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We investigate the energy distribution and quantum thermodynamics in periodically-driven polaritonic sys-
tems in the stationary state at room temperature. Specifically, we consider an exciton strongly coupled to a
harmonic oscillator and quantify the energy reorganization between these two systems and their interaction as
a function of coupling strength, driving force, and detuning. After deriving the quantum master equation for
the polariton density matrix with weak environment interactions, we obtain the dissipative time propagator and
the long-time evolution of an equilibrium initial state. This approach provides direct access to the stationary
state and overcomes the difficulties found in the numerical evolution of weakly damped quantum systems near
resonance, also providing maps on the polariton lineshape. Then, we compute the thermodynamic performance
during harmonic modulation and demonstrate that maximum efficiency occurs at resonance. We also provide an
expression for the irreversible heat rate and numerically demonstrate that this agrees with the thermodynamic

laws.
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I. INTRODUCTION

Hybrid polaritonic states, resulting from the interaction
between excitons and photons, manifests on systems such
as molecules in cavities [1,2], plexcitons [3-5], optically-
stimulated semiconductors [6—10], and nanomechanical de-
vices [11-13]. Excitonic polaritons display distinct properties
that frequently depart from those of their components, provid-
ing an ideal platform for the investigation of strong coupling
emergence, hybrid-state formation, their quantum control,
and potential quantum technologies [14]. For foundational
and practical reasons, it is interesting to study polaritons as
nanoscale devices and, in particular, address their stability
and performance under modulation due to external fields and
forces.

Quantum thermodynamics [15-19] aims to extend thermo-
dynamic concepts, such as work [20], heat [15,21,22], entropy
[16,23], and efficiency [24] to nonequilibrium systems with
a few degrees of freedom, evolving in regimes where quan-
tum fluctuations cannot be ignored. Studies in this field have
concentrated on dissipative fermionic [16,25-27] and bosonic
[28] systems under slow [29-31] or periodic modulation, and
different techniques to describe periodically driven nanoscale
systems are continuously emerging based on reduced quan-
tum master equations [32-34] and Floquet theory [35-37].
Of particular interests are nanoscale systems and quantum
materials resulting from light-matter interactions [34,38,39].
Frequently, the dynamic and thermodynamic representation of
these systems appear to be contradictory, especially when the
interaction term, responsible for appearance of hybrid states,
is of the same order of magnitude than the system energy
[25,40], such as in the case of strongly coupled polaritons.
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Recent studies in the polariton dynamics [41-44] attempt to
account for dissipation in open or lossy systems.

In this paper, we report on the quantum thermodynamics
of periodically driven dissipative polaritons, characterizing
the stationary energy and population distribution. Our model
describes weakly damped polaritons coupled to heat and work
reservoirs, providing direct access to the stationary state and
the absorption lineshape in terms of damping parameters,
exciton-phonon coupling, and detuning from the driving field
frequency. Remarkably, our thermodynamic analysis reveals
that the energy dissipated to the environment in the stationary
state in the form of heat is related to the polariton von Neu-
mann entropy.

II. POLARITON DYNAMICS

We consider a composite Hs consisting of a two-level
electronic system and a phonon, interacting with the environ-
ment Hg and with interaction energy H; = Hix + Hip given
by (A =1)

H = Hs + H, + H;, (1)

Aix =Y wreldid, + W) djdic. 3)
k
Ap =Y WSbla+ hc. 4)
k

The Hamiltonian A in Eq. (1) is reminiscent of the Jaynes-
Cummings model and incorporates explicitly energy damping
to the environment. In Eq. (2), ¢; is the ith level energy,
is the characteristic frequency for the phonon, c?; (d;) is the
creation (annihilation) operator for an electron in the ith level,
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a’ (a) creates (annihilates) a phonon, and V is the coupling
term between the phonon and the two-level system. The elec-
tronic and phononic components of the system interact with
the corresponding bosonic baths, namely, Hy = > aké;jk
and Hp = Y, wxb} by, with coupling terms WX and W as in
Egs. (3) and (4). These represent the heat reservoirs, which ac-
count for dissipative interactions with the environment. In the
exciton case, these occur via radiative decay, energy damping
via vibrational relaxation, or other nonradiative mechanisms.
In the phonon case, dissipation occurs via couplings to differ-
ent modes in the system or, in the case of a Fabry-Perot cavity,
energy losses due to mirror leakage or absorption.

As a consequence of the electron-phonon coupling, hybrid
states |o) are formed. These hybrid states diagonalize Hs,
with corresponding eigenenergies A, and, in general, differ
from the product states |i, m) characterized by the electronic
quantum number i and phonon mode m. To bring the polari-
ton in a nonequilibrium condition, we consider the following
generic periodic time-dependent variation, with frequency o’
and interaction strength A

Hy(t) =2A cos(a)/z‘)z |1, m)(m, 2| + |2, m){m, 1], (5)

m

and obtain a dynamical description of the driven polariton
by solving the Liouville-von Neumann equation for the full
density matrix. The Hamiltonian H,(t) describes the exciton
interaction with an unspecified reversible work reservoir [45].
Physically, the work reservoir can be an incident electromag-
netic field coupled to the exciton via dipole-field interactions.
We solve the Liouville equation in the interaction picture
with interacting Hamiltonian Hy(t) + Hj, invoking the Born-
Markov approximation [46] (see Appendix A for details). In
this form, our solution is valid to second order in WX, W7,
and A; holds for arbitrary values in the coupling term V. The
resulting Markovian equation for the reduced density matrix

p(t)is
d
EM) =—(D+Lx+Lp+ Li)p(), (6)

where we write the reduced density matrix as a vector p(t)
with elements ,of (t) = (x]p(t)]|B). In Eq. (6), the operator D
is diagonal with matrix element Dg‘gj = —i(ha, — Ap, )35 (Sglz
and corresponds to the free evolution of the polariton in the
absence of any relaxation mechanism; Ly and Lp are op-
erators that result from the independent exciton and phonon
relaxation and are correspondingly proportional to the damp-
ing rates T = 27 Y, IWP|28(wy — w) with O = X, P. The
time-dependent operator L£,;(¢) introduces the effects of the
driving field in the polariton state, in a form that is propor-
tional to A% and that depends on the frequency of the incident
field ’. Notably, L,(¢) is periodic with period T = 27 /o’
(see Appendix A for details).

Formally, in the representation chosen in Eq. (6), the re-
duced density matrix has an infinite (countable) number of
matrix elements. Due to the relaxation induced by the cou-
plings to the environment, the contributions to the dynamics
from higher energy states can be disregarded and a finite ma-
trix representation of the operators in Eq. (6), in terms of the
hybrid states formed by the lowest m, phonon modes, results

in a faithful approximation to the dynamics. Within this finite
representation, the £ operators are (2m,)*-square matrices,
and the time-dependent reduced density matrix obtained from
the initial equilibrum condition £(0) is

B(t) = exp [—(D + Lx + Lp)t — fo Ed(t’)dt’] 5(0). (7)

Utilizing the £, periodicity we find that for t = Nt + At,

At <t
t ¢ eZiw’At
/ LotHdt =mA?[ = —i Ny
0 2 4(1),

¢ e—Ziw’At
+ nA2<§ +i )N_, ®

4o

where AV are time-independent transition matrices describing
the allowed system state conversions due to the external mod-
ulation. We note that the operator in Eq. (8) is a time-local
matrix and, as a result, the evolution operator in Eq. (7) is
well-defined without a time-ordering operator.

Equations (7) and (8) provide a simple description of
a weakly damped periodically-modulated polariton in the
strong coupling regime, as it holds for arbitrary values for
the electron-phonon coupling strength V. Moreover, Eq. (7)
constitutes a numerically stable model for the dynamics of
the driven system, naturally incorporating the effects of the
system-bath couplings (system-bath coherences) within the
Markovian regime, and allowing direct investigation of the
polariton long-time evolution. In contrast, the numerical prop-
agation of Eq. (6) demands the initial evolution of the free
system to introduce system-bath correlations and may not be
stable near the resonance condition (w = '), as in this case
Eq. (6) becomes a stiff differential equation. In this form,
Egs. (7) and (8) overcome the difficulties found in the study
of lossy cavities [47] near resonance [48], in the long-time
evolution regime, and for an arbitrary driving frequency o’
Significantly, Egs. (7) and (8) are not limited to slow driving
rates and do not require time-coarse graining [32] to describe
the system in the long-time evolution limit.

III. POLARITON THERMODYNAMICS

Starting from Eq. (6), we define elementwise the time-
dependent operators Ly, Lp, and L; corresponding to the
different partial time derivatives of the polariton density ma-
trix

Ly, = Louhel) @O=X.Pd, 9

a2

and identify two reversible heat rates due to the polariton-heat
reservoir interaction

Ox(t) = —Tr[Lyx (t)Hs], (10)
Op(t) = —Tr[Lp(t)Hs]. (11)

Similar considerations were used in, e.g., Ref. [34] to de-
fine heat rates in dissipative driven TLS. Since we chose an
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interaction representation that includes the driving field H,(r)
in the interaction term, the power or work rate on the polariton
due to this external modulation is given by

W(t) = —Tr[Ly(t)Hs]. (12)
The polariton’s von Neumann entropy

S(1) = = Tr[p(®)In p(1)) 13)

significantly differs from the sum of the exciton and phonon
residual entropies in the strong-coupling regime. However, the
total entropy change rate is the linear combination of three dif-
ferent rates resulting from interactions with the environment

S(t) = Sx(t) + Sp(t) + Sa(t), (14)

So =Tr[Lo(®)Inp@)] (O=X,Pd). 15)

Ideally, to consider the information entropy in Eq. (13), or
any other, as the polariton nonequilibrium entropy function,
its connection with the dissipated energy in the form of heat
should closely follow the Clausius theorem. Thus, in terms
of the reversible heat and entropy rates, we define the effec-
tive polariton temperature B as the proportionality factor
between the total reversible heat rate and the sum of the
associated entropy rates

Bete (Ox (1) + Qp(t)) = Sx (1) + Sp(t). (16)

In this form, B.g has units of inverse energy and may fluctuate
as the driving field. We assess the significance of B by
analyzing energy conservation. The first law imposes that the
internal energy variation for the universe, Uumv, must always
vanish. Consequently, Us + Uy + Up + Uy = 0, where Uy is
the work source internal energy. Since the thermal reservoirs
are assumed to be reversible, then Uy = —Qx, Up = —Qp.
We identify an additional energy rate, ,Be’fflSd, between the
polariton and the work source. Assuming that the work source
volume is fixed, we conclude that Uy = — ,Be_ff] S4.

Finally, relative to the polariton equilibrium density matrix
po = e PoHs I Tr[ePolls ] where B, = 1/(kpTeny) and Topy is the
environment temperature, we define the irreversible heat rate
by invoking the Spohn theorem [30,31,49]

Oirrev (1) = B, ' Tr[(Lx (1) + Lp(1))(In p, — In p(2))]
=B, (Sx () + Sp(t)) — (Ox () + Op(1)).  (17)

IV. NUMERICAL EXAMPLE

We now consider a driven dissipative polariton with identi-
cal driving field, phonon, and exciton frequencies (specifically
o' =w=¢ =1 eV, and g =0) with driving parameter
A = 0.1 eV, initially at the ground state (such that ,05 0) =
84,(0,0008,(0,0) in the i, m) basis). For this system, Hs is a
block matrix with eigenvalues )Lff = ((m+ 1)w £V and zero.
Figure 1(a) shows the phonon energy Epn, = w(ata), the ex-
citon energy Eris = & (c?; 32), the interaction energy Ei, =
V((ﬁgr c?]& + &Tﬁf dAz)), and the total polariton energy (Hs) as
a function of coupling strength V at 300 K and after prop-
agating the system 8.271 ps (20007). In Fig. 1 we assume
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FIG. 1. Polariton energy distribution. (a) Stationary phonon, ex-
citon, interaction, and polariton energies, respectively denoted by
Egho» Eris, Ein, and (Hs)), as a function of coupling strength V.
(b) (Hs) near V = w calculated at three different bath temperatures:
300 K (black), 100 K (brown), 10 K (green). (c) (Hs) at resonance
(V = 2w) as function of the damping parameters 'y, I'p. (d) Phonon,
exciton, interaction, and polariton energies as a function of time, and
after a propagation period of 8.721 ps. (color code as in panel (a).
(e) Diagonal density matrix elements in the product state basis, as
a function of energy and for several V. Parameters are o’ = w =
1.0eV,I'y =02eV,I'p =04eV,A=0.1eV,e =0eV,&e, = 1¢V,
T =300 K, unless otherwise specified.

the wideband limit and set the damping rates to 'y = 0.2 eV
and I'p = 0.4 eV and include the lowest 30 phonon modes,
which was enough to achieve numerical convergence in the
rates (see Appendix B for additional details). As we vary
the coupling strength V, we find two significant features in
the energy. First, we observe a monotonic increase in the
absolute energies starting around V = 0.85 eV with a sudden
decay at 1 eV; and second, a broad peak near 2 eV. Indeed,
when V = w — §, for small but positive §, the hybrid state
Ay = 6 comes close in energy with the ground state, favoring
the energy transfer cascade driven by thermal fluctuations.
Figure 1(b) presents the polariton energy (Hs) near V = w =
1 eV at 300, 100, and 10 K. We observe a reduction in the
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height and spread of this peak as the bath temperature drops,
with a clear suppression of this peak at 10 K. This finding
confirms that the energy absorption close to V = w originates
on the thermal fluctuations and the harmonic nature of the
phonon. The second peak, centered at V = 2w, results from
the emergence of a hybrid state with energy A, = —w, and the
fact that the driving field frequency is in resonance with tran-
sition &1 — A, . This resonant peak can be fit to a Lorentzian
distribution with a scale parameter linearly depending on V
and centered at 2 eV (see Appendix C). The energy contour in
Fig. 1(c), reveals how the total polariton energy in resonance
varies for different values in the damping rates 'y and I'p,
suggesting that (Hs) is more sensitive to I'p than 'y. We
also note that majority of the polariton energy is stored in the
phonon modes. Figure 1(d) shows that the system reaches a
periodic stationary state. The energy oscillation amplitude in
this stationary state is very small, on the order of a few ueV,
as expected for an overdamped system with A2/eV < T'y, T'p.
These oscillations are not detectable from Fig. 1(d), and we
can regard the polariton energy as constant. Figure 1(e) shows
the density matrix diagonal elements for several values on the
coupling strengths V, and as a function of the energy. These
probabilities can be fit to a biexponential function with two
energy decay parameters: one dominating at low energies, and
the second one dominating at higher energies. Such biexpo-
nential fitting function is consistent with the definitions of A
and A, and the form for the density matrix in Eq. (7). Notably,
while the population probabilities are maximal in resonance,
their decay parameters do not change significantly with V.
We investigate the polariton quantum thermodynamics un-
der periodic driving in Fig. 2. First, we calculate the heat and
work rates defined in Egs. (10)—(12) in the long-time evolution
regime in Fig. 2(a). We find negative and constant Oy and Qp,
indicating a net flux of heat energy from the polariton to the
environment, while the work done on the system oscillates as
the driving field. The total work per period W = for W (t)dt,
presented in Fig. 2(b), serves as a measure of the thermody-
namic efficiency of the process as a function of the coupling
strength. Indeed, for a specific realization of the system, the
intensity of the external field enters in the definition of the
parameter A in our model, which is kept constant in our
calculations. The thermodynamic efficiency, defined by the
ratio between W and the intensity of the external field, is
therefore maximal in resonance (o’ = w and V = 2w) as it is
in these conditions that W is maximal. We note that during the
cyclic process imposed by external modulation, the polariton
remains in a stationary state far from equilibrium. As a result,
the efficiency described here cannot be compared with the
Carnot efficiency, and it is therefore the figure of merit for
the performance of the external pumping. Figure 2(c) shows
the von Neumann entropy rates defined in Eq. (15) at reso-
nance, and Fig. 2(d) presents the inverse effective temperature
introduced in Eq. (16) as a function of V. We observe that
,BC_ffl achieves its maximum value at resonance, and it quickly
decays away from this point. With this effective temperature,
we numerically verify energy balance and the first law in the
stationary state in Fig. 2(e). We note that while Us (1) oscillates
on time, the environment’s internal energy also oscillates,
canceling the variation of the universe’s internal energy at all
times. Finally, in Fig. 2(f) we show the total irreversible heat
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FIG. 2. Polariton quantum thermodynamics. (a) Work and heat
rates as a function of time. (b) Total work W done in the polariton
by the external source per period 7 as a function of coupling strength
V. (c) von Neumann entropy rates as a function of time. (d) Inverse
effective temperature B as a function of V. (e) Polariton Us and
total reservoir UP + Up + Up internal energy change rate as a func-
tion of time. (f) Total irreversible dissipated heat Q; .., per period as a
function of coupling strength V. These quantities are calculated after
8.271 ps of evolution. Parameters are as in Fig. 1.

dissipated per period Qi ey = for Qirrev(1)dt as a function of
V, and find that this quantity is also maximal in resonance.

V. CONCLUSION

We developed a robust and efficient model for periodically
driven polaritons, weakly interacting with external reservoirs,
in the strong-coupling regime. We utilized this formalism to
reveal the polariton long-time evolution and thermodynamic
performance upon external modulation. Significantly, our ap-
proach is not limited to the stationary case and can also be
used to investigate the polariton transient dynamics and per-
formance. Moreover, we believe that our formalism permits
the study of the quantum thermodynamics of other analog
systems.
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APPENDIX A: QUANTUM MASTER EQUATION

We solve the Liouville-von Neumann (LvN) equation for
the full density matrix p(¢), assuming that the surroundings
remain in equilibrium during the driving, such that p(¢) =
SR p?q at all times. We write the LvN equation in the
interaction picture

% = —%[fw), Br(D)], (A1)
with interaction Hamiltonian
Vi(t) = Hy + Hy(1) (A2)
and
pr(t) = et/ () g iFstn, (A3)

We solve Eq. (Al), f ollowing the Born-Markov approx-
imations described in, e.g., Ref. [46]. First we integrate
Eq. (A1)

pi(t) — p1(0) = —%/ Vi), pr(¢)] dt (A4)
0
and replace Eq. (A4) in Eq. (A1) to obtain
dpr i _
7 _E[Vl(t)’ pr(0)]
1 [ . N
- [ Do, menar. @)
0

Next, we trace out the bath degrees of freedom assuming
independent baths and that the polariton is initially in an
equilibrium state p%(0) = peq:

doj 1
TR A TrB{[Vz(t) Vi), prHIde’,  (A6)
and noting that
dp} i s a5 i
—L = —[Hq, t +iHst /1 iHst /h A7
it h[ s, 01 (1)) +e ¢ (A7)
We finally obtain up to second order in Wy, Wp, and A
d 1
- 1) = ——[H- , t —iHst /h
S0 = s, p°0)] - h/Oe
x Teg{[Vi(0). [Vt pS)]]}e ™" dr.
(A3)

From the first term in the right hand side in Eq. (A8) we
recover D

ad
) = (A9)

- —iha = A)PG (D).

The second term incorporates the effect of the coupling of
the polariton to the environment and the external driving,
which are represented by the operators Ly, Lp, and L, in the
main text. Since the derivation of Ly and Lp follow a similar
pattern, we illustrate this derivation in some detail for £p and
indicate how Ly results from simple substitutions.

First, we introduce the self-energies

Py = Y Wbl s (A10)
k

SPE ) = Y WP Bl Ob s (AL
k

and adopt a Markovian approximation to the dynamics in
Eq. (A8) by replacing p;(t') — p;s(¢). After this, we invoke
the Redfield-Markov approximation and change the integral
domain from (0, #) to (—o00, 00), with a rescaling 1/2 factor
such that fé — 1 [°.. The eight terms resulting from the
explicit evaluation of the commutators in the second term in
Eq. (A8) are

ap a B N
Lpap, = / Lyt 1)t
=T» Z n(y, p1)as'a’,

+ (1 +nly, p)a"ay,)ss
— (n(ern, ) @™ a8 + (1 + n(ay, y))agia™:)se
+ (n(y, an)a2a™, + (1 +n(y, ax))aal )5
— (n(B1, az)&TZ;AZ + (1 +n(Bi, a2)) % "al’\Ty )51/
(A12)

with Tp =27 )", |WkP|28(a)k — w). In this work we invoke
the wideband approximation. This is justified under the as-
sumption that I'p is small compared to the width of the
spectral function. As indicated above, Lx follows from s1m11ar
considerations and under the substitution bk — Cp,a — d dz,
and Wp — Wy.

For the driving field introduced in Eq. (5) we write

= I, m)(2,m|

and evaluate the double commutator in Eq. (A8) under the
Markovian approximations described above. For this we note
that (h = 1)

t =dd> (A13)

o0
/ dt’ cos(wt) cos(wt)e HAH=D

o0
= 77 cos(wt) (e S (AL — ) + e IS(AX + w)), (Al4)
and as aresu It

alﬁl t) =

2
Lot —2|A|” cos(w't)

X :(g(ﬁl,az,w/,l)-i'g(ﬁz,al,w/,l))
> ( Tazxﬂl +)feaoATﬁ1)

a”p B2
_Z (8(Br. v o (&', 22 + &1 ATw)(Sﬂ]

+ gy, o O(EY &+ 5 5

*5')65;)},

(A15)
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FIG. 3. Absolute energies, heat, work, and von Neumann entropy
rates as a function of the upper bound in the number of phonon modes
m,, for the system in Figs. 1 and 2, for V = 1.90, T = 2000t =
8.271 ps, ['p = 0.16 e V = 4I'y. Other parameters are as in Figs. 1
and 2.

where

g, B, 0, 1) = " 8(hy — hp — @) + €' 8(hg — Ag + ).
(A16)

From Eq. (A15), we obtain the transition matrices, N, de-

fined in Eq. (8)

Nialﬂl _

wpy — (8 ()“51 — A, F a)/) + 5()‘/32 — Aoy F CU/))
x (ffesh +22570)

- Z (8 ()‘ﬂl - F w/) ()?Tglﬁt;z + ﬁf};lf{?ﬁz)sg
14

+8(hy — Aoy F ) (x*;zfcfl + &5 27 )sar)

(A17)
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FIG. 4. Absolute energies, heat, work, and von Neumann en-
tropy rates as a function of the upper bound in the number of
phonon modes m,, for the system in Figs. 1 and 2, for V = 2w, T =
2000t = 8.271 ps, 'p = 0.16 e V = 4I'x. Other parameters are as in
Figs. 1 and 2.

In our calculations involving Eqs. (A16) and (A17), we ap-
proximate the Dirac’s delta function by a Lorentzian function
with broadening parameters equal to 1 x 107 eV.

APPENDIX B: NUMERICAL CONVERGENCE TESTS

In this section we provide evidence for the numerical con-
vergence of the energy and thermodynamic rates reported in
Figs. 1 and 2 when we carry out the summation over the
phonon modes including only the first thirty modes (m, =
30). In Figs. 3 and 4 we present the energies Etrs, Ein,
Epno, and (ﬁs); the heat and quk rates Qx + Qp and W;
the von Neumann entropy rates Sx + Sp and S; correspond-
ingly off-resonance (V = 1.9w) and in resonance(V = 2w)
for t = 20007 = 8.271 ps. We find that the energy rates con-
verge to the numerical exact value for m, = 30. We also note
that E,p, and (Hy) deviate about 3% from the limit value in
resonance (m, = 45). This deviation is not relevant for the
thermodynamic analysis.
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FIG. 5. Polariton energy near V = 2w, obtained from the density

matrix (dots) and from the fitting function in Eq. (C1). Other param-
eters are as in Fig. 1(a).

APPENDIX C: LINESHAPE NEAR RESONANCE

In this section we show that we can fit the second peak
in Fig. 1(a), centered at V =2w, to a Lorentzian form
with a broadening parameter that linearly depends on the
exciton-phonon coupling strength. Explicitly, we write (Hs)
as function of V

(0.0696V — 0.0349)

Hs) = 0.376
(Hs) * (V —2.0)2 4 (0.0696V — 0.0349)2

(ChH

Figure 5 presents a comparison between the energies ob-
tained as the expectation value of Hg and the ones obtained
from the fitting function in Eq. (C1).
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