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Analysis of entropy production in finitely slow processes between nonequilibrium steady states
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We investigate entropy production in finitely slow transitions between nonequilibrium steady states in Markov
jump processes using the improved adiabatic approximation method, which has a close relationship with the
slow driving perturbation. This method provides systematic improvement of the adiabatic approximation on
infinitely slow transitions from which we obtain nonadiabatic corrections. We analyze two types of excess
entropy production and confirm that the leading adiabatic contribution reproduces known results, and then obtain
nonadiabatic corrections written in terms of thermodynamic metrics defined in protocol parameter spaces. We
also numerically study the resulting excess entropy production in a two-state system.

DOI: 10.1103/PhysRevE.106.064119

I. INTRODUCTION

Recently, thermodynamics and statistical physics on sys-
tems of nonequilibrium steady states (NESSs) have attracted
much attention. Rich thermodynamic structures in NESSs,
such as those in equilibrium thermodynamics have been
revealed through studies on stochastic thermodynamics of
Markov jump processes and Langevin systems, etc. [1]. In
equilibrium thermodynamics the entropy production is one
of the most important concepts that quantitatively character-
izes deviations from equilibrium and the entropy production
is nonnegative as we know through the Clausius inequality.
It is natural to expect that the quantities that quantitatively
characterize the deviations from NESSs also play a key role
in the construction of the NESS version of thermodynamics.
Aiming to find such a quantity it was proposed in Ref. [2] that
the decomposition of entropy production into the so-called
housekeeping entropy production and the renormalized excess
entropy production. The housekeeping entropy production is
constantly produced in NESSs and is related to the house-
keeping steady heat Qhk which is the heat transfer necessary
to maintain a system in a given steady state. On the other
hand, the renormalized excess entropy production is related
to the renormalized excess heat defined as Qex = Qtot − Qhk ,
where Qtot is the total heat transfer of the system. The excess
entropy production vanishes in NESSs and becomes nonzero
when states depart from the NESS, thus, it may characterize
the deviation from NESSs [2–8].1 Accordingly, the extended
form of the Clausius relation has been examined in order
to construct an NESS version of thermodynamics [8,10–
19]. Among these, Komatsu, Nakagawa, Sasa, and Tasaki
(KNST) found KNST’s extended Clausius inequality using

*matsuo@anan-nct.ac.jp
†sonoda@sb.anan-nct.ac.jp
1Recently, Dechant et al. have introduced in Ref. [9] the third

component of the decomposition named as “the coupling entropy
production” in their geometric approach which plays a role of in-
teractions between different types of driving forces.

a symmetrized version of Shannon entropy in the lowest
order of nonequilibrium [6,14]. Furthermore, in Ref. [20]
the geometric expressions of the excess entropy production
for quasistatic transitions between NESSs have been derived.
The expressions imply vector potentials, instead of scalar
potentials, in parameter spaces play roles in steady state ther-
modynamics. Although much research has concerned mainly
quasistatic transitions between NESSs, finitely slow tran-
sitions beyond the regime of the adiabatic and quasistatic
transitions are still elusive. It is necessary to investigate the
aforementioned findings even on finitely slow transitions with
nonadiabatic corrections in order to put forward our under-
standings on NESS thermodynamics. In Ref. [21] Takahashi
et al., have introduced a method that systematically improves
the adiabatic approximation of the solution of the master
equation and enables us to investigate beyond the adiabatic
regime. In this paper we investigate the excess entropy pro-
duction in finitely slow transitions between NESSs by using
the improved adiabatic approximation method, especially fo-
cusing on the decompositions defined in Refs. [6,20] and in
Refs. [4,8] in which both the excess and the housekeeping
entropy productions are nonnegative and satisfy the second
law of thermodynamics.

This paper is organized as follows. In Sec. II, we introduce
the Markov jump process of finite states and entropy pro-
duction. In Sec. III, we briefly review the improved adiabatic
approximation method for the stochastic master equation and
point out the relationship to the slow driving perturbation
[22,23]. We apply the method to entropy production to get
perturbative series expansions. In Sec. IV, we consider a typi-
cal two-state system as a concrete example where we examine
the excess entropy production with the nonadiabatic effects in
slow processes. Section V is devoted to a discussion and the
summary.

II. MASTER EQUATION OF THE MARKOV JUMP
PROCESS AND ENTROPY PRODUCTION

We consider a continuous-time Markov jump
process with discrete finite N (<∞) states. Let pi(t ) be a
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probability of the system in a state i(=0, 1, . . . , N − 1)
at time t , and the probability distribution is given by
|p(t )〉 := [p0(t ), p1(t ), . . . , pN−1(t )]T . The time evolution
of |p(t )〉 is described by the following stochastic master
equation:

d

dt
|p(t )〉 = R[α(t )]|p(t )〉, (2.1)

where R[α(t )] is a N × N transition rate matrix which is a
function of time-dependent parameters {αμ(t )}μ=1,2,... collec-
tively denoted as α(t ) which describe protocols through which
external agents operate the system. The system is supposed to
be in contact with multiple different reservoirs and the rate
matrix composes as R[α(t )] = ∑

a Ra with a being the label
of reservoirs. The normalization of the probability distribution
is written with the use of 〈1| := (1, 1, . . . , 1) as

〈1|p(t )〉 =
∑

i

pi(t ) = 1. (2.2)

We see from the normalization of the probability distribution
at arbitrary time that the transition rate matrix satisfies the
normalization condition,

(〈1|R) j =
∑

i

Ri j = 0, (2.3)

which implies the existence of zero eigenvalue. We suppose
the transition rate matrix R is irreducible and there is no de-
generacy. The transition rate matrix is not Hermitian, thus, the
left and right eigenvectors do not conjugate with each other.
The solution of the master equation is expressed formally as

|p(τ )〉 = T exp

(∫ τ

0
dt R[α(t )]

)
|p(0)〉, (2.4)

where T is the time ordering.
Assuming the local detailed balance condition we define

the entropy production in the reservoirs associated with the
transition j → i by

σ a
i j := ln

Ra
i j

Ra
ji

= −βaQa
i j (2.5)

for the cases of Ra
i j �= 0 and Ra

ji �= 0, where Qa
i j is the heat

absorbed from the heat reservoir with the inverse temperature
βa. A total process is composed of a sequence of transitions
j → i → k → · · · forming a trajectory in the state space and
the accumulated reservoir entropy production in the total pro-
cess is given by

σr :=
∑

a

∑
t

σ a
i(t+0) j(t−0), (2.6)

which depends on the trajectory and, hence, is the stochastic
quantity. The expectation value of the entropy production is
given by

〈σr〉 =
∫ τ

0
dt σ̇r, (2.7)

where the entropy production rate is given by

σ̇r :=
∑

a

∑
i, j

Ra
i j p jσ

a
i j

= 〈1|Rσr |p(t )〉, (2.8)

where the i j component of Rσr is given as (Rσr )i j :=∑
a Ra

i jσ
a
i j .

The system entropy production rate is provided by the
Shannon entropy H = −∑

i pi ln pi as

Ḣ = −
∑

a

∑
i, j

Ra
i j p j ln

pi

p j
, (2.9)

where we have used the master equation for pi and the nor-
malization property of the rate matrix (2.3) [24]. The sum of
the above two entropy production rates gives a total entropy
production rate [1],

σ̇tot : = σ̇r + Ḣ

=
∑

a

∑
i, j

Ra
i j p j ln

Ra
i j p j

Ra
ji pi

, (2.10)

which can be shown to be positive [19].
In this paper we focus on entropy production in transitions

between steady states. We consider instantaneous steady state
probabilities pS

i [α(t )] with a given protocol parameter α(t )
which is defined through the relation,

R[α(t )]|pS[α(t )]〉 = 0. (2.11)

Note that the instantaneous steady state |pS[α(t )]〉 itself is not,
in general, a solution of the master equation except for con-
stant protocol α(t ) = α where the time derivative of |pS (α)〉
vanishes.

Steady states require certain amounts of heat to maintain
the states called housekeeping heat [2] which is accompanied
by housekeeping entropy production. We consider two types
of housekeeping entropy production rates. One is defined by
replacing |p(t )〉 with an instantaneous steady state |pS[α(t )]〉
in the reservoir entropy production rate (2.8),

σ̇hk : =
∑

a

∑
i, j

Ra
i j pS

j ln
Ra

i j

Ra
ji

= 〈1|Rσr |pS[α(t )]〉. (2.12)

This entropy production rate has been considered in
Refs. [6,14,20], and we call this the Sagawa-Hayakawa
housekeeping entropy production rate.2 The reservoir en-
tropy production rate is renormalized by the housekeeping
entropy production rate to give the corresponding (Sagawa-
Hayakawa) excess entropy production rate,

σ̇ex : = σ̇r − σ̇hk

=
∑

a

∑
i, j

Ra
i j ln

Ra
i j

Ra
ji

(p j − pS
j ). (2.13)

The excess entropy production rate σ̇ex vanishes for a steady
state where |p(t )〉 = |pS〉 as it should. Note, however, that the
integrated excess entropy production does not vanish in transi-
tions between different steady states because the deviation of
the intermediate state from the steady state contributes to the
integral. This is even the case in infinitely slow (or adiabatic)

2In Ref. [20], this expression is derived as a “dynamical phase” in
a formulation using the full-counting statistics.
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processes in which intermediate states can be regarded as
almost steady states.

We also focus on another housekeeping entropy production
rate, namely, the Hatano-Sasa housekeeping entropy produc-
tion rate [4],

�̇hk :=
∑

a

∑
i, j

Ra
i j p j ln

Ra
i j pS

j

Ra
ji p

S
i

, (2.14)

which is positive definite that can be shown by using the
property (2.11) [19]. The corresponding (Hatano-Sasa) excess
entropy production rate is given by

�̇ : = σ̇r − �̇hk

=
∑

a

∑
i, j

Ra
i j p j ln

pS
i

pS
j

, (2.15)

which also vanishes for a steady state |p(t )〉 = |pS〉. The
entropy production rate also provides nonzero entropy pro-
duction under integrations even in infinitely slow processes.
Indeed, it is a well known fact that the Hatano-Sasa entropy
production becomes the minus Shannon entropy difference
in adiabatic slow processes as a result of the Hatano-Sasa
relation [4].

III. IMPROVED ADIABATIC APPROXIMATION

The solutions of the master equation |p(t )〉 are well de-
scribed by the adiabatic approximation for slow processes in
which states of the system stay steady at arbitrary time. Here
we are interested in deviations from slow processes and how
nonadiabatic effects would develop. In Ref. [21] Takahashi
et al. have introduced a method that systematically improves
the adiabatic approximation of the solution of the master
equation and enables us to investigate beyond the adiabatic
regime and further study has been performed in Ref. [25]. In
this section, we review the improved approximation method
and will apply it to the formula of the entropy production in
the next section.

Let λn(α) be the nth eigenvalue of R(α), where Re λn >

Re λm for m > n from Perron-Frobenius theorem and we set
n = 0 which corresponds to the zero eigenvalue λ0 = 0. We
assume there is no degeneracy. The corresponding left and
right eigenvectors satisfy

〈λn|R = 〈λn|λn, R|λn〉 = λn|λn〉, (3.1)

and we set the normalization,

〈λn(α)|λm(α)〉 = δnm. (3.2)

Since the rate matrix R(α) is not Hermitian, the left and right
eigenvectors do not conjugate with each other. We note that
the states depend on time through the time-dependent proto-
cols α(t ), thus, we will abbreviate |λn[α(t )]〉 as |λn(t )〉 in the
following argument.

It should be noted that there is a symmetry of arbitrariness
in the set of the eigenvectors {〈λn|}, {|λn〉},

〈λn| → 〈λn|S−1
n (t ), |λn〉 → Sn(t )|λn〉, (3.3)

where S(t ) is an arbitrary function. We fix this arbitrariness
[21] by taking

〈λ̃n| := 〈λn|eγn(t ), |λ̃n〉 := e−γn(t )|λn〉, (3.4)

where

γn(t ) :=
∫ t

0
ds〈λn(s)|λ̇n(s)〉 (3.5)

is the geometric phase [26–30]. The set of states {〈λ̃n|}, {|λ̃n〉}
have a special property, namely, these are invariant under the
transformation (3.3), and as a consequence,

〈λ̃n(t )| ˙̃λn(t )〉 = 0 (∀ n), (3.6)

which implies the geometric phase is zero in this basis and we
call this the zero phase condition. The orthonormal condition
is unchanged in this basis,

〈λ̃m(t )|λ̃n(t )〉 = δmn. (3.7)

In the following arguments, it should be understood that the
states with a tilde satisfy the zero phase condition. Still there
is arbitrariness about constant multiplicative factor though it
does not affect the final results.

We expand the solution of the master equation |p(t )〉 with
respect to the basis |λ̃n(t )〉 as

|p(t )〉 =
∑

n

cn(t )e
n(t )|λ̃n(t )〉, (3.8)

where


n(t ) :=
∫ t

0
ds λn(s) (3.9)

is the dynamical phase.
We obtain the differential equation for the coefficients cn(t )

by substituting the above expression to the master equation,

ċn(t ) = −
∑
m=0

cm(t )e−[
n(t )−
m (t )]〈λ̃n(t )| ˙̃λm(t )〉. (3.10)

In the ordinary adiabatic approximation in quantum mechan-
ics, the transition rates between different levels of eigenstates
might be neglected. It follows that the terms other than m = n
would be omitted in equations corresponding to (3.10), and
only a single level of state plays the role. However, this is not
the case here because of the Euclidean nature of the setup. We
will employ a different approximation scheme where we keep
only the term with m = 0 and omit the terms with positive m
in the sum which is justified by the presence of the exponential
suppressions. It follows that after the time integration we find:

cn(τ ) � cn(0) −
∫ τ

0
dt e−
n (t )〈λ̃n(t )| ˙̃λ0(t )〉. (3.11)

Note that the zero eigenvalue states 〈1| and |pS〉 sat-
isfy the zero phase condition 〈1| ṗS〉 = 0 which is derived
by differentiating the normalization condition 〈1|pS〉 = 1.
Then, we identify 〈λ̃0(α)| = 〈1|, |λ̃0(α)〉 = |pS (α)〉, and we
have c0(t ) = 〈λ̃0|p(t )〉 = 〈1|p(t )〉 = 1 for ∀ t . Furthermore,
we consider processes in which systems start from steady state
distributions and develop according to given protocols α(t ).
This implies the initial condition cn(0) = 0 for n �= 0. Putting
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(3.11) back into (3.8) we obtain the approximated solution of
the master equation in the following form:

|p(τ )〉 � |pS[α(τ )]〉 +
∑
n=1

|λ̃n(τ )〉δn(τ ), (3.12)

where

δn(τ ) = −
∫ τ

0
dt exp

[∫ τ

t
dt ′λn(t ′)

]
〈λ̃n(t )| ˙̃λ0(t )〉. (3.13)

The second term in (3.12) contains the factor which is omitted
in the ordinary adiabatic approximation as a nonadiabatic
mixing effect. This term may be further decomposed in the
following way. It is easy to see the coefficient δn(τ ) satisfies
the following equation:

dδn(t )

dt
= λn(t )

[
δn(t ) − 〈λ̃n(t )| ˙̃λ0(t )〉

λn(t )

]
. (3.14)

Since the eigenvalues λn(t ) (n �= 0) are negative, δn(t ) quickly
approaches the fixed point,

δ(0)
n (t ) := 〈λ̃n(t )| ˙̃λ0(t )〉

λn(t )
. (3.15)

We can take iteratively the derivative expansion of δn(t )
around the fixed point to get

δn(t ) =
∞∑

k=0

(
1

λn(t )

d

dt

)k

δ(0)
n (t ). (3.16)

With this decomposition we have the improved adiabatic ex-
pansion,

|p(t )〉 � |pS[α(t )]〉 +
∑
n=1

∞∑
k=0

|λ̃n(t )〉
(

1

λn(t )

d

dt

)k

δ(0)
n (t ).

(3.17)

This is an approximation in the sense that we neglect the
transitions between different states other than the transitions
to a steady state. Note that the diagonal transitions do not exist
due to the zero phase condition in this basis.

A comment is in order here. In Refs. [22,23] slow
transitions between nonequilibrium steady states have been
analyzed by the slow driving perturbation method for proba-
bility distribution. One might wonder about the relationship to
the improved adiabatic approximation. In fact, the improved
adiabatic expansion is derived from the slow driving per-
turbation as we will briefly explain below. Let us write the
probability distribution as the sum of the steady state with a
small correction as

|p(t )〉 = |pS[α(t )]〉 + |�p(t )〉. (3.18)

Substituting this into the master equation we obtain

d

dt
|�p(t )〉 = R|�p(t )〉 − d

dt
|pS[α(t )]〉. (3.19)

To solve this equation, we introduce the Moore-Penrose gen-
eralized inverse matrix,

R+ : =
∑
n �=0

λ−1
n (t )|λ̃n〉〈λ̃n|

=
∫ ∞

0
dt eRt

(|pS〉〈1| − 1
)
, (3.20)

which satisfies

R+R = RR+ = 1 − |pS〉〈1|,
R+|pS〉 = 0, 〈1|R+ = 0. (3.21)

Multiplying the generalized inverse matrices to (3.19) from
the left we obtain(

1 − R+ d

dt

)
|�p(t )〉 = R+ d

dt
|pS[α(t )]〉. (3.22)

Here we have used 〈1|�p(t )〉 = 0 which is followed by the
conservation of probability 〈1|p(t )〉 = 〈1|pS (t )〉 = 1. This is
solved iteratively to get the slow driving expansion,

|p(t )〉 =
∞∑

k=0

(
R+ d

dt

)k

|pS[α(t )]〉. (3.23)

So far the expression is exact.3 We now show that this expan-
sion is reduced to the improved adiabatic expansion (3.17).
First let us note the relation,

〈λ̃n(t )|R+ d

dt
|λ̃m(t )〉 = δnm

1

λn(t )

d

dt
+ 1

λn(t )
〈λ̃n(t )| ˙̃λm(t )〉

(n �= 0, m �= 0). (3.24)

The off-diagonal elements with n �= m (n, m �= 0) in the
second term might be neglected under the adiabatic approxi-
mation as we have performed in the improved approximation.
Furthermore, the diagonal terms would vanish in the zero
phase condition 〈λ̃n(t )| ˙̃λn(t )〉 = 0. Then, we obtain the ap-
proximate relation,

〈λ̃n(t )|R+ d

dt
|λ̃m(t )〉 � δnm

1

λn(t )

d

dt
(n �= 0, m �= 0).

(3.25)

Then, by inserting the completeness relation
∑

n=0 |λ̃n〉〈λ̃n| =
1 between the products of the derivatives in (3.23), and not-
ing the fact that the zero modes vanish due to the condition
〈1|R+ = 0, we finally obtain the improved adiabatic expan-
sion (3.17).4 We note that the two methods are equivalent
when the number of the states is less than 2 in which the
off-diagonal terms in (3.24) are absent.

3It has been pointed out in Ref. [31] that the series is an asymptotic
expansion though is tractable with the Borel summation.

4It would seem that the slow driving expansions would reduce to
the improved adiabatic expansion only with the particular gauge
fixing condition, however, this is not the case. Even without the
condition, we find the diagonal terms play no role in the calculation
as should be expected by the symmetry.
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Now we plug the expansion (3.17), or (3.23), into (2.8) to
get approximated entropy production. We obtain the Sagawa-
Hayakawa housekeeping entropy production from the first
term of the expansion which represents the steady state. We
also get the Sagawa-Hayakawa excess entropy production in
a form

〈σ 〉ex =
∑
k=0

〈σ 〉(k)
ex , (3.26)

where

〈σ 〉(k) =
∫ τ

0
dt〈1|Rσ

(
R+ d

dt

)k+1

|pS〉

�
∫ τ

0
dt

∑
n=1

〈1|Rσ |λ̃n(t )〉
(

1

λn(t )

d

dt

)k

δ(0)
n (t ), (3.27)

where we have used the slow driving expansion (3.23) in the
first line, and the improved adiabatic expansion (3.17) in the
second line.

It is obvious that the leading (k = 0) term is written as

〈σ 〉(0)
ex =

∫
〈1|RσR+d|pS〉, (3.28)

which is geometric in the sense that it depends on the ge-
ometry of the path traversed in parameter space spanned by
αμ. The geometric expressions in the adiabatic limit have
been argued in various contexts [20,29,30,32]. In particular,
in Ref. [20], the expression (3.28) has been obtained as the
Berry-Sinitsyn-Nemenman phase in a formulation with the
full-counting statistics.

As for the Hatano-Sasa entropy production (2.15), the
steady state term |pS〉 in (3.17) and (3.23) does not contribute
to the excess entropy production because of the properties
of steady state probability. Then, the entropy production be-
comes

〈�〉 =
∑
k=0

〈�〉(k), (3.29)

where

〈�〉(k) =
∫ τ

0
dt

∑
i, j

Ri j ln pS
i

[(
R+ d

dt

)k+1

pS (t )

]
j

�
∫ τ

0
dt

∑
i, j

Ri j ln pS
i

∑
n=1

λ̃n
j

(
1

λn(t )

d

dt

)k

δ(0)
n (t ),

(3.30)

where again we have used the expansions (3.23) and (3.17) in
the first and the second lines, respectively.

It is easy to see by using the relation (3.22) that the leading
(k = 0) term in (3.29) is equal to the minus of the Shannon
entropy difference �H in quasistatic processes,

〈�〉(0) = −�H, (3.31)

where �H is the difference between the initial and the final
distributions, both of which are supposed to be steady states,

�H := −
∑

i

pS
i (τ ) ln pS

i (τ ) +
∑

i

pS
i (0) ln pS

i (0). (3.32)

Since the leading term represents an adiabatic (infinitely slow)
transition, we see this is a consequence of the well known
Hatano-Sasa inequality.

It is interesting to see the subleading k = 1 terms in which
we may find the geometric structure for the k = 1 term in the
Hatano-Sasa entropy production [22,33]. We are able to define
a metric in parameter spaces as follows. We write the k = 1
term in a form

s〈�〉(1) =
∑
i, j

ln pS
i R+

i j

d pS
j

dt

∣∣∣∣∣
τ

0

−
∫ τ

0
dt

∑
i, j

pS
j

d ln pS
i

dt
R+

i j

d ln pS
j

dt
. (3.33)

We may omit the surface term since we consider the transi-
tions between steady states in which time derivatives vanish.
Therefore, we have, recalling the protocol parameter is given
by αμ,

〈�〉(1) =
∫ τ

0
dt gHS

μν (α)α̇μα̇ν, (3.34)

where

gHS
μν (α) = −1

2

∑
i, j

pS
j

(
∂ ln pS

i

∂αμ
R+

i j

∂ ln pS
j

∂αν

+ ∂ ln pS
i

∂αν
R+

i j

∂ ln pS
j

∂αμ

)
, (3.35)

which is so-called the thermodynamic metric.

IV. TWO-STATE SYSTEM

Now let us take, as a concrete example, the two-state sys-
tem which is a typical model of a quantum dot in the strong
Coulomb blockade regime [34]. As we mentioned before,
the improved adiabatic approximation in two-state systems is
exactly the same as the slow driving perturbation. Therefore,
the word adiabatic is equivalent to quasistatic in this case.

The system is supposed to take two states i = 0 and i = 1,
which, respectively, describe that the electron is absent and
occupies the dot. The system couples to M reservoirs specified
by inverse temperature βa and chemical potential μa where a
is the label of the reservoirs. The transition rate is given by
R = ∑M

a=1 Ra with

Ra =
(− fa 1 − fa

fa fa − 1

)
, (4.1)

where fa is the Fermi distribution function fa := (eβa(E−μa ) +
1)−1 with E being the excitation energy of the dot.5 The
reservoir entropy production in the transition from the state
i = 1 to i = 0 is ln(Ra

01/Ra
10) = σ a

01 = −σ a
10 = −σa with

σa = −βa(E − μa), and, thus, the Fermi distribution func-
tion is written as fa = (e−σa + 1)−1. The i j component of
the product of the transition rate and the reservoir entropy

5We have set the rates of the transition from the dot to reservoirs to
one for simplicity.
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production is

(Raσ a)i j =
(

0 −(1 − fa)σa

faσa 0

)
. (4.2)

The two eigenvalues of the transition rate R are λ0 = 0 and
λ1 = −M, and corresponding right eigenvectors are

|λ̃0〉 = |pS〉 = 1

M

(
M − F

F

)
, |λ̃1〉 =

(
1

−1

)
, (4.3)

respectively, where F = ∑
a fa. For left eigenvectors we have

〈λ̃0| = 〈1| = (1, 1), 〈λ̃1| = 1

M
(F, F − M ). (4.4)

One may check that the geometric phase in each state is
zero, hence, we have put the tilde on the states. We find the
fixed point function (3.15) appearing in the expansion of the
improved adiabatic approximation,

δ
(0)
1 (t ) = 1

M2
Ḟ . (4.5)

Therefore, the distribution function (3.17) takes a form as

|p(t )〉 = 1

M

(
M − F

F

)
+

∞∑
k=0

(
− 1

M

)k+2 dk+1F

dtk+1

(
1

−1

)
.

(4.6)

Plugging (4.6) into the formulas in the previous section, we
obtain the entropy production.

The Sagawa-Hayakawa housekeeping entropy production
(2.12) is obtained from the steady state term as

σ̇hk (t ) =
∑

a

faσa − 1

M

∑
a

fa

∑
b

σb, (4.7)

which provides the housekeeping entropy production,

〈σ 〉hk =
∫ τ

0
dt σ̇hk (t ). (4.8)

Then, we get the excess part of the entropy production,

〈σ 〉(k)
ex =

(
− 1

M

)k+2 ∫ τ

0
dt

∑
a

σa
dk+1F

dtk+1
. (4.9)

In particular, the leading k = 0 term provides, by noting Ḟ =∑
a fa(1 − fa)σ̇a,

〈σ 〉(0)
ex = 1

M2

∫
C

∑
a

σa

∑
b

fb(1 − fb)dσb. (4.10)

This result has been derived originally in Ref. [20] in the
method of the full counting statistics where the derivation is
quite similar way as we get the geometric phase in quantum
mechanics [26,27].6

6The integrand in (4.10) itself does not transform as a vector field.
The gauge field lives in the space which is different from that spanned
by σa.

We write the k = 1 term in the Sagawa-Hayakawa entropy
production as

〈σ 〉(1)
ex = − 1

M3

∫ τ

0
dt

∑
a

σa
d2F

dt2

= − 1

M3

∑
a

σa
dF

dt

∣∣∣∣
τ

0

+ 1

M3

∫ τ

0
dt

d
∑

a

σa

dt

dF

dt
.

(4.11)

Omitting the surface term we find a metric of the form

gSH
μν (α) = 1

2M3

⎛
⎜⎜⎝

∂
∑

a

σa

∂αμ

∂F

∂αν
+

∂
∑

a

σa

∂αν

∂F

∂αμ

⎞
⎟⎟⎠, (4.12)

where αμ is the coordinate in which the functions σa and F
transform as scalars.

We also examine the Hatano-Sasa entropy production,

〈�〉(k) =
(

− 1

M

)k+1 ∫ τ

0
dt ln

M − F

F

dk+1F

dtk+1
. (4.13)

As stated in the previous section, we can check explicitly,
the leading term 〈�〉(0) becomes the minus of the Shannon
entropy difference.

The k = 1 term in the Hatano-Sasa entropy production
becomes

〈�〉(1) = 1

M2

∫ τ

0
dt ln

M − F

F

d2F

dt2

= 1

M2
ln

M − F

F

dF

dt

∣∣∣∣
τ

0

− 1

M2

∫ τ

0
dt

dF

dt

d

dt

(
ln

M − F

F

)
, (4.14)

from which we find a thermodynamic metric,

gHS
μν (α) = 1

MF (M − F )

∂F

∂αμ

∂F

∂αν

. (4.15)

The function F should transform as a scalar in the coordinate
αμ.

As an illustration, we consider a protocol where the system
couples to two reservoirs [left (a = L) and right (a = R)] and
compare the behaviors of the two types of entropy production.
The dot is supposed to be initially in thermal equilibrium
with σL = σR = 0 corresponding to infinitely high tempera-
ture states. Then, we change σL from 0 to u, whereas σR is
left unchanged. We assume the parameter σL changes linearly
in time σL = bt where b = σ̇L is a proportional constant. The
explicit forms of the functions for the housekeeping parts of
entropy production, and the k = 0, 1 terms in the expansion
are listed in the Appendix, and here we show the behaviors of
these functions in Fig. 1. In Fig. 1(a), we see the housekeeping
part of the Sagawa-Hakayawa entropy production diverges.
As we see in Fig. 1(b), there is a small difference between
the housekeeping parts of the Sagawa-Hayakawa and Hatano-
Sasa entropy production which we denote as 〈��〉hk that
approaches a constant at large u. On the other hand, the excess
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FIG. 1. The behavior of the Sagawa-Hayakawa (blue lines) and the Hatano-Sasa (red lines) entropy production.

parts of entropy production approach constants at large u as
we see in Figs. 1(c) and 1(d). The expansion of 〈σ 〉(0)

ex with
respect to u coincides with that of 〈�〉(0) up to O(u2) and the
behavior of 〈σ 〉(1)

ex is the same as that of 〈�〉(1)
ex up to O(u3). In

Fig. 1(d), we see that the excess entropy production increases
as the speed of the variation of the protocol b increases. The
k = 0, 1 terms of the excess entropy production are positive,
so the results satisfy a generalization of the second law of
the steady state thermodynamics for the transitions between
NESSs [19].

V. CONCLUSION

In this paper, we have investigated entropy production
in finitely slow transitions between NESSs in stochas-
tic master equations for Markov jump processes of finite
states by using the improved adiabatic approximation which
has a close relationship with the slow driving perturbation
method. Indeed, the former is obtained from the latter by
omitting the off-diagonal transitions in the perturbation ex-
pansion in a particular gauge condition. We focused on the
Sagawa-Hayakawa and the Hatano-Sasa entropy productions
and from the leading contributions of the expansion of the

improved and slow driving approximations, which are valid
in adiabatic and quasistatic processes, we confirmed the
known results, namely, the Berry-Sinitysn-Nemenman phase
in the Sagawa-Hayakawa case and the Shannon entropy dif-
ference in the Hatano-Sasa case. Furthermore, in the next
leading order of the approximations, we obtained results in
terms of thermodynamic metrics defined in parameter spaces.
However, we simply derived the thermodynamic metric with-
out any applications. The physical implications should be
uncovered in future works. For the higher order of the approx-
imations, we compared numerical results for the two types of
the excess entropy production in a two-state system with a
concrete protocol. Although we studied the two-state system
in which the improved adiabatic approximation is exactly the
same as the slow driving perturbation, it is interesting to see
any physical implication of the difference of the two methods.
We are currently investigating the model which has more than
two states and hope to report the results shortly.
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APPENDIX: ENTROPY PRODUCTION

We show explicit expressions and asymptotic behaviors of entropy production in the protocol described in the text.
The housekeeping part of the Sagawa-Hayakawa entropy production becomes

〈σ 〉hk = 1

4b

∫ u

0
dx x tanh

( x

2

)
=

{
1

24bu3 − 1
480bu5 + O(u7) (u 
 1)

→ ∞ (u → ∞),
(A1)

and the k = 0, 1 terms of the entropy production become, respectively,

〈σ 〉(0)
ex = 1

4

[
ln 2 − ue−u

e−u + 1
− ln(e−u + 1)

]
=

{
1

32 u2 − 1
256 u4 + O(u6) (u 
 1)

→ 1
4 ln 2 (u → ∞),

(A2)

and

〈σ 〉(1)
ex = b

8

[
− ue−u

(e−u + 1)2
+ 1

e−u + 1
− 1

2

]
=

{
b

192 u3 − b
960 u5 + O(u7) (u 
 1)

→ b
16 u → ∞).

(A3)

The housekeeping part of the Hatano-Sasa entropy production is

〈�〉hk = 〈σ 〉hk + 〈��〉hk

=
{

1
24bu3 + 1

1024 u4 + (− 1
480b + b

5120

)
u5 + O(u6) (u 
 1)

→ ∞ (u → ∞),
(A4)

where

〈��〉hk =
∫ u

0
dx

e−x (2 + b + (2 − b)e−x )

8(1 + e−x )3

(
x + 2 ln

1 + 3e−x

3 + e−x

)

=
{ 1

[1024 u4 + b
5120 u5 + O(u6) (u 
 1)

→ 1
16 {20 ln 2 − 8 ln 3 + 3b(ln 3 − 1)} (u → ∞).

(A5)

The k = 0, 1 terms of the entropy production become, respectively,

〈�〉(0) = −�H

= 2 − F

2
ln

2 − F

2
+ F

2
ln

F

2
+ ln 2 =

{
1

32 u2 − 5
1024 u4 + O(u6) (u 
 1)

→ 3
4 ln 3 − ln 2 (u → ∞),

(A6)

where F = 1
e−u+1 + 1

2 , and

〈�〉(1) = beu
[
(5 + 3 cosh u) ln

(
3+eu

1+3eu

) + 4 sinh u
]

8(1 + eu)2
=

{
b

192 u3 − 19b
15360 u5 + O(u7) (u 
 1)

→ b
16 (4 − 3 ln 3) (u → ∞).

(A7)

We have denoted the behaviors at small and large u (u → ∞ corresponds to zero temperature). We see both of the housekeeping
parts diverge and the excess parts approach constants at large u.
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