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A well-known class of nonstationary self-similar time series is the fractional Brownian motion (fBm)
considered to model ubiquitous stochastic processes in nature. Due to noise and trends superimposed on data
and even sample size and irregularity impacts, the well-known computational algorithm to compute the Hurst
exponent (H ) has encountered superior results. Motivated by this discrepancy, we examine the homology groups
of high-dimensional point cloud data (PCD), a subset of the unit D-dimensional cube, constructed from synthetic
fBm data as a pipeline to compute the H exponent. We compute topological measures for embedded PCD as
a function of the associated Hurst exponent for different embedding dimensions, time delays, and amount of
irregularity existing in the dataset in various scales. Our results show that for a regular synthetic fBm, the higher
value of the embedding dimension leads to increasing the H dependency of topological measures based on zeroth
and first homology groups. To achieve a reliable classification of fBm, we should consider the small value of time
delay irrespective of the irregularity presented in the data. More interestingly, the value of the scale for which
the PCD to be path connected and the postloopless regime scale are more robust concerning irregularity for
distinguishing the fBm signal. Such robustness becomes less for the higher value of the embedding dimension.
Finally, the associated Hurst exponents for our topological feature vector for the S&P500 were computed, and
the results are consistent with the detrended fluctuation analysis method.
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I. INTRODUCTION

Data generation from a wide range of experiments and
observations leads to great opportunities to use modeling
in the context of complex systems. Assigning a shape to
various types of data and accordingly computing their per-
sistence in terms of so-called resolution has recently become
the focus of many studies. Furthermore, the spatiotemporal
distribution (shape) of datasets has been beneficial in various
branches of science [1–3]. Among different criteria such as
linear algebra [4,5] and common statistical properties [6–13],
the geometrical and topological features have provided com-
plementary evaluations [14,15]. Depending on what type of
information is needed and based on limitations in computa-
tional resources, one- and/or n-point statistics of geometrical
and topological properties [16–24], and complex network-
based analysis [9–13], and references therein], can be taken
into account.

Inspired by geometrical fractals [25], the notion of self-
similarity and self-affinity is employed to quantify the
statistical properties of different fields of generally (N +
D) dimensions [14,26]. A pioneering method to quantify
a self-similar process based on the Hurst exponent [27],
which is known as fractional Brownian motion (fBm) [its
associated increment is called fractional Gaussian noise
(fGn)] [28], is called multifractal detrended fluctuation anal-
ysis (MFDFA) [29–31]. Besides the noted methods for
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classification, prediction, and examination of datasets, one can
focus on topological features of data to study the data under
the banner of topological data analysis (TDA) [34–38] and
accordingly construct a powerful algebra-topological-based
approach [39–41]. To this end, persistent homology (PH)
as a shape-based tool that examines the evolution of global
features of the data related to topological invariants is uti-
lized [42–47].

There are many methods to construct higher dimensional
sets from a (1 + 1)-dimensional series and then imple-
ment TDA. The visibility graph method [48], correlation
network method [49], and time-delay embedding (TDE)
method [50,51] have been used as the preprocessing part
on the input data. The visibility graph and correlation net-
work methods construct a complex network from the time
series by considering the visibility condition between data
points of underlying data and correlation between subtime
series of the dataset, respectively, while the TDE method
maps the time series into a D-dimensional point cloud data
(PCD) by a time-delay parameter, τ . There are also some
undirected methods for converting time series to the com-
plex network, in which the reconstructed PCD (by the TDE
method) is converted to the network. The recurrence net-
work method [52–54] and k-nearest-neighbor (kNN) network
method [55] are the examples. Briefly, in the recurrence net-
work method, the connections are considered based on the
proximity of the embedded data points (state vectors), while in
the kNN method all state vectors (nodes) are connected with
their k nearest neighbors.

Quantifying the scaling exponent of fBm and fGn has
been done with various methods [29–33], but the spurious
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effect of complicated trends, the impact of nonstationarities,
the finite-size effect, and irregularities have remained as the
main challenges in the mentioned algorithms [33,56–59].
Subsequently, some efforts have been devoted to removing
or at least tuning down the above discrepancies from differ-
ent points of view ranging from network analysis [60–63],
to reconstructed phase space of fBm series with the TDE
method in terms of recurrence network analysis [64] by taking
into account the false nearest-neighbors algorithm [65] and
mutual information method [66], to the recurrence network
of fBms [67], to performing TDA on the weighted natural
visibility graph constructed from fGn series [68].

The main purpose of this work is exploring among the
topological-based data analysis methods to introduce a robust
algorithm in computing Hurst exponent. More precisely, we
are going to figure out how the reconstructed phase space
(embedded PCD) of the fBm time series changes by varying
the Hurst exponent and the algorithmic parameters of the TDE
method, i.e., the embedding dimension, and the time delay.
Furthermore, the influence of irregularity adjusted by a pa-
rameter, q, the fraction of the number of missing data points,
Tmissing, in the time series to its total number of data points,
T , as a measure for the amount of irregularity of underlying
dataset will be examined in this work. More precisely, we
utilize the PH method to get deep insight into how the state
vectors constructed with the TDE method are distributed from
a topological viewpoint. One of the advantages of this idea
is that we can study the global properties of the phase space
measured by the population of the homology groups of the
weighted topological space (called weighted simplicial com-
plex) mapped from the corresponding reconstructed phase
space. More importantly, we can also capture the evolution of
these topological invariants by varying the proximity param-
eter (threshold), ε, continuously. Subsequently, we examine
the behavior of the topological measures computed from the
dth persistent diagram, Dd , and dth Betti number, βd , as a
function of the proximity parameter (called dth Betti curve)
for d = 0, 1. We also aim to find the optimal choice for the
parameters D and τ to distinguish the fBms of various H and
also the results would be robust against the irregularity.

The advantages and novelties of our paper are as follows:
(1) We implement the PH method to quantify the Hurst ex-

ponent of a typical fBm series. To this end, we will introduce
nine topological measures which are sensitive to H .

(2) We will show that almost all introduced criteria are ro-
bust against irregularity irrespective of the value of the Hurst
exponent of the underlying fBm.

(3) The influences of the embedding dimension (D) and
time delay (τ ) capable of introducing a so-called feature vec-
tor to capture the reliable Hurst exponent will be examined.

Our results indicate that the computed topological mea-
sures of embedded fBm are sensitive to the value of the
Hurst exponent. Generally, the statistics of dth homology
classes have strong Hurst dependency. The evolution of d-
dimensional topological holes (d-holes) occurs in low (high)
scales for fBms with H � 0.5 (H � 0.5). This H depen-
dency grows by increasing the dimension of constructed PCD;
i.e., for a good estimation for H one can deal with high-
dimensional PCD. The situation is more noticeable when the
time series contains some irregularity. For a signal with a high

value of irregularity, the proposed measures become more
D-dependent and the accuracy of estimating the Hurst expo-
nent decays for high-dimensional PCD. In other words, the
topological features extracted from low-dimensional PCDs
have the minimum q dependency, i.e., the features of two-
dimensional reconstructed phase space are more robust than
the D-dimensional PCD for D > 2 in the presence of irregu-
larity, suggesting the best value D = 2 for the estimation of
the Hurst exponent of irregular fBms.

The rest of this paper is organized as follows: In the next
section, our methodology and pipeline for analysis of the
fBm signal are introduced. The numerical results of synthetic
fBm time series, via reconstructed phase-space distribution of
the state vectors from the topological viewpoint, are given in
Sec. III. We implement our pipeline on the S&P500 finan-
cial time series to estimate the associated Hurst exponent in
Sec. IV. A summary and concluding remarks will be presented
in Sec. V.

II. METHODOLOGY AND OUR PIPELINE

For the sake of clarity, we will give a brief about the com-
putational methods utilized in this paper to assess synthetic
fractional Brownian motion (fBm) signal by paying attention
to the mathematical preliminaries. More precisely, the PH of
reconstructed phase space (embedded PCD) from fBm for dif-
ferent noticeable specifications and our pipeline is explained
in this section.

A. Time-delay embedding

The reconstruction of phase space from a typical time
series has been implemented to capture the evolution of the
deterministic and chaotic dynamical systems and determine
the correlations between associated quantities [51,69]. Time
-delay embedding (TDE) is a mathematically well-defined
method to map a time series into high-dimensional Euclidean
space to make such a finite-dimensional phase space [50]. For
a given discrete time series, x = {xt }T

t=1, of length T , we make
a set of N state vectors of dimension D in D-dimensional
Euclidean space, RD, which is called D-dimensional PCD, for
a given time delay, τ , as follows:

X (x, D, τ ) = {�xt ∈ RD | �xt ≡ (xt , xt+τ , . . . , xt+(D−1)τ )}N
t=1.

(1)
Notice that X (x, D = 1, τ ) = x and the PCD size N = T −
(D − 1)τ . According to the Takens theorem [50], we can
recreate a topologically equivalent D-dimensional phase space
from a time series by means of this method. Figure 1 shows
a synthetic fBm time series with H = 0.5 of length T =
104 (top panel) and associated two-dimensional PCD of size
N = 9 × 103 reconstructed by the TDE method for τ = 103

(bottom panel). As noticed before, for any value of D and τ ,
one can construct PCD from fBm, x(H, q, T ), and therefore,
the associated homology groups are examined.

B. Persistent homology

Topology is a branch of pure mathematics dealing with
abstract objects living in high-dimensional topological spaces
(e.g., the real line, sphere, torus, and more complicated
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FIG. 1. A synthetic regular (q = 0) fBm time series of length
T = 104 with H = 0.5 (top panel) and associated phase space of
size N = 9 × 103 reconstructed with the TDE method for embedding
dimension D = 2 and time delay τ = 103 (bottom panel).

spaces) to classify them in terms of their global properties
(e.g., connectedness, genus, Euler characteristics, etc.) [39].
These global features of the space usually are topologically
invariant, which means that they do not change under con-
tinuous deformations and are not dependent on the way the
corresponding space is made (triangulated, mathematically).
By the term continuous deformation, we mean any contin-
uous changes (elastic motions) of the space like shrinking,
stretching, rotating, reflecting, etc., but not cutting or gloving.
These continuous deformations are defined by the concept of
homeomorphism in algebraic topology [70].

Here we introduce the required objects and definitions
in homology theory. In algebraic topology, to determine the
topological properties of a space, the associated space is tri-
angulated by mapping it into a collection of d-dimensional
simplicies (d-simplicies), called a simplicial complex. A
d-simplex σd = [�x0, . . . , �xd ] is a convex-hull subset of d-
dimensional Euclidean space, Rd , determined by its (d + 1)
geometrically independent points {�x0, . . . , �xd} in Rd . For in-
stance, a point is a 0-simplex, a line segment is a 1-simplex, a
triangle is a 2-simplex, a tetrahedron is a 3-simplex, etc. (see
the left panel of Fig. 2). A simplicial complex, K, is a collec-
tion of simplices such that any subsimplex of any simplex in
the simplicial complex is in the simplicial complex. Also, any
pair of simplices are either disjoint or they intersect in a lower-

FIG. 2. Left panel: Low-dimensional simplicies, 0-simplex, 1-
simplex, 2-simplex, and 3-simplex (sorted from top to bottom). Right
panel: A three-dimensional simplicial complex containing |�0| = 39
0-simplicies, |�1| = 63 1-simplicies, |�2| = 25 2-simplicies, |�3| =
3 3-simplicies and determined by the Betti numbers �β = (2, 4, 0, 0).
The subspaces determined by different colors illustrate examples
for a 1-chain (red), 1-cycle (pink), 1-boundary (green), and 1-hole
(orange).

dimensional simplex existing in the simplicial complex. The
dimension of a simplicial complex is defined as the dimension
of the largest simplex in it (see the right panel of Fig. 2) [39].
For a simplicial complex, K, containing |�d | d-simplices,
one can create a |�d |-dimensional vector space, Cd (K), called
a d-chain group of the simplicial complex K, by the basis
considered as the set of all d-simplicies �d (K) = {σ i

d}|�d |
i=1 of

the K and the vectors, called d-chains, as follows:

cd ≡
|�d |∑
i=1

aiσ
i
d ; ai ∈ Z2 ≡ {0, 1}. (2)

The boundary of a d-simplex is the union of all its (d − 1)-
subsimplices, which is obtained by applying the boundary
operator ∂d on the simplex:

∂d (σd ) =
d∑

i=0

(−1)i [�x0, . . . , �xi−1, �xi+1, . . . , �xd ]. (3)

The d-cycle group Zd (K) ≡ {cd ∈ Cd (K) | ∂d (cd ) = ∅} of K
is defined as the set of all boundaryless d-chains of the K;
i.e., any d-chain mapped to the empty space (set) is a d-
cycle zd ∈ Zd (K). Another subspace of Cd (K) is called a
d-boundary group Bd (K) ≡ {cd ∈ Cd (K) | ∂d+1(cd+1) = cd}
containing all d-chains of K, which is the boundary of a
(d + 1)-chain in Cd+1(K). The elements of Bd (K) are called a
d-boundary. Since the boundary operator satisfies the property
∂d−1(∂d (cd )) = ∅ for any cd ∈ Cd (K), we can conclude that
Bd (K) ⊆ Zd (K). In order to ignore d-cycles of the simpli-
cial complex K that are also a boundary, one can consider
a topological equivalence relation on Zd (K) such that any
pair of cycles zi

d , z j
d ∈ Zd (K) are equivalent (homologous) if

zi
d − z j

d ∈ Bd (K). This equivalence relation partitions Zd (K)
into a union of disjoint subsets, called dth homology classes.
The d-homology group of the simplicial complex K is defined
as Hd (K) ≡ {[zd ] | zd ∈ Zd (K)}, where [zd ] represents the
homology class of zd . The dth Betti number of simplicial
complex K, denoted by βd (K), as a topological invariant of
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FIG. 3. The persistent homology (PH) of a random PCD. This figure shows how the PH method extracts the topological features of a
random two-dimensional PCD of size N = 15. Top panel: Growing the VR simplicial complex by increasing the proximity parameter ε

(from left to right). Through the filtration, topological properties of the PCD change (connected components represented by black points and
blue lines, and topological loops represented by orange lines). Bottom panel: The PB (PD in inset) associated with the filtration shows the
persistence (evolution) of extracted topological features by persistence bars (pairs); filled blue diamond and empty orange square symbols are
for the zeroth and first homology generators, respectively.

K, is the dimension of d-homology group of K. Intuitively,
βd (K) indicates the number of d-dimensional topological
holes (d-holes) of the topological space triangulated by the
simplicial complex K.

Consider a D-dimensional PCD X = {�xi ∈ RD | �xi ≡
(xδ

i )D
δ=1}N

i=1 of size N as a finite (N �= ∞) discrete subset of
D-dimensional Euclidean space RD. The first step to study
this type of dataset from topological viewpoint, i.e., to un-
derstand the topological space underlying the PCD, is finding
a triangulation to tessellate the dataset [35]. We construct a
simplicial complex K from the PCD X . The obvious triangu-
lation of X is creating a simplicial complex containing only
N 0-simplices, K(X ) = {σ i

0 ≡ [�xi] | �xi ∈ X }N
i=1, with trivial

topology (β0[K(X )] = N, βd [K(X )] = 0 for d > 0). To go
beyond this simple structure, one can build the simplicial
complex of the PCD in larger scale, i.e., a higher value of
proximity of the vectors in X . To this end, for a fixed value
of the proximity parameter ε � 0, we can create a simplicial
complex K(X, ε) associated with the PCD X , as a collec-
tion of simplcies such that any d-simplex σd = [�x0, . . . , �xd ]
in K(X, ε) corresponds to (d + 1) vectors {�x0, . . . , �xd} in X
and the Euclidean distance between any pair of the vectors
{�x0, . . . , �xd} is less than the threshold. The constructed simpli-
cial complex K(X, ε) is called a Vietoris-Rips (VR) simplicial
complex [36]. After building the VR simplicial complex
K(X, ε) from the dataset, one can calculate the topological
objects defined before. But the structural properties of K(X, ε)

are highly dependent on the chosen scale ε. To overcome this
issue, the persistent homology (PH) method, from topological
data analysis (TDA), computes the evolution of the extracted
topological invariants (dth Betti numbers) by varying the
proximity parameter ε continuously [71]. To be precise, PH
builds a growing sequence of VR simplicial complexes, called
filtration, by increasing the proximity parameter and captures
the structural changes of the simplicial complex in terms of
Betti numbers βd (ε), called a Betti curve. Therefore, one
can get the evolution of any dth homology class [zd ] in a
filtered simplicial complex expressed by persistence pair (PP)
ε[zd ] = (ε[zd ]

appear, ε
[zd ]
disappear ) and summarize all PPs in a multiset

Dd = {ε[zd ]
i }i, known as the dth persistence diagram (PD),

where ε[zd ]
appear and ε

[zd ]
disappear are the scales in which the homol-

ogy class [zd ] appears and disappears, respectively. Figure 3
illustrates the mechanism of homology class extraction from a
typical random two-dimensional PCD of size N = 15 with the
PH method. The top row shows the filtration process in which
by increasing the proximity parameter (diameter of the gray
circles centered by the state vectors) the topology of the VR
simplicial complex varies. The zeroth (first) homology classes
are represented by black points and blue lines (orange lines).
The bottom panel indicates the persistence barcode (PB) and
persistence diagram (PD) (inset plot) of the zeroth (blue bars
in PB and filled blue points in PD) and first (orange bars in PB
and orange empty points in PD) homology classes associated
with the filtration.
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FIG. 4. The proposed pipeline in this paper: A synthetic fractional Brownian motion (fBm) time series is converted to a point cloud data
(PCD) with the time-delay embedding (TDE) method. The evolution of homology groups of a simplicial complex mapped from the constructed
point cloud data with the Vitoris-Rips (VR) method is calculated with the persistent homology (PH) technique and summarized as persistence
pairs (PPs) in persistence diagrams (PDs). Finally, topological measures based on the persistence diagrams and Betti curves are computed.

The number of PPs in the dth PD is called nd = |Dd |,
and for d = 0, this quantity has trivial value n0 = N . The
reason is the correspondence between the state vectors and
PPs in the zeroth PD. To quantify the distribution of PPs in
the dth PD, one can calculate the Shannon entropy of the
lifespans of the dth homology classes in Dd . By the lifespan
of a dth homology class [zd ], we mean the positive quantity
	[zd ] ≡ ε

[zd ]
disappear − ε[zd ]

appear. This measure for the entropy, so-
called persistence entropy (PE), is formulated as follows:

Ed = −
nd∑

i=1

	
[zd ]
i∑nd

i=1 	
[zd ]
i

log

(
	

[zd ]
i∑nd

i=1 	
[zd ]
i

)
. (4)

Betti curves are a common visualization of PDs which indi-
cate how the population of homology classes (Betti numbers)
evolve through the scale, ε. In fact, the number of d-holes of
a filtered simplicial complex for a fixed value of ε, denoted by
βd (ε), is the number of PPs in dth PD for which ε

[zd ]
(i)appear � ε

and ε
[zd ]
(i)disappear > ε, i = 1, . . . , nd . Therefore, the calculation

of the dth Betti curve can be written as

βd (ε) =
nd∑

i=1



(
ε − ε

[zd ]
(i)appear

)



(
ε

[zd ]
(i)disappear − ε

)
. (5)

It is possible to define other relevant measures based on the
behavior of Betti curves, e.g., ε

appear
d , ε

diappear
d , and εmaximize

d ,

FIG. 5. Upper panels: The PDs of dth homology groups (filled blue diamond for d = 0 and empty orange square for d = 1) for two-
dimensional PCD (inset plots) converted from regular fBm series with H = 0.2 (left), H = 0.5 (middle), and H = 0.8 (right) with the TDE
method for time delay τ = 100. The population and distribution of PPs varies by H , which cause the H dependency of topological measures.
Lower panels: The D dependency of zeroth (filled blue diamond) and first (empty orange square) PD of regular fBm with H = 0.5 embedded
to unit D cube (D = 2, 3, 4 from left to right) for τ = 1000. The inset plots show the visualization of the reconstructed PCD projected to the
standard planes of the space.
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FIG. 6. Upper panels: The zeroth (left) and first (right) Betti
curve of reconstructed four-dimensional phase space for time delay
τ = 1 from regular fBms of various Hurst exponents. Lower panels:
The Betti curves of reconstructed phase space of various dimensions
for time delay τ = 10 from regular fBm series with H = 0.1. These
curves indicate the strong D dependency of topological properties of
the embedded PCD.

which are known as critical scales for the dth Betti curve, and
they read as

ε
appear
d ≡ max

(
ε

∣∣∣∣
∫ ε

0
βd (ε′) dε′ = 0

)
(6)

and

ε
diappear
d ≡ min

(
ε

∣∣∣∣
∫ +∞

ε

[βd (ε′) − cd ] dε′ = 0

)
, (7)

where cd=0 = 1 and cd>0 = 0, and

εmaximize
d ≡ min

(
ε

∣∣∣∣ ∂βd (ε′)
∂ε′ |ε′=ε = 0,

∂2βd (ε′)
∂ε′2 |ε′=ε � 0

)
.

(8)

According to the structure of the VR simplicial complex
at ε = 0, we obtain ε

appear
0 = εmaximize

0 = 0. Furthermore, for
d = 0 the critical scale ε

disappear
0 separates the connected

regime (ε � ε
disappear
0 ) from the disconnected regime (ε <

ε
disappear
0 ). For d = 1, the critical scales ε

appear
1 and ε

disappear
1 de-

termine the loopless regimes (preloopless regime ε < ε
appear
1

and postloopless regime ε > ε
disappear
1 ) and εmaximize

1 is the
scale at which the simplicial complex becomes loopful. The
integration of the Betti curves is the last proposed measure:

Bd ≡
∫ ε

disappear
d

ε
appear
d

βd (ε′) dε′. (9)

Now we are interested in analyzing the effect of the pa-
rameters D, τ , and q on the statistics of the dth homology
group (d = 0, 1) and the H dependency of the mentioned non-
trivial topological measures, namely, ε

disappear
0 , B0, E0, ε

appear
1 ,

ε
disappear
1 , εmaximize

1 , B1, E1, and n1 and to look for which ones
are more appropriate for estimating the Hurst exponent of the
fBm series in the presence of irregularity in detail in the next
section.

C. Pipeline

Our proposed pipeline includes the following steps (see
Fig. 4):

(1) The fBm series x(H, q, T ) of the distinct Hurst ex-
ponent H with some irregularity q with size T is simulated
and embedded to a high-dimensional Euclidean space with
the TDE method for embedding dimension D and time delay
τ to construct a phase space X (H, q, N, D, τ ) of size N =
T − (D − 1)τ .

(2) The reconstructed phase space is mapped to the simpli-
cial complex K(H, q, N, D, τ, ε) with the Vietoris-Rips (VR)
method for various scales ε.

(3) The PH method is applied to extract the statistics
and evolution of d-dimensional topological holes (d-holes)
of the scale-dependent VR simplicial complex, and then the
associated generators are visualized as PPs in the dth PD
Dd (H, q, N, D, τ ) for zeroth and first homology groups.

(4) Some topological measures are directly computed
from the PDs, and some others can be defined by the criticality
of the behavior of the dth Betti curve βd (H, q, N, D, τ, ε)
calculated from PDs.

It is worth noticing that we define the normalized quan-
tities β̃d ≡ βd/N and η ≡ Nε and use them to calculate the
introduced topological measurements instead of the quantities
βd and ε in the rest of this paper.

III. RESULTS

According to our pipeline, first, we generate a synthetic
fBm for any given Hurst exponent based on the Holmgren-
Riemann-Liouville fractional integral [28,72,73]

x(H, t ) = 1

�
(
H + 1

2

)
∫ t

0
(t − s)H− 1

2 dx(s), (10)

where � is the Gamma function and dx(s) = x(s + ds) − x(s)
is the increment of (1 + 1)-dimensional Brownian motion
(see [68] for more details). Then we convert and rescale our
mock fBm time series of various Hurst exponent H ∈ (0, 1)
with H = 0.1 to the unit D-dimensional cube (D-cube)
[0, 1]D, a subspace of D-dimensional Euclidean space, from
D = 2 to D = 10 (D = 1), by using the TDE method for
τ = 1, 10, 100, 1000 and irregularity value, defined as the
fraction of missing data points in the time series to the time-
series length q ≡ Tmissing/T , from q = 0 (regular) to q = 0.09
by step q = 0.01. Notice that we have valued the length
of time series T , such that the PCD size N = T − (D − 1)τ
is fixed N = 210 and the missing data points are selected
uniformly randomly. In the PH part, the proximity parameter
varies continuously from εmin = 0 to εmax = 0.2

√
D, where√

D is the maximum possible distance between any two
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FIG. 7. The D dependency of topological measures introduced in this paper. We set the parameters as τ = 1 and q = 0.

points in the unit D-cube (diameter). All proposed topological
measurements in this work are computed and averaged over
103 realizations. For the computational part, we utilize the
“Ripser” PYTHON package [74].

Now we are going to evaluate topological measures for the
reconstructed phase space (embedded PCD) from generated
fBm. We are interested in examining the effect of relevant pa-
rameters, namely, (H, q) (so-called intrinsic parameters) and
(D, τ ) (algorithmic parameters) on the dth homology group
(d = 0, 1). The upper panels of Fig. 5 show the dth PD (d =
0 filled blue diamond and d = 1 empty orange square) for
Hurst exponents H = 0.2, 0.5, 0.8 (from left to right) for fixed
parameters D = 2, τ = 100, and q = 0. The insets are the
visualization of the reconstructed PCD. The dth Betti curves
of various H are also shown in the upper panels of Fig. 6. In
this part, the parameters are D = 4, τ = 1, and q = 0. These
plots reveal how the topological distribution of state vectors

in the D-cube and consequently the corresponding PDs and
Betti curves change for various values of the Hurst exponent
of the fBm series. The amount of memory encoded in the
correlation quantity of the fBm signal impacts the pattern
of reconstructed PCD, such that the higher value of H cor-
responding to a higher value of correlation in fBm leads to
the continuous trajectory (slow changes) than does the lower
value of correlation. In fact, by decreasing H , the N state
vectors become randomly distributed in the D-cube. Almost
all the proposed topological measures decrease by increasing
the Hurst exponent for the various value of parameters D, τ ,
and q.

A. D dependency

The statistics and evolution of homology classes of PCD
are strongly dependent on the dimension of the Euclidean
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FIG. 8. Upper panel: The two-dimensional PCD of regular fBm
with H = 0.9 for time delay τ = 10 (blue), τ = 100 (red), and
τ = 1000 (orange) and associated PDs (inset plots). Lower panel: the
PDs of two-dimensional PCDs (insets) for q = 0 (orange), q = 0.05
(red), and q = 0.09 (blue); H = 0.1. In these plots, the associated
zeroth and first PDs are represented by filled blue diamond and empty
orange square symbols, respectively.

space as the embedding dimension. The zeroth (filled blue
diamond) and first (empty orange square) PD of a regular
(q = 0) embedded fBm with H = 0.5 by time delay τ = 1000
to the 2-, 3-, and 4-cube is shown in the lower panels of
Fig. 5. The inset plots are the projections of the reconstructed
PCD into the standard two-dimensional planes Pi j ≡ {ciêi +
c j ê j | ci, c j ∈ R}, where {êi}D

i=1 is the standard basis of the
space. The Betti curves for d = 0 and d = 1 of various D are

FIG. 9. Upper panels: The evolution of zeroth (left) and first
(right) Betti number of reconstructed 10-dimensional phase space
from regular fBm of H = 0.1 for different time-delay parameters.
Middle panels: The number of connected components (left) and
topological loops (right) for D = 2 and H = 0.1 as a function of
threshold for various value of irregularity q. The lower panel is the
same as the middle panel except for D = 10.

also shown in the lower panels of Fig. 6. Since the typical
distance between state vectors increases by increasing the
embedding dimension for any given value of the Hurst ex-
ponent, the homology groups evolve (appeared, disappeared,
and maximized) in the higher value of threshold (see also the
lower panels of Fig. 5 as a consistent representation). The
H dependency of the measures increases by D as shown in
Fig. 7. This means that the topological differences between the
distribution of state vectors for various H are more significant
in higher dimensions, which can be captured by the homology
classes. However, the sensitivity of E0 for the fBm signal with
H � 0.5 is less than other defined measures irrespective of the
embedding dimension.

The interesting thing about the D dependency of the pattern
of state vectors is that the topological distribution of these
vectors for signals with H � 0.5 is more robust versus the
embedding dimension D. It is worth noting that the D depen-
dency of the homology groups evolution is considerable when
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FIG. 10. The time-delay parameter τ impact on the H dependency of topological measures.

the embedded time series is irregular (we will discuss this in
Sec. III C).

B. τ dependency

We consider a special case τ = 0 for which the em-
bedded PCD, X (x, D, τ = 0) = {�xt = (xt , . . . , xt )}L

t=1, is a
subset of a line along �e ≡ ∑D

i=1 êi with trivial topology,
β̃d (H, q, N, D, τ = 0, η) = 0, d > 0, where {êi}D

i=1 is the
standard basis of D-dimensional Euclidean space. The upper
panel of Fig. 8 illustrates a two-dimensional PCD recon-
structed from highly correlated (H = 0.9) fBm for various
time-delay values τ = 10, 100, 1000, blue, red, and orange,
respectively (inset plots) and associated PDs (filled diamond
for d = 0 and empty square for d = 1). The higher value
of τ leads to constructing a more extended PCD as shown
in the insets plots of the upper panel of Fig. 8 and con-

sequently the number of loops on the higher thresholds
grows.

The Betti curves of a 10-dimensional PCD of fBm with
H = 0.1 for various value of τ also are shown in the upper
panel of Fig. 9. Figure 10 reveals the behavior of our proposed
topological measures as a function of the Hurst exponent
for various values of τ . Since the rate of the autocorrela-
tion function decaying for the fBm time series decreases by
increasing H , this suggests the small values of τ are more
proper for estimating the Hurst exponent of the fBm se-
ries especially for the H � 0.5 regime, which is consistent
with the statement in [67] from the network analysis point
of view. For the almost H � 0.5 regime, the autocorrelation
of the fBm signal goes down rapidly compared to that for
H � 0.5, and therefore as represented in different panels of
Fig. 10, we find that for small τ our measures are sensitive as
enough to estimate the Hurst exponent for the whole range
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FIG. 11. The proposed measures as a function of the Hurst exponent for various amounts of irregularity controlled by q.

H ∈ (0, 1) of the underlying fBm signal. In addition, our
results demonstrate that particularly the E0, E1 and n1 for large
enough τ and small value of the Hurst exponent loose their H
dependency.

C. q dependency

The lower panel of Fig. 8 shows the zeroth (filled diamond)
and first (empty square) PD of two-dimensional PCDs (inset
plots) converted from irregular (q = 0 orange, q = 0.05 red,
and q = 0.09 blue) fBms with H = 0.1 by τ = 10. The zeroth
(middle left panel) and first (middle right panel) Betti curve
of two-dimensional PCDs mapped from the fBm signal with
H = 0.1 imposed by various irregularity q are illustrated in
Fig. 9. The lower panels of Fig. 9 are for 10-dimensional
PCDs, and the other parameters are the same as that for
middle panels. This plot reveals the robustness of topological

measures when we consider low-dimensional PCDs against
the irregularity in the time series. To explain this fact, impos-
ing irregularity on the time series x of length T makes the
time series and embedded PCD X lose Tmissing(q) = qT data
points and Nmissing(D, q) � Tmissing state vectors, respectively.
The number of missing state vectors Nmissing strongly depends
on the embedding dimension, such that Nmissing(D = 1, q) =
Tmissing and Nmissing increases by D. To be precise, for a given
irregular time series with irregularity equates to q, the number
of missing data points in the series is Tmissing = qT , and ac-
cording to N = T − (D − 1)τ , the influence of missing data
points in the time series grows for higher values of D in state
vectors of X . This effect can be recognized in the zeroth Betti
number of X (see the beginning of the zeroth Betti curve in
the middle and lower left panels of Fig. 9) as N β̃0(η = 0) =
N (q) � T − (D − 1)τ . This phenomenon affects the behavior
of topological measurements versus the Hurst exponent such
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FIG. 12. Application of the proposed pipeline to S&P500 time
series and corresponding Hurst exponent (upper panel) for computed
topological measures as a function of embedding dimension D for
fixed value of time delay τ = 1. Lower panel illustrates the averaged
Hurst exponent over topological measures and associated statistical
error in the 1σ confidence interval as a function of D. The result
based on the DFA method is shown by the gray area HDFA = 0.511 ±
0.015.

that some measures increase by q but some others decrease.
This effect dramatically is high in higher dimensions (see
Fig. 11).

IV. APPLICATION TO REALISTIC DATA

In order to show the capability of our proposed pipeline
to characterize the self-similar nature of real data and to esti-
mate the associated Hurst exponent, in this section we apply
our approach to the financial time series of close prices in
the Standard and Poor’s 500 (S&P500) recorded daily from
January 4, 2016, to December 31, 2019. The results are shown
in Fig. 12. The upper panel of this figure indicates the value of

the Hurst exponent as a function of the embedding dimension
for the fixed time delay, τ = 1, computed by our topological
measures. D dependency of the mean value and statistical
error at a 1σ confidence interval over the topological mea-
sures is illustrated in the lower panel of Fig. 12. Comparing
our results to the Hurst exponent value based on the DFA
method (the gray area in the upper and lower panels), which
is HDFA = 0.511 ± 0.015, reveals the good consistency of the
proposed method.

V. SUMMARY AND CONCLUDING REMARKS

In this work we studied the topological signatures based on
the homology groups of a point cloud data (PCD) constructed
from the synthetic fractional Brownian motion (fBm) series to
classify these series using the corresponding Hurst exponent.
We simulated the mock fBms for different H and converted
them to a D-dimensional PCD (a discrete subset of the unit D-
cube) according to the time-delay embedding (TDE) method
for various embedding dimensions and time delays. Then by
using the Vietoris-Rips (VR) method the embedded PCD is
mapped into the simplicial complex for continuously varying
proximity parameter ε and filtered by the persistent homology
(PH) technique to capture the evolution of homology groups
of triangulated PCD through the scales. For the zeroth and
first homology group the homology classes are stored as pairs,
so-called persistence pairs (PPs), in the zeroth and first per-
sistence diagram (PD). Any PP contains an appearing and a
disappearing scale for a homology class.

Relying on the population and distribution of PPs we de-
fined the number of PPs and persistent entropy revealing the
global properties of the corresponding PCD. Also, the zeroth
and first Betti curves, βd (ε), were computed to determine
some transition scales for connectivity and loop structures in
PCD. As we expected, all topological measures depend on the
parameters (H, q, D, τ, ε) shown in our pipeline (Sec. II C).

We assessed the H dependency of topological measures
considered in this paper. Our results demonstrated that the H
dependency of our measures (ηdisappear

0 , B0, E0 for the zeroth
homology group, η

appear
1 , η

disappear
1 , ηmaximize

1 , B1, E1, n1 for the
first homology group) grows by increasing the embedding
dimension (Fig. 7). The D dependency goes down for the
higher value of the Hurst exponent since for this range of H ,
the amount of autocorrelation becomes high for a small time
delay. The time-delay imprint on the topological measures has
been illustrated in Fig. 10 demonstrating that the small value
of τ is more reliable for determining the corresponding Hurst
exponent in the whole range H ∈ (0, 1) of synthetic fBm.

Motivated by irregularity existing in the realistic dataset
in the universality class of fBm or fGn [33,59], an irregular
mock series was simulated and quantified by a single irregular
quantity (q). For the higher value of H , we expected the
statistical properties of irregular fBm series remain almost
unchanged. Our analysis showed that almost all topological
criteria have weak dependency on q, and meanwhile E0, E1,
and n1 depended on irregularity existing in data (Fig. 11).
This means that those measures which are more related to
the size and ordering of data are more sensitive to q, and,
consequently, we propose that taking into account η

disappear
0
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and η
disappear
1 are more robust concerning data loss. In addition,

the q dependency increases by increasing the embedding di-
mension. Also, we find that selecting the lower value of time
delay makes a proper measure to estimate the value of the
Hurst exponent for various types of fBm irrespective of
irregularity.

For regular fBm series, the higher value of D, the more
sensitive the behavior of topological measures is, while the in-
fluence of irregularity would be magnified for the higher value
of the embedding dimension yielding the more H dependency
happens for lower D. Reconstruction of a typical fBm series
from a homology group can be carried out as follows: for a
given value of the nine-dimensional feature vector or even
one of our measures, we should determine the corresponding
Hurst exponent according to the results indicated in Figs. 7

and 10. Then by using the Holmgren-Riemann fractional inte-
gral for mentioned H, the associated fBm series is generated.

Our final remarks are as follows: the size dependency
of our proposed measures for any given value of the Hurst
exponent is important to examine. Incorporating the embed-
ding approach enables us to evaluate the higher-dimensional
topological holes, which are nontrivial hidden shapes in the
underlying series, particularly in the absence of irregularity.
Both these tasks will be left for our future research.
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