specific stochastic trajectory, is used to
analyze stochastic systems [32]. Let us set the initial con-
dition as x(0) = xi, y(0) = yi and θ (0) = θi. The path
probability P[x(t ), y(t ), θ (t )|xi, yi, θi] during the time in-
terval 0 � t < t f is then given by P[x, y, θ |xi, yi, θi] =
C exp(−O[x, y, θ ]/2kBT ) [31,32]. Here, C is a normalization
constant determined by condition

∫
Dx P[x, y, θ |xi, yi, θi] =
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1, where
∫
Dx indicates integration over all paths for

x(t ), y(t ), θ (t ), and O[x(t ), y(t ), θ (t )] is the OM integral de-
rived as follows:

O[x(t ), y(t ), θ (t )] = kBT Pe

2

∫ t f

0

dt

τ
[( ˙̄xτ − cos θ )2

+ ( ˙̄yτ − sin θ )2 + θ̇2τ 2], (4)

using Eqs. (1)–(3). The detailed derivations of the above
equations are provided in the Appendix A. Note that the OM
integral formulation possesses an indeterminacy issue caused
by various possible forms of time discretization. However,
this indeterminacy does not affect the case of the single
free ABP (Appendix A). The abovementioned equations con-
tained a nondimensional position, x̄ = x/L, ȳ = y/L, where
L = √

Dt/Dr is the length scale representing a particle size.
Here, the rotational Péclet number, Pe = (Drτ )−1 [7], repre-
senting the noise to mobility ratio and the time scale τ = L/U ,
which the particle spends traveling its body size, are also
introduced. In a real bacterial system, the length scale, L, and
the time scale, τ , are estimated as L ∼ 10μm and τ ∼ 1s,
respectively [2,16].

B. Onsager–Machlup variational principle

The OM variational principle states that the transition path
minimizing the OM integral has the highest probability. Con-
versely, the most probable path can be obtained by requiring
a positive disappearance of the first and second variations
of the OM integral (i.e., δO = 0 and δ2O > 0, respectively).
Considering the first variation of Eq. (4) concerning x(t ), y(t ),
and θ (t ) yields the following extremum conditions for the
most probable path:

¨̄x = −τ−1θ̇ sin θ, (5)

¨̄y = τ−1θ̇ cos θ, (6)

θ̈ = τ−1( ˙̄x sin θ − ˙̄y cos θ ). (7)

The detailed derivations of the abovementioned equations are
obtained in the Appendix B. The positive second variation,
δ2O > 0, is also required for the minimum OM integral,
O[x(t )]. We can confirm that the Legendre conditions [42],
which are a necessary condition for δ2O > 0, always hold
with a positive definite diffusion matrix, Dαβ , as assumed in
the previous section. Specifically, δO = 0 and δ2O > 0 are
the only conditions for the local minimum path. Hence, we
will further compare the OM integral of each solution to the
extremum conditions to determine the global minimum path
from multiple local minimum paths.

Two boundary conditions were required to solve the
second-order differential equations, Eqs. (5)–(7). We em-
ployed the Dirichlet (or first type) boundary condition
represented by the initial condition xi, yi, θi at t = 0 and the
final condition x f , y f , θ f at t = t f . We set the initial condition
as xi = 0, yi = 0, θi = 0 without loss of generality because
the system has translational and rotational invariance. The
parameters in this problem are only the final conditions,
x f , y f , θ f , and the final time, t f , providing the system time
and length scales.

Recall that the path probability is given by an exponential
of the OM integral as P ∼ exp(−Pe Ô/4), where we used
Ô = 2O/(kBT Pe). The path probability in the small noise
limit, Pe → ∞, converges to the most probable path, xMPP.
The probabilities for the other transition paths then become
zero [43]. In this limit, the path-averaged value of a functional
A[x(t )] may be approximated by that of the most probable
path as 〈A〉i→ f ≈ A[xMPP(t )], when the Pe dependence on A
is weaker than the exponential function [i.e., ln A = o(Pe)].

C. Entropy change

We evaluated the entropy change of the thermal bath along
the trajectory, �sb[x(t ), y(t ), θ (t )], as follows according to the
fluctuation theorem [44]:

P[x(t ), y(t ), θ (t )|xi, yi, θi]

P[xrev(t ), yrev(t ), θ rev(t )|x f , y f , θ f ]
= e�sb/kB , (8)

where xrev is the reversed path defined as xrev(t ) = x(t f − t ).
Substituting Eq. (4) to Eq. (8), we derive an explicit form of
�sb, which is given as follows:

�sb[x(t ), y(t ), θ (t )] = kB Pe
∫ t f

0
dt [ ˙̄x cos θ + ˙̄y sin θ ]. (9)

We evaluated the entropy change of the thermal bath or the
irreversibility of the most probable path using the abovemen-
tioned derived formula.

IV. ANALYTICAL TREATMENT WITH PENDULUM
ANALOGY

The most probable path can be obtained by solving the
extremum conditions [Eqs. (5)–(7)] with boundary conditions.
Although these equations are nonlinear differential, they can
be formally reduced to the pendulum’s equation of motion. A
general solution may then be deduced in an analytical form.
This section discusses the most probable path using these
analytical treatments.

A. Equations of x, y, and θ

First, we considered Eqs. (5) and (6) for x̄ and ȳ, respec-
tively. These equations are formally solved as follows:

x̄ =
∫ t

0

dt ′

τ
cos θ (t ′) + (V̄x − 1)

t

τ
, (10)

ȳ =
∫ t

0

dt ′

τ
sin θ (t ′) + V̄y

t

τ
. (11)

We used the initial conditions xi = 0 and yi = 0 at t = 0. V̄x

and V̄y represent the nondimensional initial velocities ˙̄x(0)τ
and ˙̄y(0)τ , respectively, and must be decided by the final
conditions x̄ f = x f /L and ȳ f = y f /L, respectively, as follows:

V̄x = 1 + x̄ f τ

t f
− τ

t f

∫ t f

0

dt ′

τ
cos θ (t ′), (12)

V̄y = ȳ f τ

t f
− τ

t f

∫ t f

0

dt ′

τ
sin θ (t ′). (13)

These expressions show that V̄x and V̄y depend on the dynam-
ics of θ in the entire time from t = 0 to t f .
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θ + φ

Kinematic energy

Gravity

Pendulum∼ r

∼ m−1

(b)

(a)

FIG. 2. (a) Schematic of the pendulum system corresponding to
the extremum condition for θ , Eq. (14). The angle from an equi-
librium state is given by θ (t ) + φ. A nondimensional parameter,
r, characterizes the downward gravity magnitude. The kinematic
energy, which is a conservative quantity, is characterized by a nondi-
mensional parameter, m. Three parameters, namely φ, r, and m,
are determined using three final conditions, that is, x f , y f , and θ f .
(b) Phase diagram of the θ calculated from Eq. (15) showing the
renowned pendulum dynamics. Different colors indicate various m
values. Dynamics constantly evolve in the clockwise direction, as
shown by the arrows. In the case of m = 0.5 (black line), the trajec-
tory exhibits “rotation” dynamics, which can be observed when m <

1. Therefore, the critical behavior emerges with m = 1 (red line),
including fixed points [i.e., θ̇ = 0 and θ + φ = (2n + 1)π ]. Con-
versely, where m = 2.0 (blue line), the trajectory exhibits “swing”
dynamics that may include periodic cycles characterized by the
period, Tc. However, the “swing” dynamics is only possible when
m > 1.

Using Eqs. (10) and (11), the dynamics of θ [Eq. (7)] is
rewritten as follows:

θ̈ τ 2 = (V̄x − 1) sin θ − V̄y cos θ = −r sin(θ + φ), (14)

where we used r =
√

(V̄x − 1)2 + V̄ 2
y , cos φ = −(V̄x − 1)/r,

and sin φ = V̄y/r. This equation is entirely similar to the
renowned pendulum equation [45], where r and θ (t ) + φ

correspond to the gravity force magnitude and the pendulum
angle, respectively [Fig. 2(a)]. When φ is an integer multiple
of π , θ = 0 becomes a trivial solution to this equation. When

φ is given by an even multiple of π , this trivial solution be-
comes stable. However, this solution becomes unstable when
φ is an odd multiple of π .

Therefore, multiplying Eq. (14) by θ̇ and integrating once
deduce the following nontrivial solution:

θ̇ τ = ±2

√
r

m

√
1 − m sin2[(θ + φ)/2], (15)

where m is a positive coefficient determined by the boundary
conditions, which denotes the inverse of the pendulum’s kine-
matic energy. For 0 < m < 1, θ (t ) monotonically increases
or decreases with time. This behavior is known as “rotation.”
Alternatively, for 1 < m, θ (t ) oscillates with its period for
one cycle, Tc. This behavior is known as a “swing,” which
indicates an analog to the pendulum dynamics. In the “swing”
dynamics, θ is bound as |θ + φ| < max with a finite ampli-
tude:

max = 2 sin−1(m−1/2). (16)

The solution to Eq. (15) is plotted in the phase space in
Fig. 2(b).

B. Passage time

The passage time, Tp(m), which is a characteristic time as-
sociated with the “swing” dynamics and obtained as a solution
to Eq. (15), is discussed below. The passage time is defined as
the duration from θi = 0 to θ f . The process θi → θ f cannot
be uniquely determined because the pendulum can oscillate
multiple times before reaching the final angle. Let us consider
the process mapped in the phase space to distinguish each pas-
sage process [Fig. 3(a)]. We constructed the passage process
for an arbitrary choice of θ f and φ by categorizing the pro-
cess θi → θ f into four parts: (i) shortest process for θi → θ f

[red arrow in Fig. 3(a)]; (ii) recurrent process for θ f → θ f

[blue arrow in Fig. 3(a)]; (iii) recurrent process for θi → θi

[yellow arrow in Fig. 3(a)]; and (iv) process that encloses one
cycle. Subsequently, we introduced the partial passage time
in each process. The following representations are easily ob-
tained from the pendulum equation properties [45]. We spent
the following passage time for (i):

T 0
p (m) = Sign(θ f )τ

√
m

r
{F [(θ f + φ)/2, m] − F (φ/2, m)},

(17)

where we used a sign function, Sign(z) = 1 (z � 0),−1 (z <

0) [notice Sign(0) = 1], and the incomplete elliptic integral of
the first kind:

F (ψ, k) =
∫ ψ

0

dz√
1 − k sin2 z

. (18)

The passage times for recurrent processes (ii) and (iii) are,
respectively, given as follows:

T f
p (m) = Tc(m)/2 − 2 Sign(θ f )τ

√
m

r
F [(θ f + φ)/2, m]

(19)
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(b)

θ̇

θ + φ

θ = θf

O

θ = θi

T 0
p T f

p

T i
p

(i) n = 0

n = 1

n = 2

n = 3

(a)
(ii)

(iii)

FIG. 3. (a) Various passage processes from θ = θi = 0 to θ = θ f

shown in the phase space spanned by θ + φ and θ̇ . The green vertical
lines indicate the initial (θ = θi = 0) and final (θ = θ f ) states. The
process (i) is the shortest process for θi → θ f (indicated by the red
arrow). The duration is denoted by T 0

p in Eq. (17). Conversely, the
recurrent process (ii) is for θ f → θ f (indicated by the blue arrow),
with its duration, T f

p , being presented in Eq. (19). The yellow ar-
row indicates the recurrent process (iii) for θi → θi. The passage
time is T i

p in Eq. (20). Note that T f
p < T i

p in this figure. The n = 0
process for θi → θ f corresponds to the curve indicated by the red
arrow; the n = 1 process is represented by the red and blue arrows;
the n = 2 process is depicted by the yellow and red arrows; and
finally, the n = 3 process is represented by the sum of the three
arrows. (b) Passage time, T n

p (m), computed from Eqs. (22)–(25) as
a function of m (i.e., approximately n = 3). We set φ = −π/3 and
θ f + φ = π/2; therefore, mmax = 2, as indicated by Eq. (26). T n

p (m)
depends on the passage process labeled as n (a). A different color plot
shows each passage time, T n

p (m), for different processes. The black
vertical dashed line represents m = 1, which is the critical value from
the “rotation” to the “swing” dynamics. Only T 0

p (black curve) has
a finite value across the range 0 < m < 1 because the remaining
passage times diverge at m = 1.

and

T i
p (m) = Tc(m)/2 + 2 Sign(θ f )τ

√
m

r
F (φ/2, m), (20)

where Tc(m) is the time for one cycle of the swinging pendu-
lum that characterizes process (iv) given as follows:

Tc(m) = 4τ

√
1

r
F (π/2, 1/m). (21)

Note that Tc(m) has a lower bound as Tc(m) > 2πτ/
√

r and
diverges as Tc(1) → ∞.

We next construct multiple passage times for θi → θ f by
combining the four partial passage times of T 0

p , T i
p , T f

p , and
Tc. Each passage time is labeled in order from the smallest
and defined as T n

p (n = 0, 1, 2, · · · ). The n = 0 passage time,
T 0

p , is the shortest process, as defined in Eq. (17) and indicated
by the red arrow in Fig. 3(a). We first consider the case when
T f

p < T i
p (Fig. 3(a)). Using the definition of T n

p , the n = 1
passage time, T 1

p , is spent by the process constructed with pro-
cesses (i) and (ii), which represents the sum of the red and blue
arrows in Fig. 3(a). Meanwhile, the n = 2 passage time, T 2

p , is
made by combining processes (i) and (iii) indicated by the yel-
low and red arrows in Fig. 3(a), respectively. In the reversed
order of the two recurrent passage times (i.e., T f

p > T i
p), the

T 1
p and T 2

p processes are exchanged to generate the order from
the smallest following the definition. Irrespective of the size
of the recurrent passage times, the n = 3 passage time, T 3

p ,
includes the three processes of (i) to (iii) and is represented by
the sum of the yellow, red, and blue arrows in Fig. 3(a). These
processes labeled from n = 0 to n = 3 constitute the bases
of higher-order processes because all passages are created by
one of the four shortest passages and the additional cycles
characterized by time, Tc(m). For example, the n = 4 process
can be constructed using the n = 0 process and an entire cycle
(i.e., T 4

p = T 0
p + Tc). We constructed the n-th passage time

T n
p (m) as follows based on the abovementioned statements:

T 4�
p (m) = T 0

p (m) + �Tc(m), (22)

T 4�+1
p (m) = T 0

p (m) + �Tc(m) + min
[
T i

p (m), T f
p (m)

]
, (23)

T 4�+2
p (m) = T 0

p (m) + �Tc(m) + max
[
T i

p (m), T f
p (m)

]
, (24)

T 4�+3
p (m) = T 0

p (m) + �Tc(m) + T i
p (m) + T f

p (m), (25)

where � = 0, 1, 2, · · · denotes the number of cycles in the
corresponding process. The above expressions for the passage
time are available, even in the case of θ f < 0 compared to
Fig. 3(a). We obtained T 0

p = 0 and T L
p (m) + T R

p (m) = Tc(m)
when θ f = 0. Therefore, several passage times degenerated as
T 4�−1

p = T 4�
p . To realize the process θi = 0 → θ f , the param-

eter m must satisfy 1 < m < mmax, where

mmax =
{

1/ sin2(φ/2) (|φ| � |θ f + φ|),
1/ sin2[(θ f + φ)/2] (|φ| < |θ f + φ|). (26)

Compared to the “swing” dynamics, which enables multi-
ple passage processes, the “rotation” dynamics (0 < m < 1)
only permits a single passage process with time, T 0

p (m).
Figure 3(b) plots the passage time, T n

p (m), as a function of
m for a particular parameter set. This figure clearly shows that,
for a given final condition,

T n
p (m) = t f , (27)

with t f as a sufficiently large value, the multiple values of
m are possible solutions. Multiple solutions to the extremum
conditions can specifically exist for a given boundary condi-
tion.
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(a) (b) (c)

(d) (e) (f)θ̇ θ̇ θ̇

θ + φ θ + φ θ + φ

θ = 0

φ = 0φ = 0

n = 3 or 4 n = 5

sol : I

sol : U

sol : S

x̄

ȳ

x̄ x̄

ȳ ȳ

stable fixed
point Θmax ≈ 1.1

Θmax ≈ 0.59 φ ≈ 0.29
O O O

FIG. 4. Three independent solutions to the extremum conditions, Eqs. (5)–(7), that is, (a) sol:I, (b) sol:U, and (c) sol:S, plotted in the x̄–ȳ
space under the same boundary conditions of x̄ f = 5, ȳ f = 0, θ f = 0, and t f /τ = 12. The blue arrows indicate θ at each point. τ is the time
interval of these arrows. Parameters r, φ, and m are determined as follows for each solution: (a) r ≈ 0.5833, φ = 0 (or V̄x ≈ 0.4167, V̄y = 0),
and m → ∞, (b) r ≈ 0.3115, φ = 0 (or V̄x ≈ 0.6885, V̄y = 0), and m ≈ 3.7790, (c) r ≈ 0.5067, φ ≈ 0.2857 (or V̄x ≈ 0.5138, V̄y ≈ 0.1428),
and m ≈ 11.8167. The OM integral and the entropy change of the thermal bath are estimated as follows: (a) Ô = 49/12 ≈ 4.0833 and �ŝb = 5,
(b) Ô ≈ 3.0887 and �ŝb ≈ 9.2896, (c) Ô ≈ 4.0029 and �ŝb ≈ 6.4975, where Ô = 2O/(kBT Pe) and �ŝb = �sb/(kB Pe). (d–f) Schematic
showing the time evolution in each solution’s phase space of θ . The trajectories are shown as arrows from the initial (blue point) to the final
(red point) states. max, which is the maximum value of θ + φ, for each solution, is calculated from Eq. (16). (d) sol:I is at the stable fixed
point indicated by the red point. (e) sol:U corresponds to the passage process n = 3 or 4 (i.e., entire cycle). (f) In sol:S, a nonzero φ is indicated
by the green vertical line. The initial and final states are shifted from the vertical axis of θ + φ = 0. The solution corresponds to the passage
process n = 5 comprising process (ii) and an additional cycle [Fig. 3(a)].

V. DEMONSTRATIONS OF THE MOST PROBABLE PATH

As previously discussed, the overall solutions for the ex-
tremum conditions above are presented in Eqs. (10), (11),
and (15). Hence, parameters r, φ, and m must be decided by
the boundary conditions. However, analytically determining
the parameters (i.e., r, φ, and m) is difficult for the arbitrary
boundary conditions because parameters r and φ depend on
the integral of θ (t ) over time [Eqs. (12) and (13)], while
m depends on r and φ. This section numerically solves
the extremum conditions [Eqs. (5)–(7), under some specific
boundary conditions].

A. Translation to the front

Consider the most probable path for the forward transition,
where the final state occurs before the initial state. As a
typical and physically natural situation, we set the boundary
conditions as x̄ f = 5, ȳ f = 0, θ f = 0, t f /τ = 12. The zero fi-
nal angles, θ f = 0, indicating that the ABP is in the same
direction as the initial time are determined at the final time.
This simple case is a classic example because a nontrivial
particle trajectory is selected as the most probable path among
numerous solutions of the extremum equation both with the
“swing” and “rotation” dynamics of the angle variable.

Three independent solutions are obtained by numeri-
cally resolving Eqs. (5)–(7) using a MATLAB solver bvp4c

[Figs. 4(a)–4(c)]. We represent the straight I-shaped solution
in Fig. 4(a) sol:I, U-shaped solution in Fig. 4(b) sol:U, and
S-shaped solution in Fig. 4(c) sol:S. Parameters r, φ, and m of
each solution can be estimated by applying Eqs. (12), (13),
and (15), respectively, to the numerical solutions. The es-
timated parameter values are provided in the caption of
Figs. 4(a)–4(c). The numerical value of the OM integral and
the entropy production are estimated using Eqs. (4) and (9),
respectively, and are available in the caption of Figs. 4(a)–
4(c).

Figure 3(a) shows that the numerical values of r, φ, and
m for each solution can predict the θ dynamics in the phase
space. Figures 4(d)–4(f) provide a schematic of the θ dynam-
ics in the phase space for sol:I, sol:U, and sol:S, respectively.
In the case of sol:I [Fig. 4(d)], the solution remains at the
origin of the phase space, which is a stable fixed point that
corresponds to the pendulum at the stationary state condition
[i.e., θ + φ = 0 in Fig. 2(a)]. In the case of sol:U [Fig. 4(e)],
the solution shows the n = 3 or n = 4 “swing” dynamics and
satisfies the final condition after a single cycle. Accordingly,
φ = 0; thus, the initial and final conditions are the origin of
the horizontal axis, θ + φ, in the phase space. This situation
can be compared to a pendulum flung at the bottom with a
finite velocity and returns after one swing cycle [Fig. 2(a)].
sol:S in Fig. 4(f) exhibits the “swing” dynamics with n = 5.
Compared to sol:U, φ �= 0 and the initial and final states are
displaced from the origin. The green vertical line in Fig. 4(f)
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indicates this. The pendulum is flung rightwards with a finite
velocity from the point displaced to the right from the bottom.
It then swings back and forth before returning to the initial
point [Fig. 2(a)].

The extremum conditions for a passive Brownian particle,
which is represented by the Langevin equations Eqs. (1)–(3)
with zero propulsion speed (i.e., U = 0) are ẍ = ÿ = θ̈ = 0,
which yield only a trivial straight solution, such as sol:I,
irrespective of the arbitrary boundary conditions. This finding
emphasizes that the mobility of the ABP causes a nontrivial
transition process between two states (e.g., sol:U and sol:S in
Fig. 4).

B. Periodic property of the orientation θ

Due to the periodic property of the orientation, θ , the final
angles, θ f and θ f + 2ωπ , generate the same physical orienta-
tion, where ω is an integer (i.e., ω = 0,±1,±2, · · · ). In the
OM variational principle, ω is a topological rotation number
indicating the number of rotations throughout the transition
path from the initial to the final state. The different rotation
number, ω, distinguishes the solutions of Eqs. (5)–(7) and,
consequently, the locally most probable path. Therefore, the
constraint directly evaluates the OM integral to obtain the
rotation number for the globally most probable path.

We now explore the most probable path of rewriting the
final state as θ f = 2ωπ and determine a solution with ω = 1,
which we denote as sol:� [Fig. 5(a)]. The final condition satis-
fied |θ f | � 2π ; hence, sol:� must be “rotation” (0 < m < 1)
with n = 0, which is a unique solution for this condition.
Figure 5(b) shows a schematic of the sol:� dynamics in the
phase space, with θ (t ) monotonically increasing with time
from the initial to the final state.

C. Most probable path

The solutions to the extremum conditions, Eqs. (5)–(7),
are, at least, the local minimum paths. Therefore, by directly
comparing the estimated values of the OM integral in Figs. 5
and 4, we deduced that the nontrivial path, sol:U, is the glob-
ally most probable path with a noticeably small OM integral,
Ô = 2O/(kBT Pe) ≈ 3, demonstrating the applicability of the
current method with the OM integral and its variation princi-
ple. Accordingly, sol:I, S, and � possessed similar values of
Ô ≈ 4, which are larger than those for sol:U. This result may
be physically interpreted by considering the relatively long
final time, t f /τ = 12, to attain the position x̄ f = 3. The ABP
can attain the same final position in t/τ = 3 when there is no
noise in the system; hence, it must delay by taking a detour.
We also confirmed that using simulated annealing [46,47] for
Eq. (4) makes the U-shaped path the globally most probable
path.

We estimated the entropy change of the thermal bath, �sb,
for each solution and present its values in Figs. 4 and 5. As
discussed in Sec. III B, in a small noise limit, Pe → ∞, the
averaged entropy change over the entire paths was approxi-
mated by the most probable path (i.e., sol:U) as 〈�ŝb〉i→ f ≈
�ŝU

b ≈ 9, where �ŝb = �sb/(kB Pe). We obtained the follow-
ing order of magnitude of the entropy change by comparing its
values for each solution: sol:I < sol:S < sol:U < sol:�. The

sol :

(a)

θ̇

θ + φ

n = 0

φ = −π−π π
θ = 0 θ = θf

(b)

ȳ

x̄

O

FIG. 5. Solution to Eqs. (5)–(7) with boundary conditions x̄ f =
5, ȳ f = 0, θ f = 2π, t f /τ = 12, which are physically similar to the
final condition in Fig. 4 under the periodicity of θ . (a) sol:� plotted
in the x̄-ȳ space. The blue arrows indicate θ at each point. The time
interval of the arrows is τ . The parameter values are calculated as r ≈
0.1578, φ = −π (or V̄x ≈ 1.1578, V̄y = 0), and m ≈ 0.8888. The es-
timated OM integral and the entropy change of the thermal bath
are Ô = 2O/(kBT Pe) ≈ 4.0534 and �ŝb = �sb/(kB Pe) ≈ 12.4914,
respectively. (b) Schematic showing the time evolution in the phase
space of θ . In sol:�, the behavior of θ becomes the “rotation” dynam-
ics, where the passage process n = 0 only exists because m < 1.

solution with the smallest entropy change (e.g., sol:I) does
not necessarily become the most probable path. Furthermore,
we confirmed that the solution to the variational principle of
the entropy change, Eq. (9), only a straight path such as sol:I
because δ(�sb) = 0 yields ˙̄x sin θi − ˙̄y cos θi = 0, indicating
the normal velocity components’ disappearance.

VI. SHAPE PROPERTY OF THE MOST PROBABLE PATH
FOR THE FORWARD TRANSLATION

The previous section demonstrated the most probable path
for translation to the front with specific parameters, namely x f

and t f . This problem will be further discussed in this section,
focusing on the shape and its dependence on parameters x f

and t f .
Figure 6(a) illustrates the OM integral as a function of the

final time [i.e., O(t f )] in the case of x̄ f = 5 for the solutions
demonstrated in Sec. V. The black, red, blue, and green lines
indicate the OM integrals for the sol:I, U, S, and �, respec-
tively. Figure 6(a) shows that the most probable path for these
solutions changed as I → U → � with the increasing t f .
However, sol:S always possessed a larger OM integral than
the other solutions for the entire region. Furthermore, sol:U
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(a)

sol :

sol : U

sol : I

(b)

(c)

FIG. 6. Most probable path as a function of t f and x f in the case of the translation to the front denoted by ȳ f = 0 and θ f = 2πω,
respectively, where ω is an integer. (a) Scaled OM integral, Ô = 2O/(kBT Pe), as a function of t f for each solution of I (black), U (red),
S (blue), and � (green) with x̄ f = 5. The path with the minimum OM integral changes as I → U → � with an increase in t f . sol:S is always
a locally minimum path lacking the smallest OM integral for the entire region. (b) Phase diagram of the globally most probable path in the
parameter space spanned by x f and t f . The solid curve indicates the boundary between sol:U and � (i.e., OU = O�). The dashed curve depicts
the limiting region, where sol:U can exist, and is the boundary between sol:I and U given by Eq. (28). (c) Path samples satisfying ȳ f = 0
and θ f = 2πω of the Langevin simulation of Eqs. (1)–(3) with Pe−1 = 0.08. Each symbol (i.e., black circle, red triangle, and green square)
corresponds to the parameter value shown in panel (b). Each random trajectory is close to the I-, U-, and �-shape.

and S had lower time limits for the existence of the solution
shown at the left end of the plots. The calculation method of
the OM integral for each solution is presented below and in
the Appendix D.

Using the solutions to the extremum conditions shown
in Eqs. (10), (11), and (15), we recorded the OM integral,
final position, and final time as On(r, φ, m), xn

f (r, φ, m), and
t n

f (r, φ, m), respectively. Here, the possible passage process
were labeled by n (e.g., n = 3 or 4 for sol:U and n = 5
for sol:S), as in Figs. 4(e) and 4(f). The explicit forms of
these quantities were provided in the Appendix D. Then, we
calculated the OM integral as a function of the final time, t f ,
under the fixed final position using these expressions for sol:I,
U, S, and �. The value of O(x̄ f = 5, y f = 0, t f ) is shown in
Fig. 6(a).

Figure 6(b) depicts a sketch of the phase diagram for
the most probable path shape to further clarify the shape
properties in the entire parameter space. First, we performed
a simulated annealing of Eq. (4) for the entire parameter

space shown in Fig. 6(b). Next, we obtained the I-, U-
, and �-shaped paths as the globally most probable path.
During this examination, the S-shaped path did not appear
as the globally most probable path, which corresponded
to the observation presented in Fig. 6(a). The boundaries
separating the parameter space for the differently shaped
most probable paths are represented by the solid and dashed
lines in Fig. 6(b) for sol:U-� and sol:I–U and calculated
as follows:

The boundary between sol:U and � indicated that the OM
integrals for sol:U and � had the same value, i.e., OU = O�.
We present herein the OM integral, final position, and fi-
nal time as OU(r, m), xU

f (r, m), and tU
f (r, m), respectively,

for sol:U and O�(R, M ), x�
f (R, M ), and t�

f (R, M ) for sol:�
(Appendix D). We used R and M instead of r and m for
sol:� to distinguish it from sol:U. Three equations, namely
OU(r, m) = O�(R, M ), xU

f (r, m) = x�
f (R, M ), and tU

f (r, m) =
t�

f (R, M ), were numerically resolved for the four variables of
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r, m, R, and M. The solution with one degree of freedom is
denoted by the solid line that separates the parameter regions
of sol:U and sol:� in Fig. 6(b).

We confirmed OU � OI through simulated annealing when
sol:U existed for the boundary between sol:U and I. The
condition for the existence of sol:U provided the boundary of
sol:U and I, which is depicted by the dashed line in Fig. 6(b).
We determined that sol:U only exists for the parameters satis-
fying the following condition:

t f

τ
>

2π√
1 − x̄ f τ/t f

. (28)

This may be derived by taking the limit m → ∞ for t f and
x f of sol:U (Appendix D). Equation (28) corresponds to the
dashed line in Fig. 6(b).

We also performed the Langevin simulation of Eqs. (1)–(3)
to confirm our phase diagram and show sample trajectories,
which satisfied ȳ f = 0 and θ f = 2πω, in the Fig. 6(c). The pa-
rameters used in the sample paths are represented by the black
circle, red triangle, and green square symbols in Fig. 6(b).
The sample trajectories agreed with the most probable paths
obtained using the method of the OM integral for the corre-
sponding parameter values.

VII. SUMMARY AND DISCUSSION

This study analyzed the rare events of single ABP dynam-
ics [Eqs. (1)–(3)] and obtained the most probable transition
process path using the OM variational principle. First, we
minimized the OM integral given by Eq. (4) to derive the
extremum conditions [Eqs. (5)–(7)] that must be obeyed by
the most probable path. Next, we resolved the extremum
conditions with the specific initial and final conditions using
analytical and numerical calculations to obtain the most prob-
able path.

In Sec. IV, we analyzed the extremum conditions and
discovered an analogy with the pendulum motion equation in
the orientation dynamics, θ (t ). The solution of Eq. (7) can be
classified as “rotation” or “swing” dynamics depending on the
parameter value m that indicated the inverse of the pendulum’s
kinematic energy. Figure 2(b) shows that these solutions can
be explained using the phase space orbits spanned by θ and
θ̇ . Figure 3 reveals various passage processes between the
two states and presents a calculation of the passage time, T n

p ,
for each process. We determined the possibility that multiple
solutions can be obtained from the same boundary conditions
based on the T n

p calculation.
In Sec. V, we showed the most probable path under spe-

cific, but prototypical boundary conditions (i.e., x̄ f = 5, ȳ f =
0, θ f = 0, and t f /τ = 12) and discovered that the system has
three independent solutions: sol:I, U, and S (Fig. 4). We also
obtained an independent solution (i.e., sol:�) in Fig. 5 for the
condition θ f = 2π , which was physically similar to that of the
final state, θ f = 0, because of the θ periodicity. By estimating
the OM integral for each solution directory, we conclude that
sol:U is the most probable path among the four solutions of
sol:I, U, S, and �.

In Sec. VI, we also analyzed the most probable path for
the front translation with various boundary conditions satis-
fying y f = 0, θ f = 2πω. The shape of the most probable path

changed as I-, U-, and �-shape with an increasing final time, t f

[Fig. 6(a)]. Figure 6(b) displays the trajectory shape as a phase
diagram spanned by the final position and time, x f and t f . This
phase diagram was numerically confirmed by the Langevin
simulation of the original equations [Eqs. (1)–(3)].

This study applied the Dirichlet (or first type) boundary
conditions for the initial xi, yi, θi and final x f , y f , θ f states. We
obtained the natural boundary conditions as follows by con-
sidering the variational principle, δO = 0, at the boundaries
(t = 0 or t = t f ) [42]:

˙̄xτ − cos θ = 0, ˙̄yτ − sin θ = 0, θ̇ = 0. (29)

We may use these natural boundary conditions instead of the
Dirichlet boundary condition, which enable us to obtain the
most probable path between two separated positions without
setting the initial and final orientation, θi and θ f . In this case,
θi, θ f , and the rotation number, ω, will be automatically cho-
sen. Even if experiments can only detect the position of an
active particle rather than its orientation, the natural boundary
conditions are more relevant.

Explicit calculations of the most probable path will help us
understand the process in real rare transition events, such as
slit passing [48,49] and escape from a wall trap [50]. Although
we focused on a free single ABP in this study, the most proba-
ble path in geometrically or mechanically confined situations
(e.g., potential force [36,38] and background fluid flow [51])
may be calculated by employing the following equations:

ẋ = U cos θ − μ
∂�

∂x
+ uex

x (x, y) + ξx(t ), (30)

ẏ = U sin θ − μ
∂�

∂y
+ uex

y (x, y) + ξy(t ), (31)

θ̇ = � − μr
∂�

∂θ
+ uex

θ (x, y) + ξθ (t ), (32)

instead of Eqs. (1)–(3). Here, �(x, y, θ ) is the potential;
μ and μr are the mobilities for each degree of freedom;
and uex

x,y,θ (x, y) is the contribution from the background fluid
flow. � is the chiral velocity defined as the averaged ro-
tational velocity of particle orientation and used in chiral
ABP studies [52]. We may consider an external fluid flow,
uex

x (x, y), induced by the hydrodynamic interaction between
particles using Faxén’s law [53,54]. The Lagrange multiplier
method can include additional constraints for the most proba-
ble path, such as spatial confinement by a wall [42]. Another
generalization is possible for individual variances, including
fluctuations in the frequencies of bacterial tumbling motions.
Therefore, individual variances may be introduced in the dif-
fusion constant, Dr .

Furthermore, the OM variational principle for multiple
ABPs or continuum models of active particles can analyze
rare collective events like colony splits and the dilemma of
a lost child from the flock. The OM integral for continuum
fields has been proposed in the macroscopic fluctuation the-
ory [35,55]. This approach to rare collective events would be
valuable in the field of active matter.

Another possible application of the OM integral is in opti-
mal problems, such as travel time optimization [56,57], where
we selected a system’s control function to minimize the target
function (e.g., total travel time). An example for this would be
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Eqs. (30)–(32) when an external potential or shear was used as
the control function. The OM integral scheme can determine
the optimal control, but this will be reported elsewhere.

By providing a method for determining the most prob-
able path of an ABP with the variational principle for the
OM integrals, we demonstrated herein that the most proba-
ble path could be nontrivial with prototypical parameter sets
using a mathematical analogy with the pendulum equation.
Our approaches will be valuable in understanding the phys-
ical process of rare transitions, and can also be extended to
more complex fluctuation-driven rare events in active matter
systems.
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APPENDIX A: PATH PROBABILITY

1. Path probability

In this Appendix, we derive Eq. (4) by following Ref. [32].
Let us consider a general system of N stochastic variables,
x(t ), obeying the Langevin equation:

ẋi = vi(x) + ξi(t ), (A1)

where vi(x) (i = 1, 2, · · · , N) is the drift velocity, and ξi(t ) is
the Gaussian white noise that satisfies conditions 〈ξi〉 = 0 and
〈ξi(t )ξ j (0)〉 = 2Di jδ(t ), where Di j is a diffusion tensor that
is a symmetric positive definite matrix. The Fokker–Planck
equation corresponding to the Langevin equation is given as
follows:

Ṗ (x, t ) = L(x, t )P (x, t ), L(x, t ) = −∂ivi(x) + Di j∂i∂ j,

(A2)

where P (x, t ) is the probability distribution functions.
The path probability, P[x(t )|x0], is the probability of a

specific stochastic trajectory, x(t ), during the time interval,
0 � t � t f . First, we discretized the time interval by M time
points as t0 = 0, t1, · · · , tM = t f , where the time separation is
�t = tm+1 − tm. Next, the values of the stochastic trajectory,
x(t ), associated with the discretized time points are given by
x0, x1, · · · , xM . Later, we will consider the continuous repre-
sentation by taking the large-M limit. The path probability,
P[x(t )|x0], was obtained by the product of the conditional
probability distribution functions, P (x, t |x′, t ′), which is a
solution of the Fokker–Planck equation under the initial con-
dition [P (x) = δ(x − x′) at t = t ′] and expressed as follows:

P[x(t )|x0] = lim
M→∞

M−1∏
m=0

P (xm+1, tm+1|xm, tm). (A3)

At a sufficiently small time separation, �t = t − t ′, the
Fokker–Planck equation may be resolved as follows:

P (x, t |x′, t ′) = [1 + (�t )L(x′, t ′) + O(�t2)]δ(x − x′).
(A4)

We obtained the following using the Fourier description, x �→
q:

P (x, t |x′, t ′) ≈
∫

dqN

(2π )N
[1 − iqivi(x′)�t

− qiq jDi j�t]eiqk (xk−x′
k ). (A5)

By applying the e−t ≈ 1 − t approximation, the above expres-
sion becomes

P (x, t |x′, t ′) ≈
∫

dqN

(2π )N
exp[−iqivi(x′)�t

− qiq jDi j�t + iqi(xi − x′
i )]. (A6)

We obtained the following by completing the square:

P (x, t |x′, t ′) = exp

[
−D−1

i j

4
ViVj�t

]

×
∫

dqN

(2π )N
e−Dkl (qk−iD−1

kmVm/2)(ql −iD−1
ln Vn/2)�t ,

(A7)

where we introduced Vi = [xi − x′
i − vi(x′)�t]/(�t ) ≈ ẋi −

vi(x′). We only consider P (x, t |x′, t ′) ∼ exp[−D−1
i j ViVj�t/4]

because the Gaussian integral is a constant.
As in Eq. (A3), the path probability is given by the products

of Eq. (A7) and written as follows:

P[x(t )|x0] ∼ lim
M→∞

exp

[
−

M−1∑
m=0

D−1
i j

4

[
ẋm

i − vm
i

][
ẋm

j − vm
j

]
�t

]
,

(A8)

where we define ẋm
i = (xm+1

i − xm
i )/(�t ) and vm

i = vi(xm).
We note that vm

i cannot be uniquely defined because of the
indeterminacy of time discretization, which will be discussed
in the next section. Therefore, we obtained the following
equation by introducing the integral in the exponential rather
than the summation:

P[x(t )|x0]

∼ exp

{
−

∫ t f

0
dt

D−1
i j

4
[ẋi(t )− vi(x(t ))][ẋ j (t )− v j (x(t ))]

}
.

(A9)

We obtained Eq. (4) with the following specific diffusion
tensor and drift velocities using this expression with N = 3:

D =
⎛
⎝Dt 0 0

0 Dt 0
0 0 Dr

⎞
⎠, (A10)

vx = U cos θ, vy = U sin θ, vθ = 0. (A11)
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2. Different definitions from the indeterminacy
of time discretization

The OM integral cannot be uniquely defined because of
the indeterminacy of time discretization [25,27]. Therefore,
note that Eq. (A9) is only one expression of the OM integral.
We derived herein the general expression of the OM integral,
including a parameter representing the time discretization
method [40]. We then obtained the following equation with
an expansion vi(xm + δm) ≈ vm

i + (∂vi/∂x j )δm
j for small δm

and Eq. (A8):

P[x(t )|x0] ∼ lim
M→∞

exp

{
−

M−1∑
m=0

D−1
i j

4

×
[

ẋm
i − vi(xm + δm) + ∂vi

∂xk
δm

k

]

×
[

ẋm
j − v j (xm + δm) + ∂v j

∂xl
δm

l

]
�t

}
(A12)

∼ lim
M→∞

exp

(
−

M−1∑
m=0

D−1
i j

4

{[
ẋm

i − vi(xm + δm)
]

× [
ẋm

j − v j (xm + δm)
]
�t + 2

∂vi

∂xk
δm

k ξ j�t

})
,

(A13)

where ξi denotes the noise in the Langevin equa-
tions [Eq. (A1)]. δ characterizes a time discretization method
defined as δm

i = γ (xm+1
i − xm

i ) = γ ẋm
i �t , where γ is a param-

eter bounded as 0 < γ < 1. Hence, using the ẋiξ j�t = Di j

relation and the following previous studies [40], we obtained

P[x(t )|x0] ∼ lim
M→∞

exp

(
−

M−1∑
m=0

D−1
i j

4

×
{[

ẋm
i − vi(xm + δm)

][
ẋm

j − v j (xm + δm)
]
�t

+2γ
∂vi

∂xk
Dk j�t

})
. (A14)

Finally, by using the small-time separation limit and replac-
ing the summation with an integral, we obtained the general
expression of the path probability as follows, including the γ

parameter:

P[x(t )|x0] ∼ exp

(
−1

4

∫ t f

0
dt

{
D−1

i j [ẋi(t ) − vi(x(t ))]

× [ẋ j (t ) − v j (x(t ))] + 2γ
∂vi(x)

∂xi

})
. (A15)

Notably, the calculations in the main text are independent of
γ because ∂vi/∂xi = 0 is always satisfied [Eq. (A11)].

APPENDIX B: DERIVATION OF EQS. (5)–(7)

We derived the extremum conditions Eqs. (5)–(7) in this
Appendix. Let us consider a functional O[x(t )] of N variables,
x(t ). With a definition of the variations O[x + εδx] ≈ O[x] +
εδO + ε2δ2O + · · · , the variational principle requires the first
variation of O[x(t )] to vanish (i.e., δO = 0). When we wrote

the functional O[x(t )] as

O =
∫ t f

0
dt o(t, x, ẋ), (B1)

the variational equilibrium, δO = 0, yielded the Euler–
Lagrange equation as

∂o

∂xi
− d

dt

(
∂o

∂ ẋi

)
= 0. (B2)

If a quadratic form gives the integrand o as

o ∼ D−1
i j [ẋi − vi(x)][ẋ j − v j (x)], (B3)

the Euler–Lagrange equation is simplified as follows:

D−1
jk

(
∂v j

∂xi
+ δi j

d

dt

)
(ẋk − vk ) = 0. (B4)

We obtained the extremum conditions Eqs. (5)–(7) using the
specific forms of Di j and vi [Eq. (A11)] for N = 3.

APPENDIX C: EXTREMUM CONDITIONS FOR AN
ELLIPSOIDAL ABP

Let us consider an ellipsoidal ABP. The diffusion matrix
considers nonsymmetric shape effects. Therefore, using the
new coordinates, x‖ and y⊥, that move along the particle
direction defined as⎛

⎝x‖
y⊥
θ

⎞
⎠ =

⎛
⎝x cos θ + y sin θ

y cos θ − x sin θ

θ

⎞
⎠, (C1)

the Langevin equations of the ellipsoidal ABP are given as

ẋ‖ = U + ξ‖(t ), (C2)

ẏ⊥ = ξ⊥(t ), (C3)

θ̇ = ξθ (t ), (C4)

where U is the constant drift velocity and ξα is the zero-mean
noise satisfying the condition 〈ξα (t )ξβ (0)〉 = 2Dαβδ(t ) (α =‖
,⊥, θ ) with the diffusion matrix:

D =
⎛
⎝D‖ 0 0

0 D⊥ 0
0 0 Dr

⎞
⎠. (C5)

We obtained the extremum conditions as follows by apply-
ing the OM variational principle (Appendix B) to the original
coordinates, x, y, θ :

τ ˙̄x(cos2 θ + λ sin2 θ ) + (1 − λ)τ ˙̄y sin θ cos θ

− cos θ = V̄x − 1, (C6)

τ ˙̄y(λ cos2 θ + sin2 θ ) + (1 − λ)τ ˙̄x sin θ cos θ − sin θ = λV̄y,

(C7)

θ̈ τ = [(λ − 1)τ ( ˙̄x cos θ + ˙̄y sin θ ) + 1][ ˙̄x sin θ − ˙̄y cos θ ],
(C8)

which must be obeyed by the most probable paths. Here, we
introduced the length and time scales as L = √

D‖/Dr and
τ = L/U , respectively; further, we introduced the nondimen-
sional positions as x̄ = x/L and ȳ = y/L and the aspect ratio
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as λ = D‖/D⊥. λ may vary in the range of 1/2 � λ � 2 for
the thermal fluctuations of a normal ellipsoidal body [41]. V̄x

and V̄y represent the nondimensional initial velocities deter-
mined by the final conditions. When λ = 1, Eqs. (C6)–(C8)
were reduced to the symmetric spherical case as Eqs. (5)–(7).
Using Eqs. (C6) and (C7), we rewrite Eq. (C8) as follows:

θ̈ τ 2 = −r sin(θ + φ)

[
1 − λ − 1

λ
r cos(θ + φ)

]
, (C9)

where we used r =
√

(V̄x − 1)2 + V̄ 2
y λ2, cos φ = −(V̄x −

1)/r, and sin φ = λV̄y/r. Equation (C9) is analogous to the
equation of motion for a certain potential system that is not
applicable for a simple pendulum and can have multiple local
minima. Therefore, we obtained the following solution by
multiplying Eq. (C9) with θ̇ and integrating once:

θ̇2τ 2 = 4
r

m

{
1 − m sin2[(θ + φ)/2]

+ m
λ − 1

λ
r sin2[(θ + φ)/2] cos2[(θ + φ)/2]

}
,

(C10)

where m is a parameter determined by the boundary condition
that can also be negative when λ < 1. Using this solution, we
can analyze the most probable path of the ellipsoidal particles
with a method similar to that mentioned in Sec. IV. However,
the passage process will be more complicated than the case
of the simple spherical particle because the corresponding
potential may have multiple local minima.

APPENDIX D: EXPLICIT FORM OF THE OM INTEGRAL

In this Appendix, we evaluated the OM integral for each
solution (i.e., sol:I, U, and �) for the front translation, which
required y f = 0 and θ f = 2πω (ω is an integer). Figures 6(a)
and 6(b) were generated based on this Appendix.

1. For sol:I

Sol:I is a function of values for the boundary condition,
x f and t f , and explicitly given by x̄(t ) = x̄ f t/t f , y(t ) = 0, and
θ (t ) = 0. Using Eq. (4), we obtained the OM integral for sol:I
as ÔI = 2OI/(kBT Pe) = (x̄ f τ/t f − 1)2t f /τ , which is plotted
as the black curve in Fig. 6(a) for x̄ f = 5.

2. For sol:U

Sol:U is given by Eqs. (10), (11), and (15) with passage
process n = 3 or 4 [Fig. 4(e)]. Further, we used the relation
φ = 0, which yields ˙̄xτ = cos θ − r and ˙̄yτ = sin θ , to satisfy
y f = 0. We obtained the following expression as a function
of r and m > 1 by substituting these relations into the OM
integral [Eq. (4)]:

ÔU(r, m) =
∫ t f

0

dt

τ

4r

m

[
1 − m sin2(θ (t )/2)

] + r2t f (r, m)/τ

(D1)

= 8

√
r

m

∫ max

0
dθ

√
1 − m sin2(θ/2)

+ 4r
√

rF (π/2, 1/m), (D2)

where we changed the integrating variable t → θ with
the passage processes shown in Fig. 4(e). max is in Eq. (16).
The final time is given by tU

f (r, m) = Tc [Eq. (21)]. By
defining the integrals,

Gc(k) =
∫ π/2

0
dz

cos2 z√
1 − k sin2 z

, (D3)

Gs(k) =
∫ π/2

0
dz

sin2 z√
1 − k sin2 z

, (D4)

with 0 < k < 1, we may simplify the expressions (D2) as

ÔU(r, m) = 16

√
r

m
Gc(m−1) + 4r

√
rF (π/2, m−1), (D5)

where we used

∫ max

0
dθ

√
1 − m sin2(θ/2) = 2√

m
Gc(m−1). (D6)

Introducing this into Eqs. (10) and (15), we also demon-
strated the following final position as a function of r and m:

x̄U
f (r, m) = 2

√
m/r

∫ max

0
dθ

cos θ√
1 − m sin2(θ/2)

− rt f (r, m)/τ (D7)

= 4
√

r−1

[
F (π/2, m−1) − 2

m
Gs(m

−1)

]

− rt f (r, m)/τ. (D8)

The OM integral, final position, and final time were all
parameterized by r and m; thus, we calculated the OM in-
tegral for a set of x f and t f by tuning r and m. We plotted
OU(x̄ f = 5, t f ) as the red curve in Fig. 6(a).

We considered the m → ∞ limit to obtain the existing
limit of sol:U described by Eq. (28). As m → ∞, the final
position shown in Eq. (D8) became x̄U

f = 2π (1/
√

r − √
r).

Additionally, the lower time limit was obtained by taking the
m → ∞ limit. We then derived tU

f > 2πτ/
√

r. Eliminating r
from these two equations, we obtained Eq. (28).

3. For sol:S

For sol:S denoted by the passage process n = 5 shown in
Fig. 4(f), the OM integral [Eq. (4)] is given as

ÔS(r, m, φ) = r2t f (r, m, φ)/τ

+ 2
∫ max−φ

0
dθ θ̇τ + 4

∫ max−φ

−φ

dθ θ̇τ, (D9)

with positive φ, where we used Eqs. (10) and (11) and
changed the integrating variable t → θ with passage pro-
cesses n = 5.

064120-12



MOST PROBABLE PATH OF AN ACTIVE BROWNIAN … PHYSICAL REVIEW E 106, 064120 (2022)

We obtained the final position as follows using the solution
in Eqs. (10) and (11):

x̄S
f (r, m, φ) = −r cos φt f (r, m, φ)/τ

+
√

m/r
∫ max−φ

0
dθ

cos θ√
1 − m sin2[(θ + φ)/2]

+
√

m/r
∫ max−φ

−max−φ

dθ
cos θ√

1 − m sin2[(θ + φ)/2]
,

(D10)
ȳS

f (r, m, φ) = r sin φt f (r, m, φ)/τ

+
√

m/r
∫ max−φ

0
dθ

sin θ√
1 − m sin2[(θ + φ)/2]

+
√

m/r
∫ max−φ

−max−φ

dθ
sin θ√

1 − m sin2[(θ + φ)/2]
.

(D11)

From Eqs. (19) and (23), the final time is given as

tS
f (r, m, φ) = T 5

p = 3Tc/2 − 2
√

m/rF (φ/2, m). (D12)

Similar to the case of sol:U, the OM integral, final position,
and final time were parameterized by r, m, and φ. We then
calculated the OM integral as a function of x f , y f , and t f by
tuning r, m, and φ. Finally, we plotted OS(x̄ f = 5, y f = 0, t f )
as the blue curve in Fig. 6(a).

4. For sol:�

Sol:� also obeyed Eqs. (10), (11), and (15) with θ f = 2π .
In this case, we required φ = −π , which yields relations
˙̄xτ = cos θ + R and ˙̄yτ = sin θ to satisfy y f = 0. In this Ap-
pendix, we used R and M (0 < M < 1) instead of r and m to
distinguish sol:U from S. Therefore, the OM integral for sol:�

was evaluated as follows by substituting the above relations:

Ô�(R, M ) =
∫ t f

0

dt

τ

4R

M

(
1 − M sin2{[θ (t ) − π ]/2})

+ R2t f (R, M )/τ (D13)

= 8

√
R

M
H (M ) + 2R2

√
MR−1F (π/2, M ),

(D14)

where we defined

H (k) =
∫ π/2

0
dz

√
1 − k sin2 z (0 < k < 1), (D15)

and calculated the final time for sol:� by Eq. (17) as

t�
f (R, M ) = T 0

p (M ) = 2τ
√

MR−1F (π/2, M ). (D16)

The final position was evaluated from Eq. (10) as

x̄�
f (R, M ) = 1

2

√
M/R

∫ π

−π

dθ ′ cos(θ ′ + π )√
1 − M sin2(θ ′/2)

+ Rt f (R, M )/τ (D17)

= −2
√

M/R[F (π/2, M ) − 2Gs(M )]

+ Rt f (R, M )/τ. (D18)
Using a similar method in the case of sol:U, we plotted
O�(x̄ f = 5, t f ) as the green line in Fig. 6(a) for x̄ f = 5.

We generated the boundary shown as the solid line in
Fig. 6(b) by numerically comparing OU and O� in Eqs. (D5)
and (D14). On the boundary, the OM integral, final posi-
tion, and final time for sol:U and � must coincide, that is,
OU(r, m) = O�(R, M ), xU

f (r, m) = x�
f (R, M ), and tU

f (r, m) =
t�

f (R, M ). First, we numerically resolved these three equa-
tions for four variables, namely r, m, R, and M. Next, with
one degree of freedom, the solution becomes the boundary in
Fig. 6(b) separating the parameter regions of sol:U and sol:�.
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