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Low-dissipation engines: Microscopic construction via shortcuts to adiabaticity
and isothermality, the optimal relation between power and efficiency
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We construct a microscopic model of low-dissipation engines by driving a Brownian particle in a time-
dependent harmonic potential. Shortcuts to adiabaticity and shortcuts to isothermality are introduced to realize
the adiabatic and isothermal branches in a thermodynamic cycle, respectively. We derive an analytical formula
of the efficiency at maximum power with explicit expressions of dissipation coefficients under the optimized
protocols. When the relative temperature difference between the two baths in the cycle is insignificant, this
expression satisfies the universal law of efficiency at maximum power up to the quadratic term of the Carnot
efficiency. For large relative temperature differences, the efficiency at maximum power tends to be 1/2.
Furthermore, we analyze the issue of power at any given efficiency for general low-dissipation engines and
then obtain the supremum of the power in three limiting cases, respectively. These expressions of maximum
power at given efficiency provide the optimal relations between power and efficiency which are tighter than the
results in previous references.
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I. INTRODUCTION

Finite-time thermodynamics [1,2] is a new active branch
of nonequilibrium physics. One of the most important topics
in finite-time thermodynamics is the efficiency at maximum
power for heat engines. Researchers have investigated the
efficiencies at maximum power for various models of finite-
time heat engines, including the endoreversible Carnot-like
engine [3,4], stochastic engine [5], Feynman’s ratchet [6],
quantum dot engine [7], low-dissipation engine [8], minimally
nonlinear irreversible engine [9], and so on. Their studies
reveal an impressive universality that under certain conditions
the efficiencies at maximum power for different models are
identical up to the quadratic term of Carnot efficiency [3–7],
i.e.,

ηPmax = ηC

2
+ η2

C

8
+ . . . , (1)

where ηPmax is the efficiency at maximum power and ηC is
the Carnot efficiency. It is found that the universality up to
the linear term is due to the tight coupling [10] and that
the universality up to the quadratic term owes to symmetric
coupling [11] or energy matching [12,13].

To seek both powerful and efficient engines for practical
applications, an increasing number of researchers have been
devoting themselves to studying the general constraints for
efficiency and power [4,8,9,14–27]. For endoreversible en-
gines, Chen and Yan derived an optimum relation between
power and efficiency [4] while Gordon and Huleihil provided
the power-versus-efficiency diagram [14]. More recently,
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Esposito et al. derived the upper and lower bounds of effi-
ciency at maximum power for low-dissipation engines [8].
Holubec and Ryabov [18,19] discussed the efficiency at ar-
bitrary power for low-dissipation engines and analytically
obtained the maximum efficiency in the regions nearby the
maximum power and the zero power. Ma et al. analytically
derived the constraints on efficiency for all power values [24].
But their results are not the supremum or infimum in the
whole region since these constraints are not always accessi-
ble. Abiuso and Perarnau-Llobet obtained the exact maximum
power at any efficiency for symmetric low-dissipation engines
and further optimized the overall figure of merit [25].

With the fast development of the optical-trap technique,
the design and realization of microscopic engines have been
widely discussed [28–34]. Schmiedl and Seifert constructed
a stochastic Carnot-like engine by using a time-dependent
potential to drive a Brownian particle [5]. The protocol dur-
ing the isothermal process is chosen to yield a maximum
work output while the adiabatic transitions are completed
instantaneously. Considering that the mismatch of kinetic
energy in the instantaneously adiabatic transition inevitably
results in heat exchange between two heat baths, the last
author in the present work proposed replacing the instan-
taneously adiabatic transitions with shortcuts to adiabaticity
[29]. Plate et al. [34] constructed an overdamped Carnot-like
engine with the same isothermal process while the adiabatic
process is defined as no heat exchange after ensemble averag-
ing. However, the isothermal transitions in these models are
not really isothermal in the traditional sense since the effec-
tive temperature is time-dependent. This shortage inspires the
subsequent researches. Following the work by Salazar and
Lira [35], Chen et al. realized the isothermal process with
exponential protocols under the assumption of slow driving
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[36]. Nakamura et al. developed the fast-forward approach to
mimic the finite-time isothermal process [37]. Their approach
consists of two steps: determining the driving potential in an
extremely slow time evolution and then rescaling the time
variable so that the Kramers equation works for finite-time
regions. A more straightforward approach is the shortcut to
isothermality [38,39] which is the correspondence of qua-
sistatic isothermal process in finite-time thermodynamics. The
calculations of work and heat are tractable in shortcuts to
isothermality. There is still a blank in the study of heat engines
with the consideration of shortcuts to isothermality.

In this work, we employ both shortcuts to isothermality
[38] and shortcuts to adiabaticity [40,41] to accomplish a
microscopic finite-time Carnot-like engine. This engine turns
out to be of low dissipation. We also investigate the power and
efficiency of this low-dissipation engine. The rest of this paper
is organized as follows. In Sec. II, we revisit the shortcuts
to isothermality and shortcuts to adiabaticity. In Sec. III, we
construct a microscopic heat engine including two isothermal
branches and two adiabatic branches. The work dissipated
during the isothermal branches is inversely proportional to
the operation time, which means what we construct is exactly
a model of low-dissipation engines. In Sec. IV, we calcu-
late the efficiency at maximum power of this engine and
respectively analyze its behavior at small and large relative
temperature differences. We also calculate the efficiency at
maximum power in the highly underdamped and overdamped
limits. In Sec. V, we discuss the power at any given efficiency
for general low-dissipation engines and obtain the analytical
supremum of power when the ratio of dissipation coefficients
during the cold and hot isothermal branches approaches zero,
one and infinity, respectively. In Sec. VI, we compare our
results for the bounds of efficiency at given power with those
in Refs. [19,24]. The last section is a brief summary.

II. REVISITING SHORTCUTS TO ISOTHERMALITY
AND SHORTCUTS TO ADIABATICITY

In this section, we outline two key concepts that we will
adopt in this work. The first one is the shortcut to isothermality
and the second one is the shortcut to adiabaticity.

A. Shortcuts to isothermality

Consider a Brownian particle moving in a one-dimensional
potential Uo(x, λ), where λ = λ(t ) is a time-dependent ex-
ternal parameter. The Hamiltonian of this particle is Ho =
p2/2 + Uo(x, λ), where p is the momentum of the particle.
The mass of the particle is set to be unit for convenience. The
Brownian particle is coupled to a heat bath with a constant
temperature T . To realize finite-time isothermal transitions
between two equilibrium states with the same temperature, Li
et al. [38,39] proposed a framework of shortcuts to isother-
mality by introducing an auxiliary potential Ua(x, p, t ) so that
the distribution function of the system always maintains the
following canonical form

ρ = eβF (λ)−βHo(x,p,λ), (2)

where F = −β−1 ln[
∫∫

dx d p e−βHo(x,p,λ)] is the Helmholtz
free energy and β = 1/T . We have set the Boltzmann

constant to be unit. The auxiliary potential can be determined
by substituting Eq. (2) into the generalized Kramers equa-
tion (see Eq. (19) in Ref. [38])

∂ρ

∂t
= − ∂

∂x
(pρ) + ∂

∂ p

(
γ pρ + ρ

∂Uo

∂x

)
+ γ

β

∂2ρ

∂ p2

− ∂Ua

∂ p

∂ρ

∂x
+ ∂Ua

∂x

∂ρ

∂ p
+ γ

∂

∂ p

(
ρ

∂Ua

∂ p

)
, (3)

where γ is the damping coefficient. We assume that the origi-
nal potential Uo(x, λ) and its partial derivatives with respect to
x and λ are all continuous so that the differential equation for
Ua(x, p, t ) does not contain singular points. As for the time-
dependent harmonic potential Uo = λ2(t )x2/2, the auxiliary
potential is

Ua = λ̇(t )

2γ λ(t )
[(p − γ x)2 + λ2(t )x2], (4)

where the dot above a character denotes the derivative with
respect to time t . The total Hamiltonian of the particle is
H = Ho + Ua. To ensure that the initial and final states of the
system are in equilibrium with the bath, a constraint

λ̇(ti) = λ̇(t f ) = 0 (5)

should be imposed at the initial time ti and the final time t f

[38].
According to stochastic thermodynamics [42–44], the

ensemble-averaged work exerted on the particle during the
shortcut to isothermality is

W =
〈∫ t f

ti

dt
∂H

∂t

〉

=
∫ t f

ti

dt
∫∫

dx d pρ

(
∂Uo

∂t
+ ∂Ua

∂t

)

= T ln
λ(t f )

λ(ti)
+ T

C[�]

t f − ti
,

(6)

where

C[�] =
∫ 1

0
dt̃

(
1

γ
+ γ

�2

)
1

�2

(
d�

dt̃

)2

, (7)

� = �(t̃ ) = λ[ti + (t f − ti )t̃], and t̃ = (t − ti )/(t f − ti ).
〈. . . 〉 denotes the ensemble average under the canonical
distribution (2). The work in Eq. (6) is decomposed into
two parts. The first term equals the variation of the free
energy. The second term represents the dissipative work
which is inversely proportional to the operation time (t f − ti ).
Although this result is based on the harmonic potential,
the inverse-proportion relation between the dissipative
work and the operation time is universal for shortcuts
to isothermality [38] as long as the original potential
is well-behaved, i.e., Uo(x, λ) and its partial derivatives
are continuous. This universality can be explained as
follows. The auxiliary potential Ua(x, p, t ) can always
be decomposed as Ua(x, p, t ) = λ̇ f (x, p, λ) [38]. Hence,
∂Ua/∂t = λ̈ f + λ̇∂ f /∂t . For shortcuts to isothermality,
the time integral of 〈∂Uo/∂t〉 equals the variation of free
energy of the system while the time integral of 〈∂Ua/∂t〉
represents the ensemble-averaged dissipative work [38,39].
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Substituting ∂Ua/∂t = λ̈ f + λ̇∂ f /∂t into the expression of
ensemble-averaged dissipative work and replacing t with the
dimensionless quantity t̃ , the result is 1/(t f − ti ) multiplied
by an item independent of the operation time. Therefore,
the dissipative work is always inversely proportional to the
operation time.

B. Shortcuts to adiabaticity

Shortcuts to adiabaticity are strategies devised to circum-
vent the condition of infinitely slow evolution in quantum
adiabatic theorem [40,45–52]. These strategies are also appli-
cable to classical systems. In classical mechanics, the volume
	 of phase space enclosed by an energy shell remains constant
when the external parameter varies slowly enough. Jarzynski
introduced a counterdiabatic driving Hamiltonian Hc so that
	 will keep constant even if the external parameter changes
at a finite rate [41]. As an example, Jarzynski obtained Hc =
−λ̇(t )xp/(2λ(t )) for Ho = p2/2 + λ2(t )x2/2. Hence, the total
Hamiltonian becomes

H = Ho + Hc = p2

2
+ 1

2
λ2(t )x2 − λ̇(t )

2λ(t )
xp. (8)

Consider the system described by the above equation de-
coupling from heat bath and hence the system’s evolution
is determined by Hamiltonian mechanics. In Ref. [29], the
author found that shortcuts to adiabaticity can be adopted
to ensure that the system evolves from an equilibrium state
with specific temperature Ti at the initial time ti to another
equilibrium state with target temperature Tf at the final time
t f as long as the external parameter satisfies

λ(ti )

Ti
= λ(t f )

Tf
. (9)

Moreover, λ̇(t ) should satisfy the same constraint as Eq. (5)
such that H = Ho at the initial and final time. We do not
need to care about the system’s temperature within the evo-
lution. According to the Liouville theorem, the distribution
function is invariant along the phase-space trajectory. Then the
ensemble-averaged trajectory entropy is also invariant since
the trajectory entropy is proportional to the natural logarithm
of the distribution function [29]. Hence, the evolution is along
an adiabatic path without exchange of heat or variation of
entropy.

We notice that in recent Refs. [52,53], “adiabatic” refers
to “very slow,” and “shortcuts to adiabaticity” contain all
finite-time schemes producing the desired evolutions which
can be achieved naturally in the quasistatic processes. In this
paper, however, “shortcut to adiabaticity” corresponds to the
thermodynamic adiabatic process in the Carnot cycle which
means no exchange of heat and no variation of entropy. Simi-
larly, “shortcut to isothermality” corresponds to the quasistatic
isothermal process in the Carnot cycle where the effective
temperature of the system is a constant.

III. MODEL AND ENERGETICS

We construct a microscopic engine with a one-dimensional
Brownian particle in a time-dependent harmonic potential.
This engine contains two isothermal and two adiabatic

FIG. 1. Carnot-like thermodynamic cycle.

branches which are realized by shortcuts to isothermality and
shortcuts to adiabaticity, respectively. The original potential
is Uo = λ2(t )x2/2. Ua and Hc are respectively applied to the
particle during the isothermal and the adiabatic branches.
Figure 1 is a schematic diagram of the thermodynamic cycle.
Stage I ranging from time t1 to t2 represents the isothermal
expansion branch where the particle is coupled to the hot bath
with temperature Th and λ decreases with time. Stage II from
time t2 to t3 represents the adiabatic expansion branch where
the particle is decoupled from the heat bath. Stage III from
time t3 to t4 represents the isothermal compression branch
where the particle is coupled to the cold bath with temperature
Tc(< Th) and λ increases with time. Stage IV represents the
adiabatic compression branch after which the particle is again
coupled to the hot bath.

Stage I is realized by shortcuts to isothermality. According
to Eq. (6), the input work during this stage is expressed as

WI = Th ln
λ2

λ1
+ Th

Ch[�h]

t2 − t1
, (10)

where

Ch[�h] =
∫ 1

0
dt̃

(
1

γh
+ γh

�2
h

)
1

�2
h

(
d�h

dt̃

)2

, (11)

and �h = �h(t̃ ) = λ[(t2 − t1)t̃ + t1]. γh is the damping coef-
ficient of the particle in the hot bath. λ1 and λ2 are respectively
the values of λ at the initial and the final time of stage I.
Since the initial and final states of this stage are equilibrium
states with the same temperature Th, we obtain that the energy
difference between them vanishes. Based on the conservation
of energy, the heat absorbed from the hot bath is

QI = −WI = Th ln
λ1

λ2
− Th

Ch[�h]

t2 − t1
. (12)

Similarly, the heat exchange between the particle and the
cold bath during stage III may be expressed as

QIII = Tc ln
λ3

λ4
− Tc

Cc[�c]

t4 − t3
, (13)
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where

Cc[�c] =
∫ 1

0
dt̃

(
1

γc
+ γc

�2
c

)
1

�2
c

(
d�c

dt̃

)2

, (14)

and �c = �c(t̃ ) = λ[(t4 − t3)t̃ + t3]. γc is the damping coeffi-
cient of the particle in the cold bath. λ3 and λ4 are respectively
the values of λ at the initial and final time of stage III.

It should be emphasized that ln(λ1/λ2) in Eq. (12) and
ln(λ3/λ4) in Eq. (13) are exactly the variations of entropy
of the Brownian particle (working substance) during the
isothermal expansion and compression branches, respectively.
Considering that stages II and IV are realized by shortcuts
to adiabaticity, we have λ2/Th = λ3/Tc and λ4/Tc = λ1/Th

according to Eq. (9). Hence,

λ1

λ2
= λ4

λ3
, (15)

which implies that the variations of entropy of the Brownian
particle in the two isothermal branches are opposite numbers.
Then Eqs. (12) and (13) can be further expressed as

QI = Th

(

S − Ch

τh

)
, (16)

and

QIII = Tc

(
−
S − Cc

τc

)
, (17)

where 
S = ln(λ1/λ2) = − ln(λ3/λ4) represents the varia-
tion of entropy of the Brownian particle during the isothermal
expansion branch. Ch and Cc are respectively the values of
the functionals in Eqs. (11) and (14). We have set τh = t2 − t1
and τc = t4 − t3 for convenience. Noticing that the dissipative
terms [i.e., the second terms in the parentheses in Eqs. (16)
and (17)] are inversely proportional to the operation time, we
conclude that the microscopic engine based on shortcuts to
isothermality and shortcuts to adiabaticity is a realization of
microscopic low-dissipation heat engines [8]. Ch and Cc re-
spectively correspond to the dissipation coefficients during the
isothermal expansion and compression branches in Ref. [8].

Since the particle will return to the initial state after fin-
ishing a thermodynamic cycle, the variation of energy in the
cycle vanishes. And there is no heat exchange in the adiabatic
branches. Hence, the total output work in each cycle is

Wout = QI + QIII, (18)

with the consideration of energy conservation.

IV. EFFICIENCY AT MAXIMUM POWER

Considering that shortcuts to adiabaticity can be completed
rapidly enough [29,41] so that the adiabatic duration is much
shorter than the isothermal duration, the total time for com-
pleting the cycle can be approximated by (τh + τc). Thus, the
power output of this microscopic engine is

P = Wout

τh + τc
= Th

(

S − Ch

τh

) − Tc
(

S + Cc

τc

)
τh + τc

. (19)

The power output (19) can be optimized with respect to both
the protocol of external parameter λ(t ) and the time τh and τc.

First, following the thoughts in Ref. [5], to obtain the
maximum work output, we need to minimize the function-
als Ch[�h] and Cc[�c] with fixed �h(0), �h(1), �c(0) and
�c(1). The integrands in Eqs. (11) and (14) can be seen

as “Lagrangians,” i.e., Lh,c = ( 1
γh,c

+ γh,c

�2
h,c

)
�′2

h,c

�2
h,c

with �′
h,c =

d�h,c /dt̃ . Since these “Lagrangians” do not explicitly con-
tain the argument of “time” t̃ , the corresponding “energy
functions” (�′

h,c
∂Lh,c

∂�′
h,c

− Lh,c) are conserved quantities that are

respectively expressed as

�h =
(

1

γh
+ γh

�2
h

)
1

�2
h

(
d�h

dt̃

)2

, (20)

�c =
(

1

γc
+ γc

�2
c

)
1

�2
c

(
d�c

dt̃

)2

. (21)

Noticing that �h = Lh and �c = Lc, the minimum values
of functionals in Eqs. (11) and (14) are equal to �h and
�c, respectively. The optimal protocols �∗

h(t̃ ) and �∗
c (t̃ )

in isothermal branches are determined by the differential
Eqs. (20) and (21) with given values of �h(0), �h(1), �c(0),
and �c(1). Detailed calculations can be found in Appendix A.
In adiabatic branches, there is arbitrariness in selecting the
protocols. For example, in Ref. [29] the author chose λ(t ) =
λi + (λ f − λi)
[(t − ti )/(t f − ti )], where 
(t ) is defined as

(t ) = 3t2 − 2t3.

Second, by solving ∂P/∂τh = 0 and ∂P/∂τc = 0, we ob-
tain the optimum values of τh and τc:

τ ∗
h = 2(

√
�h�cThTc + �hTh)

(Th − Tc)
S
,

τ ∗
c = 2(

√
�h�cThTc + �cTc)

(Th − Tc)
S
,

(22)

where we have replaced Ch and Cc with their optimal values
�h and �c, respectively. Substituting Eq. (22) into the expres-
sion of power, then we obtain the maximum power

Pmax = Th
S2

�h

η2
C

4(
√

(1 − ηC)χ + 1)2
, (23)

where ηC = 1 − Tc/Th and χ = �c/�h. Based on the defi-
nition of efficiency η = Wout/QI, we derive the efficiency at
maximum power:

ηPmax = ηC

2 − ηC√
χ (1−ηC )+1

. (24)

It is not hard to verify that ηC/2 � ηPmax � ηC/(2 − ηC). This
constraint is consistent with the conclusion in Ref. [8]. Dif-
ferent from the abstract model in Ref. [8], here we can obtain
the exact expressions of �h and �c according to differential
Eqs. (20) and (21):

�h = 1

γh

[
ψ

(
λ2

γh

)
− ψ

(
λ1

γh

)]2

, (25)

�c = 1

γc

[
ψ

(
λ4

γc

)
− ψ

(
λ3

γc

)]2

, (26)
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FIG. 2. Efficiency at maximum power with ξ = 1 and ζ = 0.3.
The dashed, dotted, and dash-dotted lines respectively correspond
to Eq. (24) with α = π/10, α = 2π , and α = 10π . The solid line
corresponds to Eq. (1) up to the quadratic term.

with ψ (x) = sinh−1(x) − cosh[sinh−1(1/x)]. Detailed deriva-
tion can be found in Appendix A. Then we have

χ = �c

�h
= ξ

�((1 − ηC)ξα)

�(α)
, (27)

where ξ ≡ γh/γc, α ≡ λ1/γh and �(x) ≡ [ψ (ζx) − ψ (x)]2

with ζ ≡ λ2/λ1.
The efficiency at maximum power depends on the param-

eters α, ζ , and ξ as well as the Carnot efficiency ηC. For
symmetric damping situation where ξ = 1, Eq. (27) becomes
χ ≈ 1 − [α� ′(α)/�(α)]ηC for small ηC. By substituting χ

into Eq. (24), we verify that the efficiency at maximum power
is consistent with the universal law (1) up to the quadratic
term. The underlying reason for this engine coinciding with
the universal law up to the quadratic term is that it satisfies the
tight coupling and symmetric coupling conditions [10–13].
Specifically, There is no heat leakage between the two bathes,
and the first term of the Taylor series of χ at ηC = 0 is 1.
The damping coefficients are usually dependent on tempera-
ture, which causes ξ deviating from 1. However, we find that
ξ = 1 + O(ηC) for most solvents [54–56]. In this case, the
expansion result of ηPmax still coincides with Eq. (1). In Fig. 2,
we compare the behavior of Eq. (1) with that of Eq. (24)
for different α when ξ = 1 and ζ = 0.3. The dashed, dotted
and dash-dotted lines respectively correspond to Eq. (24) with
α = π/10, α = 2π , and α = 10π . The solid line corresponds
to the universal law (1) up to the quadratic term. We observe
that these curves overlap at small ηC.

Moreover, we notice that the efficiency at maximum power
(24) tends to be 1/2 when ηC tends to be 1. This surprising
result is different from the performances of the endoreversible
Carnot-like engine [3,4], the stochastic engine [5], Feynman’s
ratchet [6], the quantum dot engine [7], etc., while similar
behavior has appeared in Ref. [37] for a large-dissipation
stochastic engine realized by fast-forward approach. To un-
derstand this result, we calculate the Laurent series of χ about
ηC = 1 when ξ = 1:

χ |ηC→1 = (1 − ζ )2

ζ 2α2�(α)(1 − ηC)2 + O[(1 − ηC)0]. (28)

Substituting this equation into Eq. (24), then we obtain

ηPmax |ηC→1 = 1

2
+ ζα

√
�(α)

4(1 − ζ )

√
1 − ηC + O[(1 − ηC)1].

(29)
The above equation describes the behavior of the three curves
corresponding to Eq. (24) nearby ηC = 1 in Fig. 2. The first
item is identical to that in Ref. [37] while the second item is
different.

Furthermore, we investigate the efficiency at maximum
power in the highly underdamped limit that is α 
 1. Con-
sidering that ψ (x) can be expressed as −

√
1 + 1/x2 + ln(x +√

1 + x2), �(x) tends to (ln ζ )2 when x 
 1. Hence, χ tends
to 1 under the conditions of ξ = 1 and α 
 1 as long as
ηC �= 1. Substituting χ = 1 into Eq. (24), we find that ηPmax

equals the efficiency at maximum power of endoreversible
engines [3,4],

ηunder
Pmax

= 1 −
√

1 − ηC. (30)

The recoveries of endoreversible engines in weak damping
cases were previously found in Refs. [22,36,37].

Finally, in the overdamped limit where α � 1,

�[(1 − ηC)ξα] ∼ (1 − ζ )2

ξ 2ζ 2(1 − ηC)2α2
, (31a)

�(α) ∼ (1 − ζ )2

ζ 2α2
. (31b)

Substituting the above expressions into Eq. (27), we ob-
tain that χ = 1/(1 − ηC)2 when ξ = 1. Now the efficiency at
maximum power becomes

ηover
Pmax

= ηC

2 − ηC
√

1−ηC

1+√
1−ηC

≈ 1

2
ηC + 1

8
η2

C + 0 − 3

128
η4

C (small ηC).

(32)

Compared with the efficiencies at maximum power of over-
damped microscopic engines in previous references [5,34],
the result (32) is slightly less than those in Refs. [5,34] starting
from the cubic term. The underlying reason for this difference
is that shortcuts to isothermality make the values of the dissi-
pation coefficients confined.

V. MAXIMUM POWER AT ANY GIVEN EFFICIENCY

Since the efficiency and power could not be simultane-
ously optimized, we need to investigate the trade-off relation
between these two quantities. For asymmetrical damping co-
efficients and anharmonic potentials, the microscopic model
in the present work becomes a general microscopic low-
dissipation engine. In this section, we start with general
low-dissipation engines and find the maximum power at given
efficiency.

To simplify the calculations, we define the following quan-
tities: αh = �h/
S, αc = �c/
S, Lh = αh/τh, Lc = αc/τc,
τ̃ = τh/τc. The expressions of heat exchanges QI and QIII with
the new variables are respectively

QI = 
STh(1 − Lh), (33)
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and

QIII = −
STc(1 + Lc). (34)

Hence, the efficiency of the engine is

η = QI + QIII

QI
= 1 − (1 − ηC)

1 + χτ̃Lh

1 − Lh
, (35)

where we have used Lc/Lh = χτ̃ . From Eq. (35), we obtain

τ̃ = b

(
δ

Lh
− 1

)
, (36)

where

b = 1 − η

(1 − ηC)χ
, (37)

and

δ = ηC − η

1 − η
� ηC. (38)

Since τ̃ � 0 and b � 0, we obtain Lh � δ � ηC. The power of
the engine is

P = ηQI

τh + τc
= η
S

Th

αh

Lh(1 − Lh)(δ − Lh)

δ − Lh + Lh/b
. (39)

In the following, we consider the dimensionless power

P̃ = αhP

Th
S
= η

Lh(1 − Lh)(δ − Lh)

δ − Lh + Lh/b
. (40)

To obtain the maximum value of P̃ for given η, we need to
solve the equation ∂P̃/∂Lh = 0 for Lh. However, this is a cubic
equation and the solutions are so cumbersome that we can not
illustrate their analytical behavior. Hence, we consider three
limiting cases as follows.

First, χ ≡ �c/�h → 0, which means the dissipation is
dominated by the isothermal expansion branch. In this case,
Eq. (37) implies b → ∞. Hence, Eq. (40) degenerates into

P̃0 = ηLh(1 − Lh). (41)

For given efficiency, this is a parabolic function of Lh with the
extreme point at Lh = 1/2. Since Lh � δ � ηC, the accessible
maximum value of P̃0 is dependent on δ. If δ � 1/2, which
means η � 2ηC − 1, then P̃0 reaches its maximum value at
Lh = 1/2 and the value is

P̃∗
0 = η

4
. (42)

If δ < 1/2, which means η > 2ηC − 1, then P̃0 reaches its
maximum value at Lh = δ and the value is

P̃∗
0 = η(1 − ηC)(ηC − η)

(1 − η)2
. (43)

The global maximum value of P̃∗
0 is η2

C/4 at η = ηC/(2 − ηC).
We emphasize that the value of ηC determines whether the
maximum power at given efficiency can be expressed as
Eq. (42). If ηC � 1/2, then Eq. (38) implies δ � 1/2 for
η ∈ [0, ηC]. Then the maximum power at given efficiency is
only expressed as Eq. (43). If ηC > 1/2, then Eq. (38) implies
that δ can be either larger or smaller than 1/2. Then the
maximum power at given efficiency is piecewisely expressed
as Eqs. (42) and (43). Figure 3 shows the maximum power

0 0.1 0.2 0.3

(a)

0

0.005

0.01

0.015

0.02

0.025

0 0.2 0.4 0.6 0.8

(b)

0

0.05

0.1

0.15

FIG. 3. The maximum power at given efficiency for small χ . The
dashed and solid lines correspond to Eqs. (42) and (43), respectively.
The triangles, squares, and circles respectively represent the maxi-
mum values of power for χ = 0.01, χ = 0.05, and χ = 0.1, which
are obtained by numerical method. (a) ηC = 0.3; (b) ηC = 0.8.

at given efficiency for small χ when ηC = 0.3 [Fig. 3(a)] and
ηC = 0.8 [Fig. 3(b)]. The dashed and solid lines correspond
to the analytical results (42) and (43), respectively. The trian-
gles, squares, and circles respectively represent the maximum
values of power for χ = 0.01, χ = 0.05, and χ = 0.1, which
are obtained with numerical method (see Appendix B). From
Fig. 3, we observe that the numerical results approach the
analytical result as χ decreases.

Second, χ = 1 which implies that the dissipation coeffi-
cients are symmetric in the two isothermal branches. In this
case, Eq. (37) implies b = (1 − η)/(1 − ηC). Hence, Eq. (40)
degenerates into

P̃1 = ηLh(δ − Lh)/δ. (44)

Obviously, for given efficiency, P̃1 reaches its maximum value
at Lh = δ/2. The maximum value is

P̃∗
1 = η(ηC − η)

4(1 − η)
. (45)

This expression is the same as the result of endoreversible
engine obtained by Chen and Yan [4]. Abiuso and Perarnau-
Llobet also obtained such constraint on power for symmetric
low-dissipation engines [25]. The global maximum value of
P̃∗

1 is (1 − √
1 − ηC)2/4 at η = 1 − √

1 − ηC which is exactly
the efficiency at maximum power obtained by Curzon and
Ahlborn [3]. Figure 4 shows the maximum power (45) at given
efficiency for χ = 1.

0 0.1 0.2 0.3
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(b)

0

0.02
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0.08

FIG. 4. The maximum power at given efficiency for χ = 1 ac-
cording to Eq. (45). (a) ηC = 0.3; (b) ηC = 0.8.

064117-6



LOW-DISSIPATION ENGINES: MICROSCOPIC … PHYSICAL REVIEW E 106, 064117 (2022)
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FIG. 5. The product of χ and the maximum power at given
efficiency for large χ . The solid line corresponds to the analytical
result based on Eq. (47). The circles, squares and triangles respec-
tively correspond to the numerical results for χ = 102, χ = 103, and
χ = 104. ηC = 0.8.

Third, χ → ∞ which means the dissipation is dominated
by the isothermal compression branch. In this case, Eq. (37)
implies b → 0. The leading term of Eq. (40) is

P̃∞ = 1

χ∞

η(1 − η)

1 − ηC
(1 − Lh)(δ − Lh), (46)

where the subscript “∞” of χ∞ indicates that χ is sufficiently
large. For given efficiency, the maximum value of P̃∞ is at-
tained when Lh = 0 and the maximum value is

P̃∗
∞ = 1

χ∞

η(ηC − η)

1 − ηC
. (47)

The global maximum value of P̃∗
∞ is η2

C/[4χ∞(1 − ηC)] at
η = ηC/2. Figure 5 shows the behavior of χ P̃∗ for large χ .
The solid line corresponds to the analytical result based on
Eq. (47). The circles, squares and triangles respectively cor-
respond to the numerical results for χ = 102, χ = 103, and
χ = 104 (the numerical method can be found in Appendix B).
From Fig. 5, we observe that the numerical results approach
the analytical result as χ increases.

VI. BOUNDS OF EFFICIENCY AT ANY GIVEN POWER

In Sec. V, we have investigated the maximum power at
given efficiency and obtained the maximum-power curves in
the power-versus-efficiency diagram. In fact, the maximum
power at given efficiency and the bounds of efficiency at
given power are described by the same expression (detailed
mathematical proof can be found in Appendix C) and this ex-
pression is the optimal relation between power and efficiency.
Hence, the maximum-power curves in Sec. V also provide the
upper and lower bounds of efficiency at given power which
were studied in Refs. [19,24]. Holubec and Ryabov discussed
the upper and lower limits of maximum efficiency at given
power in Ref. [19] while Ma et al. analyzed the maximum and
minimum possible efficiencies at given power in Ref. [24]. In
this section, we compare the optimal relations between power
and efficiency obtained in Sec. V with those in Refs. [19,24].

The power of the engine can be expressed with τ̃ and Lh as
follows:

P = QI + QIII

τh + τc

= 
STh

αh
τ̃Lh

(1 − Lh) − (1 − ηC)(1 + χτ̃Lh)

1 + τ̃
,

(48)

while the efficiency is expressed as Eq. (35). To ensure
that the power and the operation time are nonnegative, the
value of Lh is confined by 0 � Lh � ηC and τ̃ is confined
by 0 � τ̃ � [(1 − Lh)/(1 − ηC) − 1]/(χLh). Figure 6 shows
the efficiency-versus-power diagram of the low-dissipation
engines in three limiting cases: χ → 0, 1, and ∞. The scatter
points represent the possible values of power and efficiency,
which are generated by random values of Lh and τ̃ according
to Eqs. (35) and (48).

Figure 6(a) shows the results for χ → 0. The solid line
is depicted according to Eqs. (42) and (43). It is exactly the
envelope curve of all scatter points. The two dotted lines
represent the maximum and minimum possible efficiencies at
given power obtained in Ref. [24]. The maximum possible
efficiency in Ref. [24] overlaps with our result while the
minimum one is inaccessible. Furthermore, the upper bound
of efficiency offered by the solid line in this case (i.e., χ → 0)
is consistent with the upper limit of maximum efficiency at
given power obtained in Ref. [19] which is not shown here.
Figure 6(b) shows the results for χ = 1. The solid line is
depicted according to Eq. (45). It is the envelope curve of all
scatter points. The two dotted lines still represent the results in
Ref. [24]. The maximum possible efficiency is tight for most
power values while the minimum possible efficiency is still
inaccessible. The two dashed lines represent the lower and
upper limits of maximum efficiency in Ref. [19]. It is obvious
that the upper bound offered by the solid line in this case (i.e.,
χ = 1) is between the two limits in Ref. [19]. Figure 6(c)
shows the results for χ → ∞. The solid line as an envelope
curve of the scatter points, is depicted according to Eq. (47)
and it overlaps with the constraints in Ref. [24]. Furthermore,
the upper bound of efficiency offered by the solid line in
this case (i.e., χ → ∞) is consistent with the lower limit of
maximum efficiency at given power in Ref. [19]. Based on
the above discussion, we conclude that the results in Sec. V
provide more exactly optimal relation between power and
efficiency than the constraints in Ref. [19,24] at given χ for
low-dissipation engines.

VII. CONCLUSION

In summary, we have designed a Carnot-like microscopic
heat engine with the help of shortcuts to isothermality and
shortcuts to adiabaticity. The dissipative work during the
isothermal branches is inversely proportional to the operation
time, which means we have realized a microscopic low-
dissipation engine. Although we have only demonstrated the
case of harmonic potential, this realization is not restricted
to harmonic potential since the inverse-proportion relation is
independent of the form of potentials according to the char-
acter of shortcuts to isothermality as long as these potentials
are well-behaved. We have obtained the analytical efficiency
at maximum power of this engine with explicit expressions
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FIG. 6. The efficiency-versus-power diagram of low-dissipation
engines. ηC = 0.8 and Pmax is given by Eq. (23). The scatter points
are generated by random values of Lh and τ̃ . The solid lines are based
on the results in Sec. V. The dashed and dotted lines respectively cor-
respond to the results in Refs. [19] and [24]. (a) χ = 10−5, (b) χ = 1,
(c) χ = 106.

of dissipation coefficients under the optimized protocols. For
symmetric damping coefficients, we have verified that the
efficiency at maximum power satisfies the universal law up to
the quadratic term (1) at small ηC and tends to a specific value
(i.e., 1/2) when ηC approaches one. In highly underdamped
case, the efficiency at maximum power of endoreversible en-
gines is recovered when ηC �= 1. Our results are different from
those obtained by Schmiedl and Seifert [5]. The underlying

reason is the consideration of shortcuts to isothermality and
shortcuts to adiabaticity in our model.

For asymmetrical damping coefficients and anharmonic
potentials, the microscopic model in the present work be-
comes a general microscopic low-dissipation engine. We have
investigated the maximum power at given efficiency for gen-
eral low-dissipation engines and derived the analytical results
in three limiting cases. When the ratio χ of the dissipation
coefficients during the cold isothermal branch and the hot
isothermal branch is one, the result for endoreversible engine
is recovered. For χ approaches zero or infinity, the expres-
sion of maximum power at given efficiency becomes fairly
concise, which is respectively piecewise curve or parabolic
curve. In the two limiting cases, the maximum powers agree
with the results for the optimized thermodynamic cycles with
two finite-sized reservoirs [57] by replacing the efficiency at
maximum work in the latter with the Carnot efficiency. Fur-
thermore, because these results provide the optimal relations
between power and efficiency, we have compared the bounds
of efficiency at given power in the present work with those in
Refs. [19,24] and discovered that our bounds are more exact
for given χ . Since Albay et al. have experimentally realized
the shortcuts to isothermality [58–60], it is possible to verify
our theoretical results in future experiments. Considering that
it may be difficult to decouple the Brownian particle from the
heat bath so that the adiabatic processes can be performed,
we conceive the idea of imitating the viscous friction force
and random thermal force in the real bath by an external
field. Similar realizations which raise the effective tempera-
ture of Brownian particles can be found in Refs. [33,61]. We
notice that in recent works, Abiuso et al. optimized the low-
dissipation engines via considering the geometric lower bound
on entropy production [25,62]. In addition, Chen implemented
the strategies of generalized shortcuts to isothermality to de-
sign Brownian heat engines and obtained the efficiency at
maximum power as well as the maximum power at given
efficiency via thermodynamic length [63]. It is worth consid-
ering to refine our model in the framework of thermodynamic
geometry in the future work.
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APPENDIX A: DETAILED DISCUSSION ABOUT
OPTIMAL POTENTIAL PROTOCOLS

Based on the differential Eqs. (20) and (21), the optimal
protocols [�∗

h(t̃ ) and �∗
c (t̃ )] of external parameters are given

by the following implicit expressions:

sinh−1

(
�∗

h(t̃ )

γh

)
− cosh

[
sinh−1

(
γh

�∗
h(t̃ )

)]
=−

√
γh�ht̃ + c1,

(A1)

sinh−1

(
�∗

c (t̃ )

γc

)
− cosh

[
sinh−1

(
γc

�∗
c (t̃ )

)]
=

√
γc�ct̃+c2,

(A2)
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where �h, c1, �c, and c2 are time-independent constants
which can be determined by the boundary conditions �h(0) =
λ1, �h(1) = λ2, �c(0) = λ3, and �c(1) = λ4. The expres-
sions of these constants are

c1 = ψ

(
λ1

γh

)
, �h = 1

γh

[
ψ

(
λ2

γh

)
− ψ

(
λ1

γh

)]2

, (A3)

c2 = ψ

(
λ3

γc

)
, �c = 1

γc

[
ψ

(
λ4

γc

)
− ψ

(
λ3

γc

)]2

. (A4)

ψ is defined as ψ (x) ≡ sinh−1(x) − cosh[sinh−1(1/x)].
However, considering that d�h(t̃ )/dt̃ = τhdλ(t )/dt , the

constraint (5) means that

d�h(t̃ )

dt̃

∣∣∣∣
t̃=0

= d�h(t̃ )

dt̃

∣∣∣∣
t̃=1

= 0. (A5)

If we substitute the above conditions into Eq. (20), then we
will obtain �h = 0 (considering that �h is a conserved quan-
tity during the optimal isothermal expansion branch). This
is incompatible with Eq. (A3) since λ1 �= λ2. There is same
contradiction in the isothermal compression branch.

To resolve these contradictions, it is required that
d�h,c(t̃ )/dt̃ jumps from a vanishing (nonvanishing) value to a
nonvanishing (vanishing) value at t̃ = 0 (t̃ = 1), while �h,c(t̃ )
is always continuous. The discontinuity of d�h,c(t̃ )/dt̃ makes
the calculation of ensemble-averaged work in isothermal
branches slightly different from that in the continuous-
derivative case. However, we are going to verify that there
is no difference in the results of the ensemble-averaged
work. Taking the isothermal expansion branch as an ex-
ample, considering that d�h(t̃ )/dt̃ is discontinuous and so
is λ̇h(t ) where λh(t ) = �h[(t − t1)/(t2 − t1)], we divide the
ensemble-averaged work into three parts in chronological or-
der: instantaneous work W a

I from t = t−
1 to t = t+

1 , continuous
work W b

I from t = t+
1 to t = t−

2 , and another instantaneous
work W c

I from t = t−
2 to t = t+

2 . The duration of W a
I and W c

I
is so short that the distribution function does not change and
there is no heat exchange between the system and the hot
bath. Hence, W a

I and W c
I respectively equal to the jump of

energy at t = t1 and t = t2. Considering that λ̇h(t−
1 ) = 0 and

λh(t−
1 ) = λh(t+

1 ) = λ1,

W a
I = 〈Ho(x, p, t ) + Ua(x, p, t )〉|t+

1

t−
1

= 〈Ua(x, p, t )〉|t+
1
, (A6)

where f (x)|ba = f (b) − f (a) and f (x)|a = f (a). Similarly,
considering that λ̇h(t+

2 ) = 0 and λh(t−
2 ) = λh(t+

2 ) = λ2,

W c
I = −〈Ua(x, p, t )〉|t−

2
. (A7)

The ensemble-averaged work from t = t+
1 to t = t−

2 follows
the definition of trajectory works:

W b
I =

〈∫ t−
2

t+
1

dt

(
∂Ho

∂λh
λ̇h + ∂Ua

∂λh
λ̇h + ∂Ua

∂λ̇h
λ̈h

)〉

=
∫ t−

2

t+
1

dt

〈(
∂Ho

∂λh
λ̇h + ∂Ua

∂λh
λ̇h

)〉
+ λ̇h

〈
∂Ua

∂λ̇h

〉∣∣∣∣
t−
2

t+
1

−
∫ t−

2

t+
1

dt λ̇h
d

dt

〈
∂Ua

∂λ̇h

〉

=
∫ t−

2

t+
1

dt

[〈(
∂Ho

∂λh
λ̇h + ∂Ua

∂λh
λ̇h

)〉
− λ̇h

d

dt

〈
∂Ua

∂λ̇h

〉]

+ 〈Ua(x, p, t )〉|t−
2

t+
1
. (A8)

Here we have used the fact that Ua(x, p, t ) can be decomposed
as λ̇h f (x, p, λh). The total work during the isothermal expan-
sion branch with discontinuous λ̇h(t ) at the endpoints is

WI = W a
I + W b

I + W c
I

=
∫ t−

2

t+
1

dt

[〈(
∂Ho

∂λh
λ̇h + ∂Ua

∂λh
λ̇h

)〉
− λ̇h

d

dt

〈
∂Ua

∂λ̇h

〉]
.

(A9)
However, if the protocol λh(t ) and its time-derivative λ̇h(t ) are
all continuous, where λh(t1) = λ1, λh(t2) = λ2 and λ̇h(t1) =
λ̇h(t2) = 0, then the ensemble-averaged work from t = t1 to
t = t2 is

WI =
〈∫ t2

t1

dt

(
∂Ho

∂λh
λ̇h + ∂Ua

∂λh
λ̇h + ∂Ua

∂λ̇h
λ̈h

)〉

=
∫ t2

t1

dt

[〈(
∂Ho

∂λh
λ̇h + ∂Ua

∂λh
λ̇h

)〉
− λ̇h

d

dt

〈
∂Ua

∂λ̇h

〉]
.

(A10)
The result of Eq. (A10) is in the same form as that of Eq. (A9).

Substituting Ho = p2/2 + λ∗2
h x2/2 and Ua = λ̇∗

h
2γhλ

∗
h
[(p −

γhx)2 + λ∗2
h x2] where λ∗

h(t ) = �∗
h[(t − t1)/(t2 − t1)] into

Eq. (A9), we obtain

WI = Th ln
λ2

λ1
+ Th

t2 − t1
�h. (A11)

Hence, the optimal protocols in isothermal branches are
determined by Eqs. (A1)–(A4) while the time derivatives of
the protocols jump from vanishing (nonvanishing) values to
nonvanishing (vanishing) values at the initial (final) time of
the branches. The finite jumps in the time-derivatives of the
protocols at the two ends do not influence the expressions of
dissipation coefficients. It is worth noting that discontinuities
in the optimal protocols can also be found in Refs. [64,65].

APPENDIX B: NUMERICAL METHOD OF DETERMINING
THE MAXIMUM POWER AT GIVEN EFFICIENCY

To find the maximum power at given efficiency, we need to
solve the equation ∂P̃/∂Lh = 0 for Lh. According to Eq. (40),
the equation turns out to be

(1 + δ − 2Lh)L2
h + b(δ − Lh)2(−1 + 2Lh) = 0, (B1)

where b = (1 − η)/[(1 − ηC)χ ] and δ = (ηC − η)/(1 − η).
This is a cubic equation. It has three roots and what we need
is the real roots L∗

h that satisfy 0 � L∗
h � δ. The analytical

solutions are so cumbersome that it is hard to determine the
proper solutions. Hence, we numerically solve Eq. (B1) at
certain efficiency with given ηC and χ and pick out the proper
solutions L∗

h . Then we compare the value of P̃ at Lh = L∗
h with

the boundary values (P̃ at Lh = 0, δ) and obtain the maximum
value of power at certain efficiency with given ηC and χ .
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APPENDIX C: MATHEMATICAL PROOF OF THE
IDENTITY BETWEEN THE MAXIMUM POWER AT GIVEN

EFFICIENCY AND THE BOUNDS OF EFFICIENCY AT
GIVEN POWER

The relation between P̃, η, and Lh is expressed as Eq. (40)
which can be rewritten as follows:

f (P̃, η, Lh) = η
Lh(1 − Lh)[(ηC − η) − Lh(1 − η)]

(ηC − η) − Lh(1 − η) + Lh(1 − ηC)χ
− P̃

≡ 0. (C1)

For given ηs, the derivative of f (P̃, ηs, Lh) with respect to
Lh is

df (P̃, ηs, Lh)

dLh
=

[
∂ f (P̃, ηs, Lh)

∂P̃

]
Lh

∂P̃

∂Lh
+

[
∂ f (P̃, ηs, Lh)

∂Lh

]
P̃

= 0, (C2)

where [. . . ]x means performing the partial derivatives at fixed
x. The optimal Lh that makes P̃ approach its extremal value is
obtained by solving the equation ∂P̃/∂Lh = 0, that is

∂P̃

∂Lh
= − [∂ f (P̃, ηs, Lh)/∂Lh]P̃

[∂ f (P̃, ηs, Lh)/∂P̃]Lh

= 0. (C3)

However, for given P̃s, the derivative of f (P̃s, η, Lh) with
respect to Lh is

df (P̃s, η, Lh)

dLh
=

[
∂ f (P̃s, η, Lh)

∂η

]
Lh

∂η

∂Lh
+

[
∂ f (P̃s, η, Lh)

∂Lh

]
η

= 0. (C4)

The optimal Lh that makes η approach its extremal value is
obtained by solving the equation ∂η/∂Lh = 0, that is

∂η

∂Lh
= − [∂ f (P̃s, η, Lh)/∂Lh]η

[∂ f (P̃s, η, Lh)/∂η]Lh

= 0. (C5)

Comparing Eqs. (C3) and (C5), we find that the optimal Lh for
maximizing both P̃ and η is determined by the same equation,[

∂ f (P̃, η, Lh)

∂Lh

]
P̃,η

= 0, (C6)

as long as [∂ f (P̃, η, Lh)/∂P̃]Lh,η and [∂ f (P̃, η, Lh)/∂η]Lh,P̃ are
not divergent. Substituting the optimal Lh into Eq. (C1), then
we obtain the optimal relation between power and efficiency.
Divergence of [∂ f (P̃, η, Lh)/∂P̃]Lh,η or [∂ f (P̃, η, Lh)/∂η]Lh,P̃
may happen at isolated points but it will not influence the ulti-
mate shape of the optimal curve between power and efficiency.

In the limit of χ → 0 or χ → ∞, however, the optimal
relations between power and efficiency may not be determined
by the solutions of Eq. (C6) but are determined by the bound-
ary values of Lh. For example, according to the analysis in
Sec. V, the maximum power at given efficiency in the limit
of χ → ∞ is achieved at Lh = 0. It can be verified as follows
that in this limit the bounds of efficiency at given power are
also achieved at Lh = 0. Deriving from Eq. (C1), we obtain

that the efficiencies at given power are the solutions of

(1 − Lh)2η2 −
[

(1 − Lh)(ηC − Lh) + P̃

(
1

Lh
− 1

)]
η

+
[(

ηC

Lh
− 1

)
P̃ + (1 − ηC)χ P̃

]
= 0. (C7)

In the limit of χ → ∞, Eq. (46) implies that P̃ is rather small
and P̃χ is a normal number. Hence, the above equation can be
simplified as follows

(1 − Lh)2η2 − (1 − Lh)(ηC − Lh)η + (1 − ηC)χ∞P̃ = 0.

(C8)
To ensure that the solutions of Eq. (C8) are real and positive,
there are constraints on Lh:

0 � Lh � ηC − 2
√

(1 − ηC)χ∞P̃. (C9)

The first inequality is due to the condition that the duration of
isothermal branches is positive. The second inequality is due
to the condition that the discriminant of Eq. (C8) is nonneg-
ative as well as Lh � ηC. Then we work out the efficiency at
given power:

η± = (ηC − Lh) ± √
℘

2(1 − Lh)
, (C10)

where ℘= (ηC − Lh)2 − 4(1 − ηC)χ∞P̃. The upper bound of
efficiencies with different Lh is determined by the maximum
value of η+ and the lower bound of efficiencies is determined
by the minimum value of η−. Since

∂η+
∂Lh

= (1 − ηC)[Lh − ηC − 4P̃χ∞ − √
℘]

2(1 − Lh)2√℘
, (C11)

and Lh � ηC � 1, η+ decreases monotonically from Lh = 0
to Lh = ηC − 2

√
(1 − ηC)χ∞P̃. Hence, the maximum value

of η+ is achieved at Lh = 0 and the maximum value is

η∗
+ = ηC

2
+ 1

2

√
η2

C − 4P̃χ∞(1 − ηC). (C12)

Similarly, it can be verified that η− increases monotonically
from Lh = 0 to Lh = ηC − 2

√
(1 − ηC)χ∞P̃. Hence, the min-

imum value of η− is also achieved at Lh = 0 and the minimum
value is

η∗
− = ηC

2
− 1

2

√
η2

C − 4P̃χ∞(1 − ηC). (C13)

The relations (C12) and (C13) are consistent with Eq. (47).
Another limiting case where χ → 0 can be analyzed in the
same way.

In a word, the maximum power at given efficiency and
the bounds of efficiency at given power are described by the
same expression whatever χ is. In fact, as shown in Fig. 6, the
scatter points which represent the possible values of efficiency
and power of low-dissipation engines at certain χ are encased
by a continuous curve. In the present coordinates, this curve
provides the bounds of efficiency at given power. If we rotate
the diagram 90 degrees counterclockwise, then the curve will
become the maximum power at given efficiency.
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