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Capture of a diffusing lamb by a diffusing lion when both return home
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A diffusing lion pursues a diffusing lamb when both of them are allowed to get back to their homes
intermittently. Identifying the system with a pair of vicious random walkers, we study their dynamics under
Poissonian and sharp resetting. In the absence of any resets, the location of intersection of the two walkers follows
a Cauchy distribution. In the presence of resetting, the distribution of the location of annihilation is composed
of two parts: one in which the trajectories cross without being reset (center) and the other where trajectories are
reset at least once before they cross each other (tails). We find that the tail part decays exponentially for both the
resetting protocols. The central part of the distribution, on the other hand, depends on the nature of the restart
protocol, with Cauchy for Poisson resetting and Gaussian for sharp resetting. We find good agreement of the
analytical results with numerical calculations.
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I. INTRODUCTION

Search is a fundamental endeavor to survival ranging from
human search [1] to rescue operations [2] to animal foraging
[3,4] to protein binding on DNA [5], transcription factors
searching for a specific DNA [6,7], to mention a few. A useful
search strategy involves intermittent phases of slow motion
aiding the searcher in target detection and fast motion allow-
ing the searcher to cover maximal ground in minimal time
[8]. Restarting a search process at intermittent intervals, aka
stochastic resetting, has been extensively shown to expedite
search [9]. Stochastic resetting has been a very active topic of
research within the realm of nonequilibrium statistical physics
over the past decade [9]. The basic essence of stochastic reset-
ting is that in any kind of search process, the search is rarely
successful in the first attempt. Following which the search is
restarted again and again until the process culminates with
success. This property is common to a wide variety of search
processes. Now it is almost always true that if a sufficient
amount of time is devoted, then any search shall meet success.
The question of value is, however, whether an intermittent
restart of the search process tends to reduce the time of com-
pletion. The answer to this question is affirmative. At least
in the case of stochastic algorithms it has been shown that a
simple restart might expedite completion [10–12]. Not only in
endeavors of human interest, nature also employs restarts in
many processes, for example enzymatic reactions following
the Michaelis-Menten reaction scheme [13].

The idea of stochastic resetting to the Brownian search
problem was first applied in the seminal work of Evans
and Majumdar [14]. They showed that restarting a Brownian
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particle to its initial location at a constant rate renders
the mean first passage time (MFPT) finite. The process of
restarting a stochastic process at a constant rate is termed
as Poissonian resetting. In addition to Brownian motion,
Poissonian resetting has been applied to run and tumble
particles [15], fluctuating interfaces [16], dynamical phase
transitions [17,18], resetting transitions [19,20], telegraphic
processes [21], comblike structures [22,23], multiple Brow-
nian searchers [24], etc. However, Poissonian resetting is not
exclusive and other protocols such as power-law distributed
resetting times [25], resetting rates depending on space [26]
and time [27] have also been extensively studied. This raises
an interesting question: given the wide class of resetting proto-
cols, does there exist a reset mechanism under which MFPT is
minimal? This question is difficult to answer in its full gener-
ality. However, when resetting is renewal, then sharp resetting
in which the time interval between two resets is fixed serves
as the best strategy [28,29]. In other words, “if there exists
a stochastic resetting protocol that improves search process,
then there exists a deterministic restart protocol that performs
as good or better” [30].

Poissonian and sharp restarts lie at the two extremes of
renewal resetting, the former being memoryless and the latter
retaining its entire memory. Both these protocols were com-
pared against each other for a system of Brownian particles
searching for a target in Ref. [31] and it was shown that
sharp resetting typically leads to a lower search cost than that
in Poissonian resetting. This study was taken further for a
system of Brownian particles where interactions are relevant,
for example, in population genetics [32]. The inclusion of
interactions further allows one to consider more nontrivial
forms of resetting mechanisms such as those which are driven
by the interactions between the constituent particles [33] or
space-dependent resetting in interacting Brownian particles
[34]. One of the most important examples which involves
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interacting random walks is the well-known prey predator
model which culminates when the prey is captured by the
predator [35]. An exactly solvable prey predator model with
resetting was recently considered by Evans and coworkers
[36] where the prey on its encounter with a predator can either
perish or be reset to its initial location.

In the present work we consider the prey predator model
within the realm of vicious random walks which annihilate
each other the moment their trajectories cross [37]. The con-
cept was first introduced by Fisher in the context of interfacial
wetting in 1 + 1 dimensions [38,39] and has since been ap-
plied to Coulomb gas [40] and random matrices [41]. The
survival probability for vicious random walkers in one di-
mension exhibits power-law decaying tails [42], and any two
such walkers shall certainly meet each other as a random
walk in one dimension is recurrent [43,44]. The problem
of reunion of two vicious random walks corresponds to the
chemical reaction A + A → φ [45] and is one of the most clas-
sic problems in nonequilibrium statistical physics [46–48].
The annihilating nature of the vicious walkers makes them
suitable for studying directed polymer brushes wherein the vi-
ciousness captures the role of the nonintersecting property of
polymers [49]. Vicious random walks have also been applied
to breathing DNA with the collapse of the bubbles viewed
as an annihilation of two vicious walkers moving in opposite
potentials [50]. Furthermore, the distribution of the location
of coalescence makes it relevant to study the location where
the trajectories of two vicious walkers cross. In the context of
the capture problem where a hungry lion pursues a lamb
[51], the location of intersection tells us how far the hunt is
made from the home. The scenario also makes the concept
of resetting very natural [52]. This is because either the lamb
shall every now and then return to its home, or the lion to
its den, or both. The reason that such a thing might happen
is the lion pursues the lamb but could not catch it and gets
tired eventually getting back in its cave. On the other hand,
the freely roaming lamb might spot the lion and run away
from it. This makes the study of vicious random walks under
resetting very natural. In other words, if we have two vicious
Brownian particles we want to know how long do they survive
without crossing each other’s paths? And if their trajectories
cross, what is the nature of the distribution of such a point?
Do the answers to these questions depend on the resetting
protocol employed? We address these questions in the follow-
ing sections by studying the system of two vicious Brownian
particles under resetting. The particles are reset identically to
their respective initial positions either at constant rates (Pois-
sonian resetting) or after fixed time intervals (sharp resetting).

II. TWO VICIOUS RANDOM WALKERS

Consider two Brownian particles:

ẋ1 = η1(t ), (1a)

ẋ2 = η2(t ), (1b)

where η1(t ), η2(t ) are independent Gaussian random de-
viates with mean zero and delta correlated variance, that
is, 〈η1(t )η1(t ′)〉 = 2D1δ(t − t ′) and 〈η2(t )η2(t ′)〉 = 2D2δ(t −
t ′). At t = 0 the two walkers are at x1 = 0 and x2 = L. The

two walkers annihilate each other as soon as their paths cross,
that is, x1(t ) = x2(t ). The problem is readily transformed to
the motion of the center of mass xc = x1+x2

2 and relative sepa-
ration of the two particles xr = x1 − x2. In terms of the new
coordinates, the center of mass moves as a free Brownian
particle as

ẋc(t ) = ηc(t ), (2)

where 〈ηc(t )〉 = 0 and 〈ηc(t )ηc(t ′)〉 = 2Dcδ(t − t ′) with Dc =
D1+D2

4 . On the other hand, the relative coordinate xr moves like
a Brownian particle on line

ẋr (t ) = ηr (t ), (3)

where 〈ηr (t )〉 = 0 and 〈ηr (t )ηr (t ′)〉 = 2Drδ(t − t ′) with Dr =
D1 + D2. Before the trajectories of the two particles cross,
the center of mass exhibits a Brownian motion centered at
xc = L/2 with a diffusion coefficient Dc and the relative
coordinate is a Brownian particle starting at xr = −L with
an absorbing wall at xr = 0. The first passage time distribu-
tion (FPTD) of the relative coordinate to the absorbing wall
at xr = 0 is F (t ) = L√

4πDrt3
exp ( − L2

4Drt ) and the probabil-

ity density function (PDF) of the center-of-mass motion is
p(xc, t ) = 1√

4πDct
exp [ − (xc−L/2)2

4Dct ] [53,54]. From the FPTD it
is evident that the mean time to the annihilation of the two
vicious walkers 〈t〉 = ∫ ∞

0 dt t F (t ) is infinite. The recurrence
of a Brownian motion in one dimension, however, implies that
the two walkers will eventually collide, and the PDF of the
location of intersection is

h(xc) =
∫ ∞

0
dt F (t )p(xc, t )

= 1

π

L/
√

DrDc

L2

Dr
+ (xc−L/2)2

Dc

, (4)

which is a Cauchy distribution centered at xc = L/2. Similar
to the MFPT, there is no well-defined mean location of the
intersection of the two vicious walkers. This is because even
though the two walkers shall certainly meet, they may take a
really long time to do so by venturing out in opposite direc-
tions resulting in the divergence of MFPT and a well-defined
mean location of annihilation. In other words, the hungry lion
may keep pursuing the lamb forever and might eventually die
of hunger. And this is where resetting comes in to prevent the
hungry lion from dying.

III. RESETTING TO INITIAL CONFIGURATION

With the vector (x1, x2) defining the system, define a reset-
ting protocol: after an interval of reset time τ the system is
reverted back to its initial configuration. The time τ is either
an exponentially distributed random variable (Poissonian re-
setting) or a fixed quantity (sharp resetting). For simplicity let
us assume that the two walkers are reset via identical resetting
protocols at the exact same time. The reason for this choice is
the following: let us assume that the two walkers are reset at
different times τ1 and τ2; then a scenario is possible in which
τ1 < τ2 and x1(τ1) < x2(τ2) < 0 just before reset has taken
place. The moment after the reset we have x1(τ1) > x2(τ2)
which apparently means that the two trajectories have crossed
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paths. Such crossing of two walkers is, however, erroneous
as at the time of reset the first particle is removed from its
current location and put back to its initial location instan-
taneously. This makes the intersection point an ill-defined
quantity simply for the reason that actual trajectories did not
cross. We avoid such a pathological situation by requiring that
the two particles be reset at the exact same time. Furthermore,
restarting the two walkers identically retains the advantage
that the two-particle system is still described by the motion
of the center of mass and motion about the center of mass.
Next we consider the two resetting protocols one by one.

A. Poissonian resetting

Let the two walkers be reset to their respective initial lo-
cations at a rate R. Then the FPTD of the relative coordinate
under Poissonian resetting is [52]

F̃R(s) = F̃ (s + R)
s

s+R + R
s+R F̃ (s + R)

, (5)

where F̃ (s) = ∫ ∞
0 dt e−st F (t ) = exp(−

√
sL2/Dr ) is the

Laplace transform of the FPTD without resetting [55].
From this follows the MFPT under Poissonian resetting as

〈TR〉 = e
√

RL2/Dr −1
R . This result has been previously derived

in [14] via the backward Fokker-Planck equation and many
works following it. Here we state the result as a reminder that
MFPT under Poissonian resetting is finite.

In order to study the effect of resetting on the PDF of the
intersection of the two trajectories, we need the FPTD FR(t )
given in terms of the Bromwich integral [56]:

FR(t ) = 1

2π i

∫ γ+i∞

γ−i∞
ds

(s + R)e−αL

s + Re−αL
est ,

large t≈ 1

2π i

∫ γ+i∞

γ−i∞
ds

Re−z

s + Re−αL
est , (6)

where α =
√

s+R
Dr

and z = √
R/DrL. While the exact inversion

of F̃R(s) is possible [57], for our purposes the long time behav-
ior of FR(t ) suffices. This integral is easily evaluated from the
residue of F̃R(s) at the pole closest to s = 0. The pole of F̃R(s)
is given by the solution of s + Re−αL = 0 which in terms of
s = R(u − 1) reads [14]

u = 1 − e−√
uz, (7)

and has a unique nonzero solution u0 ∈ (0, 1). Thus, the FPTD
at large times is [14]

FR(t )
large t≈ lim

s→s0,R

est (s − s0)F̃R(s)

= 2R
√

u0e−z

2
√

u0 − z(1 − u0)
es0,Rt , (8)

where s0,R = R(u0 − 1) < 0 implying that at large times the
FPTD under resetting possesses exponentially decaying tails.
This result is verified numerically and a good agreement is
found for the characteristic decay exponent s0,R as shown in
Fig. 1(a). Next, we estimate the PDF of the center-of-mass
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FIG. 1. (a) Survival probability q(t ) for the two vicious walkers
following Eq. (1) to not cross paths up to time t reset to their initial
positions at a constant rate R. Red solid line represents numerically
estimated q(t ) while the black dashed line represents the analytical
form q(t ) ∼ exp(−|s0,R|t ). (b) Numerically estimated PDF of the
location of intersection hR(xc ) (green circles) is compared against
the approximate form in Eq. (13) (black solid line). Yellow squares
denote the contribution to ht

R for |xc − L/2| > L/2 and red triangles
hc

R for |xc − L/2| < L/2. We have used a factor b such that hR ∼ bhc
R

to demonstrate that hc
R indeed captures the center of hR (up to a scale).

Parameter values are D1, D2 = 1, L = 1, R = 1, and b = 2.

motion under resetting, following the renewal equation [9]

pR(xc, t ) = e−Rt p(xc, t ) +
∫ t

0
dτ Re−Rτ p(xc, τ ), (9)

where the first term gives the contribution from the trajecto-
ries which have not been reset at all, while the second term
describes the effect of resetting. As a result, the PDF of the
intersection point of the two vicious walkers under Poissonian
resetting annihilating each other with FPTD FR(t ) is

hR(xc) =
∫ ∞

0
dt FR(t )p(xc, t )e−Rt

+
∫ ∞

0
dt FR(t )

∫ t

0
dτ Re−Rτ p(xc, τ )

≡ hc
R(xc) + ht

R(xc), (10)

where hc
R denotes the single integral and ht

R denotes the double
integral. In what follows we shall see that hc

R having the
contribution of intersection points without reset captures the
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central part of the PDF hR. While ht
R describes the tails con-

sisting of the intersection points with reset, hence the usage of
the superscripts c and t , respectively. Let us now proceed to
evaluate the two integrals in (10) one by one.

For the single integral in Eq. (10), FR(t ) = F (t ) =
L√

4πDrt3
exp ( − L2

4Drt ), since the system behaves like the

one without resetting. Furthermore, if we look at the
FPTD under Poissonian resetting, that is, F̃R(s) = (s+R)e−αL

s+Re−αL ,

then at small times F̃R(s)
large s≈ exp [ − L

√
s+R
Dr

] ⇒ FR(t )
small t≈

F (t )e−Rt , which is exactly the same quantity as appearing
in the first integral in (10). In other words, the probability
of crossing of two trajectories without being reset is e−Rt ,
effectively modifying the FPTD entering in the evaluation of
hc

R(xc). Hence, we have

hc
R(xc) = 1

π

√
RL2

L2Dc + (xc − L/2)2Dr

× K1

[√
R

{
L2

Dr
+ (xc − L/2)2

Dc

}]
,

(11)

where K1 is the modified Bessel function of the second kind
and it enters while evaluating the Laplace transform of e−1/t

[55]. The double integral in (10) is similarly evaluated:

ht
R(xc) ≈

∫ ∞

0
dt A(s0,R)es0,Rt

∫ t

0
dτ Re−Rτ p(xc, t )

= RA(s0,R)√
4πDc

∫ ∞

0
dτ

1√
τ

e−Rτ−a/τ

∫ ∞

τ

dt e−|s0,R|t

= RA(s0,R)/|s0,R|√
4Dc(|s0,R| + R)

exp

(
−

√
|s0,R| + R

Dc

∣∣∣∣xc − L

2

∣∣∣∣
)

,

(12)

where a = (xc−L/2)2

4Dc
and A(s0,R) = 2R

√
u0e−z

2
√

u0−z(1−u0 ) . Combining
the results in (11) and (12) we have

hR(xc) ≈ 1

π

√
RL2

L2Dc + (xc − L/2)2Dr

× K1

[√
R

{
L2

Dr
+ (xc − L/2)2

Dc

}]

+ RA(s0,R)/|s0,R|√
4Dc(|s0,R| + R)

exp

[
−

√
|s0,R| + R

Dc

∣∣∣∣xc − L

2

∣∣∣∣
]
.

(13)

From Eq. (13), it is evident that hc
R describes the center and

ht
R the tails of the PDF hR. This is due to the rapid decay

of the modified Bessel function as compared to exponential.
Furthermore, for small arguments K1 decays algebraically,

that is, K1(w)
small w∼ 1/w [58], from where it follows that

hc
R(xc) behaves like a Cauchy distribution. Thus, when the two

walkers are reset to their initial locations at a constant rate, the
PDF hR exhibits a Cauchy distributed center and exponentially

decaying tails. In other words, Poissonian resetting of the two
walkers reduces the fat tails of the PDF to the center and the
far tails are modified to exponential. In summary,

hR(xc) ≈

⎧⎪⎪⎨
⎪⎪⎩

1
π

L/
√

Dr Dc

L2
Dr

+ (xc−L/2)2

Dc

, center,

RA(s0,R )/|s0,R|√
4Dc (|s0,R|+R)

exp
[−√

|s0,R|+R
Dc

∣∣xc − L
2

∣∣], tails.

(14)

We compare the analytically estimated PDF hR in Eq. (13)
(black solid line) with numerical calculations (green circles)
in Fig. 1(b) and find that they are in close proximity.

The contribution to the PDF coming from hc
R in the range

|xc − L/2| < L/2 is scaled by a factor b to match the nu-
merically estimated hR. The reason for doing this is to show
that hc

R indeed captures the shape of the center of the PDF.
The tail part ht

R in region |xc − L/2| > L/2 matches well
with numerically estimated hR as following the similar de-
cay rate as shown in Fig. 1(b). Here, we refer to the region
|xc − L/2| < L/2 as the central part. The simple reason for the
usage of this terminology is that the center of mass is midway
between the two vicious particles and an annihilation taking
place within this region would simply mean that the center of
mass has not ventured far from its mean position.

B. Sharp resetting

In sharp resetting, the two walkers are reset to their respec-
tive initial locations after fixed intervals of time T . In order
to estimate the FPTD under sharp resetting, we use the results
derived by Pal and Reuveni in Ref. [28]. They show that if
τ is the time of completion of a stochastic process without
restart, and ρ is the time interval of restart, then the FPTD
under restart reads [28]

F̃res(s) = Pr(τ < ρ)τ̃min(s)

1 − Pr(ρ � τ )ρ̃min(s)
, (15)

where ρmin = {ρ|ρ = min(ρ, τ )} is the random restart time
given restart occurred before completion and τmin = {τ |τ =
min(ρ, τ )} is the random completion time without any
restarts. For Poissonian resetting when ρ is an exponentially
distributed random variable, that is, fρ (t ) = Re−Rt , Eq. (15)
reduces to (5) (see Supplemental Material in Ref. [28]). For
sharp resetting at fixed intervals of time T , the distribution of
restart times ρ is fρ (t ) = δ(t − T ). As a result,

Pr(τ < ρ)τ̃min(s) = 〈e−sτ 〉

=
∫ ∞

0
dt fτ (t )

∫ ∞

t
dt ′ fρ (t ′)e−st

=
( ∫ T

0
+

∫ ∞

T

)
dt fτ (t )e−st

∫ ∞

t
dt ′δ(t ′ − T )

=
∫ T

0
dt fτ (t )e−st . (16)

The
∫ ∞

T integral in the third line does not contribute anything
as the limits of integration do not contain the point t ′ = T . In
a similar manner

Pr(ρ � τ )ρ̃min(s) = e−sT
∫ ∞

τ

dt fT (t ). (17)
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Using (16) and (17) in Eq. (15) we find that the FPTD of a
stochastic process under sharp restart is given by

F̃T (s) =
∫ T

0 dt fτ (t )e−st

1 − e−sT
∫ ∞

T dt fτ (t )
, (18)

where fτ (t ) is the FPTD without restart and the subscript T
on the left-hand side denotes the time of sharp restart T . From
the FPTD in (18) follows the MFPT under sharp restart:

〈TT 〉 = − d

ds
F̃T (s)

∣∣∣∣
s=0

=
∫ T

0 dt qτ (t )∫ T
0 dt fτ (t )

, (19)

which has been earlier derived in Ref. [27,30] in an alternative
manner with qτ (t ) denoting the survival probability.

For the system of two vicious random walkers fτ (t ) =
F (t ) = L√

4πDrt3
exp ( − L2

4Drt ) ⇒ qτ (t ) = erf( L√
4Drt

) [54]. Us-

ing these in (19) we have the MFPT to annihilation under
sharp resetting

〈TT 〉 =
√

L2T
πDr

e−L2/4Dr T − L2

2Dr
erfc

(
L√

4Dr T

) + T erf
(

L2√
4Dr T

)
erfc

(
L√

4Dr T

) .

(20)

The integral of qτ (t ) above has been evaluated using the in-
tegral representation of the error function and related Laplace
transforms [55,59]. Once again it is evident that resetting gives
a finite MFPT. Next we look at the PDF of the intersection
point.

In order to evaluate the PDF of the intersection point under
sharp resetting, we need the time domain representation of
FPTD in Eq. (18). Using F (t ) = L√

4πDrt3
exp (− L2

4Drt ) we have

FT (t ) = 1

2π i

∫ γ+i∞

γ−i∞
ds

[ ∫ T
0 dt F (t )e−st

1 − e−sT
∫ ∞

T dt F (t )

]
est

large t≈ 1

2π i

∫ γ+i∞

γ−i∞
ds

[ ∫ T
0 dt F (t )

1 − e−sT
∫ ∞

T dt F (t )

]
est

= 1

2π i

∫ γ+i∞

γ−i∞
ds

erfc
(

L√
4Dr T

)
1 − e−sT erf

(
L√

4Dr T

)est , (21)

where we have used the approximation
∫ T

0 dt F (t )e−st ≈∫ T
0 dt F (t ) in the limit of large times t (small s behavior).

The integral is now straightforwardly evaluated from the pole
in the complex plane located at s0,T = 1

T ln erf( L√
4Dr T

). As a
result

FT (t )
large t≈ 1

T

erfc
(

L√
4Dr T

)
erf

(
L√

4Dr T

) es0,T (t+T ) (22)

which implies that at large times FT (t ) decays exponentially
as s0,T < 0, since erf( L√

4Dr T
) < 1 ∀T > 0. We numerically

estimate the characteristic decay time in Fig. 2(a) and find
good agreement with the analytical result. Now we estimate
the PDF of the center of mass under sharp resetting. When the
two vicious walkers are reset to their initial locations regularly
after interval T , the number of renewals taking place up to
time equals � t

T � (�� denotes the floor function). Furthermore,
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FIG. 2. (a) Survival probability q(t ) for the two vicious walkers
following Eq. (1) to not cross paths upto time t sharply reset to their
initial positions after time T . Red solid line represents numerically
estimated q(t ) while the black dashed line represents the analytical
form: q(t ) ∼ exp(−|s0,T |t ). (b) Numerically estimated PDF of the
location of intersection hT (xc ) (green circles) is compared against
the approximate form in Eq. (24) (black solid line). Yellow squares
denote the contribution to ht

T for |xc − L/2| > L/2 and red triangles
hc

T for |xc − L/2| < L/2. We have used a factor b such that hT ∼ bhc
T

to demonstrate that hc
T indeed captures the center of hT (upto a scale).

Parameter values are: D1, D2 = 1, L = 1, T = 1 and b = 0.4

since the center of mass starts afresh after every reset, its PDF
at time t is given by

pT (xc, t ) = 1√
4πDc

(
t − � t

T �T
) exp

[
− (xc − L/2)2

4Dc
(
t − � t

T �T
)]

.

(23)

For t < T we have � t
T � = 0 and the center of mass evolves

with the PDF p(xc, t ). If the trajectories of the two walkers
cross before any restart, then the time of their annihilation
follows the FPTD F (t ). As a result, similar to the case of
Poissonian resetting, the PDF of the intersection point is com-
posed of two parts: one coming from the trajectories which
annihilate each other at t < T , and the remaining ones which
undergo at least one reset event before crossing their paths.
Thus, the PDF of the intersection point under sharp resetting
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is

hT (xc) =
∫ T

0
dt F (t )p(xc, t ) +

∫ ∞

T
dt FT (t )pT (xc, t )

≡ hc
T (xc) + ht

T (xc), (24)

where hc
T and ht

T denote the integrals in the intervals
[0, T ] and [T,∞), respectively, and are defined analogous to
their Poissonian counterparts. The first integral is relatively
straightforward and evaluates to

hc
T (xc) = 1

π

L/
√

DrDc

L2

4Dr
+ (xc−L/2)2

4Dc

exp

[
− 1

T

{
L2

4Dr
+ (xc − L/2)2

4Dc

}]
.

(25)

This implies that under sharp resetting the fat tails of the
Cauchy distribution are tamed to an effective Gaussian. It
becomes even more interesting once we realize that here we
are considering those trajectories which have not even reset
once. In other words, the fact that a restart is set to take place

at t = T , forces a certain fraction of trajectories to cross their
paths, thus introducing Gaussian cutoffs in the tails. In addi-
tion, the central part of the PDF close to the initial location
of the center of mass is Gaussian. Now coming to the second
integral in (24), we have

ht
T (xc) ≈ 1√

4πDcT 2

erfc
(

L√
4Dr T

)
erf

(
L√

4Dr T

) e−|s0,T |T

×
∫ ∞

T
dt

exp

[
− (xc−L/2)2

4Dc

(
t−� t

T �T
) − |s0,T |t

]
√

t − � t
T �T

, (26)

where the limits of integration are kept from T to ∞ for
reasons stated above. The integral in (26) can be evaluated by
decomposing the interval of integration into subintervals of
length T . This helps us to reduce the integral on the real line
[T,∞) to an integration over the interval [0, T ]. The reason
we can do this is that the floor function turns t − � t

T �T into a
periodic function. As a result

∫ ∞

T
dt

exp

[
− (xc−L/2)2

4Dc

(
t−� t

T �T
) − |s0,T |t

]
√

t − � t
T �T

=
∞∑

m=1

e−|s0,T |mT
∫ T

0
dw

1√
w

e−(a/w)−|s0,T |w

=
√

π/|s0,T |
e|s0,T |T − 1

[
e−2

√
a|s0,T | − e−2

√
a|s0,T |

2
erfc

(
T

√|s0,T | − √
a√

T

)

− e2
√

a|s0,T |

2
erfc

(
T

√|s0,T | + √
a√

T

)]
, (27)

where a = (xc−L/2)2

4Dc
and the integral is evaluated using MAXIMA. This implies that the PDF of the intersection point has

exponentially decaying tails for large a. Using (27) in (26) and then along with (25) in Eq. (24) we have

hT (xc) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
π

L/
√

Dr Dc

L2
4Dr

+ (xc−L/2)2

4Dc

exp
[− 1

T

{
L2

4Dr
+ (xc−L/2)2

4Dc

}]
, center,

√
π/|s0,T |√
4πDcT 2

erfc
(

L√
4Dr T

)
erf

(
L√

4Dr T

) e−|s0,T |T

e|s0,T |T −1

[
e−2

√
a|s0,T | − e−2

√
a|s0,T |

2 erfc
( T

√
|s0,T |−√

a√
T

) − e2
√

a|s0,T |

2 erfc
( T

√
|s0,T |+√

a√
T

)]
, tails.

(28)

We numerically study the PDF of the intersection point in
Fig. 2(b) and find that Eq. (24) agrees well with numerical
calculations. Furthermore, the PDFs hc

T (with a scale factor
b) and ht

T also individually agree with the numerically esti-
mated hT in their respective ranges (as stated above in the
case of Poissonian resetting). While it may not be apparent
from Fig. 2(b), the tails of hT are indeed exponential. This
follows from the fact that in Eq. (27) the second erfc term
describing the tails approaches a constant for large fluctua-
tions, while the third term approaches zero. As a consequence,

ht
T ∼ e−2

√
a|s0,T | for large |xc − L/2|.

IV. COMPARING POISSON RESETTING
AND SHARP RESETTING

So far we have studied the dynamics of two vicious walk-
ers under Poissonian and sharp resetting, but in separate

scenarios. It thus becomes interesting to compare the two pro-
tocols against each other. The answer to this question is known
partly in that sharp resetting wins over Poissonian resetting in
the renewal resetting scenario [28]. Hence we compare the
minima of the MFPTs under the two resetting protocols. For
this purpose let us choose D1, D2 = 1 and L = 1. As a result
we have

〈TR〉 = exp(
√

R/2) − 1

R
, (29a)

〈TT 〉 =
√

T

2π

exp(−1/8T )

erfc(1/
√

8T )
+ T

erf(1/
√

8T )

erfc(1/
√

8T )
− 1

4
. (29b)

From the above equations, the minima of the MFPT

〈TR〉 occurs at R = R0 where d
dR 〈TR〉|R=R0 = e

√
R0/2/

√
8R3

0 −
〈TR0〉/R0 = 0 ⇒ R0 ≈ 5.079. For this value of the resetting
rate 〈TR0〉 ≈ 0.772. Similarly, 〈TT 〉 has a global minima at
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FIG. 3. (a) MFPT 〈T 〉 for the system of two vicious walkers
under Poisson and sharp resetting. The location of the minima are
marked indicating the optimal resetting rate R0 and the optimal time
of sharp reset T0. (b) The PDF of the location of annihilation h(xc ) for
the two resetting protocols at their optimal values. Parameter values
are D1, D2 = 1, L = 1, R0 = 5.079, and T0 = 0.229.

T0 ≈ 0.229 which implies 〈TT0〉 ≈ 0.668. To get a perspec-
tive of these numbers, the diffusive timescale of the relative
coordinate to cover a distance L is 〈TD〉 = L2/2Dr = 0.25
for L = 1. On this timescale, the MFPT for the two vicious
walkers to annihilate each other is 〈TR〉 ≈ 〈TT 〉 ≈ 3〈TD〉.
Furthermore, the relative advantage of sharp resetting over
Poissonian resetting is |〈TT 〉 − 〈TR〉|/〈TT 〉 ≈ 0.16, which is
significant. In other words, while it is suitable for the lion to
quickly hunt that both the lion and the lamb return to their
homes after fixed time intervals, for the lamb Poissonian re-
setting is better as it might survive a little longer. We compare
the two resetting protocols graphically in Fig. 3(a) and see the
relative advantage of sharp resetting over Poisson resetting.

Let us now look at the tail behavior of the PDF ht of
the intersection point for Poisson and sharp resetting at their
optimal levels respectively. From Eq. (12) it is clear that

for Poissonian resetting ht
R0

∼ exp ( −
√

|s0,R0 |+R0

Dc
|xc − L

2 |) ≈
exp(−1.78|xc − 1/2|). On the other hand, for sharp resetting
we have s0,T0 = 1

T0
ln erf( L√

4Dr T0
) ≈ −1.5332. As a result, the

tail part of the PDF of the location of intersection is ht
T0

∼
exp ( −

√
|s0,T0 |

Dc
|xc − L/2|) ≈ exp(−1.75|xc − 1/2|). This im-

plies that at optimal resetting, the tails of the PDF decay faster
for sharp resetting as compared to Poissonian resetting. This
also follows from the fact that at optimal resetting 〈TT0〉 <

〈TR0〉, as a result both the lion and the lamb do not venture far
from their homes at the time of capture under sharp resetting
as compared to Poissonian resetting. We compare the two
PDFs both numerically and analytically in Fig. 3(b) and find
that the PDF for Poissonian resetting has a higher spread as
compared to that for sharp resetting.

V. CONCLUSIONS

In the realm of nonequilibrium statistical physics vicious
random walkers are used to model interfacial wetting in 1 + 1
dimensions and nonintersecting polymers. In these contexts
the survival probability and the distribution of the location
of coalescence are relevant quantities to address. Within the
domain of capture problems, vicious random walks translate
to the capture of a prey by a predator. Motivated by these
examples, in this paper we study the annihilation properties
of two vicious random walkers under Poissonian and sharp
resetting protocols. In the absence of resetting the mean time
of capture is divergent while the location of annihilation fol-
lows a Cauchy distribution. The introduction of resetting in
the system renders finite MFPT due to the fact that the FPTD
tails now decay exponentially as compared to algebraically in
the absence of resetting. Furthermore, tails of the PDF of anni-
hilation location now decay exponentially. This is independent
of the exact nature of the resetting protocol. The central part
of the PDF, however, depends on the way the system is reset
to its initial location. For Poissonian resetting the central part
of the PDF is a Cauchy distribution, while for sharp resetting
it is a Gaussian.

We have reset the two walkers identically so that we can
reduce the two-particle system as to be described by the
motion of the center of mass and motion about the center of
mass. We have also assumed that restarts are instantaneous,
but in any realistic scenario bringing back the system to its
initial state takes a finite amount of time. Even within the
realm of instantaneous resetting, we chose the particles to be
identical. What would happen if we include inertia and assign
different masses to different particles? We explore these and
other interesting possibilities in future works.
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