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In three-dimensional percolation, we apply and test the critical geometry approach for bounded critical
phenomena based on the fractional Yamabe equation. The method predicts the functional shape of the order
parameter profile φ, which is obtained by raising the solution of the Yamabe equation to the scaling dimension
�φ . The latter can be fixed from outcomes of numerical simulations, from which we obtain �φ = 0.47846(71)
and the corresponding value of the anomalous dimension η = −0.0431(14). The comparison with values of η

determined by using scaling relations is discussed. A test of hyperscaling is also performed.
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I. INTRODUCTION

Percolation describes the addition of links to system lead-
ing to the formation of a macroscopic cluster. Despite its
simplicity, it can model vastly different real-world phenomena
[1], ranging from water passing through coffee to molecules
branching to form a gel [2,3] or from wildfires [4] to the
spread of infections [5–7].

Percolation provides a clear introduction to critical phe-
nomena, with an easily identifiable transition and a visually
striking example of self-similarity at the critical point [8]. It
differs from spin systems as it lacks a Hamiltonian, making
it an easy to simulate, purely geometrical model. It has been
the subject of several physical studies, via methods such as
the renormalization group [9–11], as well as boasting a long
history of mathematical investigations [12], culminating in a
Fields medal [13,14]. The richness of the field is reflected
in the variety of related universality classes, including di-
rected [15,16], long-range [5,17–19], and history-dependent
[20] percolation, and by the different models within the same
class, such as bond or site percolation. Several exact results,
including critical exponents, are available in two dimensions
[21–24].

At the critical point, percolation is described by a loga-
rithmic conformal field theory [25], with a single primary
field [26]. Bond percolation can be obtained as the ana-
lytic continuation of the q-state Potts model for q → 1 [27];
this procedure, however, does not preserve unitarity. For this
reason, the most accurate technique currently available to
obtain critical exponents for O(N ) models, the conformal
bootstrap [28], cannot be straightforwardly applied to perco-
lation, meaning that results for anomalous dimensions are not
especially precise.

In this work, we apply the geometric theory of bounded
critical phenomena introduced in [29] to the case of three-

dimensional (3D) continuum (i.e., off-lattice) percolation. The
procedure consists in(1) slicing the giant cluster (defined be-
low) emerging at the critical point, (2) measuring the fraction
of the giant cluster at a given distance from the boundaries
(similarly to what was done for a discrete two-dimensional
(2D) strip in [24]), and (3) comparing it with the solutions
of the fractional equation obtained in the critical geometry
approach of [29], to extract the scaling dimension �φ of the
order parameter.

II. CRITICAL GEOMETRY

The main property a system typically gains at its criti-
cal points is conformal invariance [30,31]. Heuristically, this
means that every region of the system looks the same; intro-
ducing a boundary clearly breaks this property. The question
addressed in [29] is then: is there a way to recover some
degree of uniformity?

To answer this, [29] presents a conjecture, called uni-
formization hypothesis, which is at the heart of the critical
gemoemtry approach. According to it, the metric must make
a bounded critical system as uniform as possible, by making
the scalar curvature constant. This curvature would have to
be negative, since spaces with positive curvature, like spheres,
lack boundaries.

Starting from the uniformization hypothesis, for models at
their upper critical dimension d = dc [29,32], one can write
the requirement of constant scalar curvature as an equation for
a factor γ (x), obtaining what in geometry literature is called
the Yamabe equation [33]:

(−�)γ (x)−
d−2

2 = −d (d − 2)

4
γ (x)−

d+2
2 (1)

(� is the Laplacian in flat space). With the condition
γ (x) = 0 at the boundaries of the domain �, one obtains
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solutions which, close to the boundary, are proportional to the
Euclidean distance from it.

For d < dc, to be consistent with the uniformization hy-
pothesis one has to modify the Yamabe equation in order to
account for the anomalous dimension η of the field [29]

�φ = d − 2 + η

2
. (2)

Dimensional analysis suggests that the exponents in (1) be al-
tered: the Laplacian is then replaced by a fractional derivative,
leading to

(−�)d/2−�φ γ(�φ )(x)−�φ ∝ γ(�φ )(x)−d+�φ . (3)

Equation (3) is called fractional Yamabe equation [34] for the
function γ(�φ )(x) to be determined. The fractional Laplacian
(−�)s in (3) is a nonlocal operator with many possible def-
initions [35]. For our purposes, it must be computed through
an extension to a (d + 1)-dimensional space, as introduced in
[36].

The uniformization hypothesis is an unproven conjecture.
If from one side it would be highly desirable to derive it from
accepted principles, such as conformal invariance, it does
produce testable predictions for correlation functions and in
particular for the order parameter profile at criticality. Indeed,
once γ (x) is known, one-point functions are determined up to
a constant α:

〈φ(x)〉 = α

γ (x)�φ
. (4)

This prediction for the order parameter correlation function
has been shown to hold numerically, with high precision, in
[29] for the 3D Ising model, in [32] for the four-dimensional
Ising model, and in [37] for the 3D XY model. Uniformization
also reproduces known 2D results [29].

Percolation offers the possibility to use and test the critical
geometry approach: from one side, if one assumes the value
of η available in literature, then Eq. (4) gives predictions for
the spatial profile of the order parameter at criticality, which
are not easy to provide for percolation in dimension larger
than two with other approaches. From the other side, for per-
colation in d = 3 the exponent η is known with much lower
precision than the corresponding exponent in other models,
such as the Ising model [38]. So a truly challenging task
for the critical geometry approach is to determine η for 3D
percolation with high precision. Once direct determinations
of η become available, they would provide a stringent test
for critical geometry. Moreover, the current high precision
estimates of η obtained with scaling relations already provide
a good test for our approach. Independently from this test,
checking scaling and hyperscaling relations using the values
of the other critical exponents also puts a bound on the validity
of the critical geometry approach. At the same time, one
obtains in this way as a by-product predictions for the critical
order parameter profile.

III. ORDER PARAMETER PROFILE

The idea is to solve the fractional Yamabe equation in
the considered domain and use the solution to find the order
parameter profile. Fitting the profile of the order parameter
with numerical data will give us the value of the scaling

dimension �φ . For a spin model, the order parameter 〈φ(x)〉
is the magnetization, while for percolation it can be extracted
by a slicing procedure performed on the giant cluster. We
choose the geometry of a slab, with γ (x) depending only on
the transverse direction, where we denote by x = (x, y) the
points on the slab, with x ∈ [0, L] and y ∈ [0, L′]d−1.

It is instructive to apply this method for d = 2, where exact
results are known [39]. Taking the d → 2 limit to the Yamabe
equation (1), one gets the Liouville equation:

(−�) log γ (x) = −γ (x)−2. (5)

In two dimensions a metric is entirely defined by its scalar
curvature: the solution of the Liouville equation also solves
the fractional Yamabe equation for any �φ [29]. In particular,
for a strip of width L for x ∈ [0, L], γ (x) = L

π
sin πx

L .

IV. CONTINUUM PERCOLATION

The discussed approach could be applied to simulation
of lattice percolation at the critical point. However, since
this approach uses as input continuous order parameter pro-
files at criticality, it is advantageous to extract these profiles
from simulations performed with objects placed continuously
in space [40–42], which is commonly referred to as con-
tinuum percolation [12]. The algorithm is straightforward:
d-dimensional balls with unit diameter are generated, one at
a time. The center of each is picked randomly, with uniform
probability within a slab. If the ball intersects another one, it
is added to the cluster of the latter. If it intersects two or more
balls belonging to different clusters, the clusters are merged,
as explained in Appendix B. We stop adding objects once the
product of their number and the relative volume of one object
reaches the critical filling fraction ηc, which means we are at
the critical point: measurements can then begin.

The order parameter 〈φ(x)〉 is the density of the giant clus-
ter, function of the distance from one boundary parametrized
by x. What we call “giant cluster” is the set of all clusters
which intersect one or both boundaries (the green balls of
Fig. 1); it includes of course the percolating cluster(s) con-
necting the boundaries. In practice, this means imposing from
the start that the two boundaries belong to the same macro-
scopic cluster. This corresponds to imposing fixed boundary
conditions, i.e., diverging order parameter at the boundaries.

The order parameter at a point x is obtained by slicing the
giant cluster with a plane, a distance x from one boundary,
and then measuring the total area (in two dimensions, length)
obtained as intersections between the objects and the plane.
This means that the profiles generated by the simulations are
continuous themselves, lifting discretization effects (finite-
size effects being of course still present).

V. 2D PERCOLATION

Before venturing into the 3D case, we checked that in two
dimensions the method gives a value for the exponent �φ in
agreement with the analytical prediction.

The system is a strip of sizes (in units of the diameter
of a sphere) L in the transverse direction x and 4L in the
parallel direction y, along which periodic boundary conditions
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FIG. 1. Continuum percolation in two dimensions. Fixed bound-
ary conditions are enforced: when a circle intersects either boundary,
it gets added to the giant cluster (green). Left: η < ηc – Right: η =
ηc. The segments obtained as an intersection between the red line
and the green balls contribute to the profile sketched above, obtained
by averaging different realizations. The dashed line illustrates the
average on different realizations, as shown by the data plotted in
Fig. 2; it extends beyond the slab boundaries to illustrate the effect
of the extrapolation length a.

are imposed.1 L ranges from 16 to 128, in steps of eight.
The critical filling ratio we used [41] is η2d

c = 1.12808737
(the error on ηc does not meaningfully alter our results, as
seen in Appendix C). Continuous percolation allows us to
get comparable results for different sizes, by measuring the
order parameter 〈φ(x)〉 across a fixed odd number 2n − 1 of
planes for every system size (even for small L), equally spaced
throughout the slab. By symmetry, the values x and L − x have
been averaged: each profile consists of n points.

Assuming the validity of (4), we fit the order parameter
profiles with the function

〈φ(x)〉 = α

[
L γ(�φ )

(
x

1 + a/L

)]−�φ

, (6)

where the fit parameters are a multiplicative constant α, the
extrapolation length a (accounting for the fact that the numer-
ical profile does not diverge on the boundary [43]) and the
scaling dimension �φ .

Once the profiles for different sizes have been rescaled by
multiplying each by L−�φ and by plotting them as a func-

1Different ratios between the two sizes have been tested: increasing
this ratio beyond 4 does not alter the results.

FIG. 2. Order parameter profile for selected sizes, in d = 2, 3.
We see a clear collapse of the points for different sizes, proving that
we are at the critical point. The theoretical curves fit the data points
accurately.

tion of ξ = x/(1 + aL/L), they collapse onto the same curve,
α/γ (ξ )�φ , as seen in Fig. 2; each size gives a corresponding
�φ (L).

We notice in Fig. 3 a decay of the fit parameter �
(2d )
φ (L) as

the size L increases. To extrapolate the correct value, free of
finite-size effects, we perform a fit in the form of a power law:

�φ (L) = c

Lk
+ �∞

φ , (7)

with c, k, and �∞
φ as fit parameters. This gives �∞

φ =
0.1041(5), a good estimate, relative to the small numerical
effort, of the exact value �

(2d )
φ = 5/48 ≈ 0.10417.

VI. 3D PERCOLATION

The same can now be done for a 3D slab, as seen in
Fig. 4, of sizes L × 4L × 4L; L ranges from 16 to 100 in steps
of four, and the critical filling fraction used is η3d

c = 0.341888,

FIG. 3. Fit results �φ (L) as the system size L increases in d = 2
(red dots). The green line is the extrapolation fitting function (7),
while the blue line is our best estimate �∞

φ with the shading repre-
senting the error σ on �∞

φ . The yellow line is the exact value. Despite
relatively small system sizes, �∞

φ is convincingly close to the exact
value.
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FIG. 4. Giant cluster (green spheres) sliced by a plane (red).
The black planes are the system boundaries: balls intersecting either
belong to the giant cluster.

currently the most precise estimate [44]. An important dif-
ference with respect to the 2D case is the dependence of the
fractional Yamabe equation on �φ . We thus obtained a solu-
tion γ(�φ )(x) that varies smoothly for �φ ∈ [0.46, 0.5], which
includes the correct value. Since γ(�φ ) is almost constant in
that range, using the integer Yamabe equation (corresponding
to �φ = 1/2) would be a reasonable initial approximation;
Appendix A highlights the difference between the integer and
the fractional solutions.

We obtain another clear collapse of the profiles in Fig. 2.
The data are indeed described in an excellent way by the
fitting function (6). For each system size values of �φ are ob-
tained. Similarly to the 2D case a slight decay with L (Fig. 5)
is observed. By using a similar infinite-size extrapolation (7)
we obtain our estimate for the scaling dimension:

�φ = 0.47846(71), (8)

FIG. 5. Finite size estimates �φ (L) for the d = 3 slab (red dots)
as a function of L. The extrapolation curve (7) is the continuous green
line, while the infinite size value �∞

φ is the dashed blue line. The
shaded area represents the error σ on �∞

φ .

TABLE I. Comparison of the value of the anomalous dimension
obtained with various methods. The results above the solid line make
use of hyperscaling equalities in different ways: [45] uses (10) but de-
termines ν through a hyperscaling relation involving β; [50] and [51]
determine the Fisher exponent τ , related to the size distribution of
clusters, and relate it to η through the fractal dimension df , while [46]
measures df directly. From that one gets η using η = 2 + d − 2df ;
[49] determines η using the scaling relation (10). Below the dashed
line are direct determinations of η using loop expansions [52,53] and
our result.

Reference Year Method η

Adler et al. [45] 1990 Moment expansion −0.07(5)
Lorenz and Ziff [50] 1998 MC, bond percolation −0.046(8)
Jan and Stauffer [51] 1998 MC, site percolation −0.059(9)
Xu et al. [46] 2013 MC, multiple lattices −0.0458(2)

Ballesteros et al. [49] 1999 MC, site percolation −0.04602(34)
− − − − − − − − − − − − − − − − − − − − − − − − − −−−
Gracey [52] 2015 Four-loop RG −0.0470
Borinsky et al. [53] 2021 Five-loop RG −0.06(10)
This work 2022 Critical geometry −0.0431(14)

where the uncertainty is the statistical error on the fit pa-
rameter. From the definition (2), we get the corresponding
anomalous dimension:

η = −0.0431(14). (9)

This value is more precise than previous direct determina-
tions of η using other methods, listed in Table I. Future
high-precision determinations of η, using different methods,
could give further support to the validity of the uniformization
hypothesis if compatible, or disprove it if not.

A. Scaling relations

Critical exponents are connected by well-known scaling
relations [43], which we can exploit to check the validity of
our result. The scaling relation involving η and independent
from d is

(2 − η)ν = γ ; (10)

substituting our result for η, alongside γ = 1.805(20) [45]
and ν = 0.8762(12) [46], we get 1.790(2) = 1.805(20),
meaning the equality is satisfied to one standard deviation.

Another class of relations between critical exponents is
given by the hyperscaling relations [43], where the dimension-
ality of the system enters explicitly. While they take the form
of inequalities [47], current results suggest they saturate. Out
of the seven inequalities given in [47], two of them involve
the exponent μ, related to percolation with an “external field.”
Four of them contain the rarely used exponents δr and �

(� ≡ β + γ ). Another relation depends on ν but not on η.
The remaining one, dependent on d , is

(d − 2 + η)ν − 2β � 0. (11)

With our value of η and using β = 0.41(1) [48], one
gets (1 − η)ν − 2β = 0.018(22), so the left-hand side of (11)
is compatible with 0. Applying finite-size scaling to Monte
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Carlo simulations gives more precise exponents than renor-
malization groups techniques, but generally does not give
direct access to all exponents. A result of [49], using Eq. (10),
is η = −0.04602(34), obtained without the use of hyperscal-
ing. This result is compatible with ours within two errors bars.
If the hyperscaling equalities could be shown to hold, η could
be indirectly determined by measuring the fractal dimension
d f . The value from [46] presented in Table I comes from
the relation η = 2 + d − d f and the value d f = 2.52293(10),
which is compatible with our results within two standard
deviations. A summary of the various results is presented
in Table I, where we also recall in the caption how scaling
relations are used to determine η.

VII. CONCLUSIONS

We have constructed a purely geometric theory of perco-
lation, the geometric model par excellence, at criticality. The
spatial distribution of the giant cluster between the boundaries
of the critical system has been linked to the solution of an
equation for a metric with constant negative curvature. By
using its solutions and results from numerical simulations of
continuum percolation, we determined the anomalous dimen-
sion η. The fact that our results reproduce the known 2D result
and compare favorably with previous determination of η in
three dimensions (Table I) is an additional piece of evidence
in favor of the critical geometry approach. The hyperscaling
equalities with the obtained value of η are shown to be satis-
fied. The order parameter profile could also be extracted from
lattice (site or bond) percolation at criticality and then fitted
with the solution of the Yamabe equation. We expect that crit-
ical exponents would be determined with lower precision with
respect to the present results, but it could be suited for larger
dimensions d = 4, 5, 6 due to the lower numerical effort to
generate points and determine cluster formation.

This work opens the possibility to study two- and higher-
point correlation functions in percolation, as done for the
Ising and the XY model in [29,37]. Further investigation is
required to understand how this theory can describe fields
other than the order parameter, correlations of different fields,
and boundary-condition-changing operators.
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APPENDIX A: SOLUTION OF THE FRACTIONAL
YAMABE EQUATION

The fractional Yamabe equation used in the main text to
obtain the order parameter profile relies upon the consis-
tent definition of a conformally covariant fractional laplacian
(−�)s where s = d

2 − �φ . Since this construction in the
domain � will be performed for an arbitrary metric g we
introduce the new symbol L(s)

g for the fractional conformal
Laplacian while we use (−�)s just when g is the flat metric.

This is achieved by viewing the domain under consideration
�, equipped with a metric g, as the boundary of a (d + 1)-
dimensional manifold X = [0, π/2] × � endowed with a
metric g+. In this enlarged space a solution for an eigenvalue
problem is searched; this technique has been mathematically
introduced in [36] for a compact domain �. For a domain with
boundary this procedure has to be adapted in the following
way. Denoting by θ ∈ [0, π/2] the extension direction the
metric should take the form of a so-called cornered hyperbolic
metric [54]:

g+ = 1

(sin θ )2
(dθ2 + gθ ), (A1)

where gθ=0 = g such that on the surface θ = 0, to be identi-
fied with our original domain �, we have g+ ≈ θ−2(dθ2 + g)
making it an asymptotically hyperbolic metric. Moreover g+
has to satisfy the following conditions:

Ric(g+) + d g+ = 0

∂θgθ |θ=π/2 = 0

g−1
θ |[0,π/2]×∂� → 0, (A2)

where Ric refers to the Ricci scalar curvature in d + 1 dimen-
sions. For a discussion of the meaning of these conditions the
reader is referred to Appendix B of [29]. Once we have g+ we
set up the following eigenvalue (scattering) problem for the
Laplace-Beltrami operator (−�LB

g+ ) relative to g+:

(−�LB
g+ )U = �φ (d − �φ )U

U = (sin θ )�φ FI + (sin θ )d−�φ FO (A3)

for the function U defined on X . The functions FI and FO

are regular and give access to the fractional Laplacian as
follows: L(s)

g fI = cs fO where cs = 22s �(s)
�(−s) , fI = FI |θ=0, and

fO = FO|θ=0.
For the relevant three-dimensional slab geometry the cor-

nered metric satisfying (A1) and (A2) has been obtained in the
form:

g+ = dθ2 + dx2/γx(x, θ )2 + (dy2 + dz2)/γ‖(x, θ )2

(sin θ )2
. (A4)

The functions γx and γ‖ are plotted in Fig. 6.
Given g+, the nonlinear eigenvalue problem

(−�)d/2−�φ γ(�φ )(x)−�φ ∝ γ(�φ )(x)−d+�φ (A5)

implying the solution of (A3) has been tackled numerically,
resorting to a variational formulation yielding the desired
solution for the fractional Yamabe problem in the slab. For
further information the reader is addressed to Appendix C of
[29].

Results of this analysis are shown in Fig. 7 for the
range of anomalous dimensions �φ ∈ [0.46, 0.5], that is,
η ∈ [−0.04, 0] relevant for three-dimensional percolation. In
turn this means that we are solving a problem involving a
Laplacian raised to a power s ≈ 1.02 greater than 1. This is
to be contrasted with the usual appearance of the fractional
Laplacian (−�)s that has s ∈ [0, 1]. Our numerical frame-
work appears not to be affected by this fact. Note that the
small (in the 2 × 10−3 range) deviations from the integer
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FIG. 6. Functions defining the metric (A4) in the extension space above the slab. The domain shown is x ∈ [0, 1] (the relevant transverse
direction x varies between −1 and 1) and θ ∈ [0, π/2]. The region x ∈ [−1, 0] can be obtained by reflection. To improve readability, the
functions have been divided by 2

π
cos( πx

2 ).

Yamabe problem have been plotted. A list of values of γ(�φ )

for �φ = 0.47846 is found in Table II.
The solution of the integer Yamabe problem in three di-

mensions can be written explicitly (as derived in [32]):

γ(�φ=1/2)(x) =
√

3

ω
℘

(
ω(1 + i

x√
3

), {0, 1}
)

, (A6)

where ℘(z, {0, 1}) is the equiharmonic case of the Weierstrass
elliptic function with half period ω = �(1/3)3

4π
.

APPENDIX B: DETAILS OF THE SIMULATION

For the sake of clarity, we will describe the algorithm used
for the three-dimensional case; the two-dimensional version
follows the same concept.

The main difficulty of simulating continuum percolation,
compared to the lattice variants [50], is to locate the objects
that intersect the newly added one. To do this for the case
of spheres, the entire slab has been divided in cubes of size
equal to the diameter of a sphere. Since we take the diameter
of the spheres to be 1, the number of these boxes will be
N = L × 4L × 4L. Two matrices C and P are then introduced,
with N rows and variable number of columns, whose elements

are themselves arrays: they will store, respectively, the coor-
dinates of the sphere centers and a pointer. A new sphere is
added by generating the coordinates of its center, uniformly
within the slab. From them, we determine to which box it
belongs, say, the nth box, which already contained k balls:
an array containing the three coordinates is added to Cn,k , and
we also set Pn,k = (−1, 0), to signify that the new sphere does
not yet belong to any cluster.

Then, we locate all the boxes that could contain spheres
intersecting the newly added one: if box n is not on a
boundary, we have to check 27 boxes, a 3 × 3 × 3 grid cen-
tered in n. For each sphere in one of these boxes, we compute
the distance between the two centers: if this is less than the
sphere diameter, then an intersection has happened. Now we
need to obtain the cluster to which the neighboring sphere
belongs, and if it not the same as the cluster of the new
sphere, the two will be merged. This is done by a “union/find”
algorithm [55]. The idea is to label each sphere so that it
points to a sphere in the same cluster. The cluster can then
be considered a tree, with various branches growing from one
root. The first step is defining a find function: when it is fed
the values representing a sphere, (n, k), it looks at the values
in Pn,k = (n′, k′). If n′ is negative, by convention, it means that

FIG. 7. Solutions of the Yamabe problem in the three-dimensional slab domain (−1 < x < 1). Left: Integer Yamabe equation solution
(A6). Right: Solutions of the fractional Yamabe equation as �φ is varied in the range [0.46,0.5]. The plot shows deviations from the �φ = 1/2
integer Yamabe solution (in the left panel). The blue dashed line is our best estimate as derived, �φ = 0.47846.
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TABLE II. Values of the solution of the fractional Yamabe equa-
tion on the left half of a slab for some values of the coordinate x and
�φ = 0.47846.

x γ (x)

−1 0
−0.9 0.099965
−0.8 0.199440
−0.7 0.297174
−0.6 0.391147
−0.5 0.478688
−0.4 0.556675
−0.3 0.621813
−0.2 0.670996
−0.1 0.701632

0 0.712034

the k′th sphere in box n′ is the root of its cluster. Otherwise,
the search continues, as we find the point that (n′, k′) points
to: Pn′,k′ = (n′′, k′′).

In order to shorten the path for the next time the function is
be called, once the root is found, the pointer of every sphere
along the branch is changed so that it points directly to the
root. Next is the “union” part of the algorithm. Once the root
of the intersecting sphere is known, if it is the same as the
newly added sphere, nothing needs to be done. If the two roots
differ, the smaller cluster must be included into the larger one,
simply by changing the pointer of its root to the root of the
larger cluster. Adding the smaller cluster to the larger one
ensures that the average path to the root is shorter, but it might
seem that additional effort is required to keep track of the
cluster size. However, there is some convenient space to store
this information that so far has not been used: the pointer of
a root. While the pointer of every other sphere is the location
of another sphere, so far we specified only that for a root site
(m, q), Pm,q = (α, β ) with α < 0 to distinguish it from other
sites. We can set −α to be equal to the number of sites in the
cluster and β = 0 since it does not need to contain any in-
formation. Now, when this cluster is merged with another one
with root (m′, q′) and Pm′,q′ = (α′, 0), assuming |α| > |α′|, we
just have to set Pm′,q′ = (m, q) and Pm,q = (α + α′, 0). This
links the smaller cluster to the larger one and updates the size
of the latter.

The entire process repeats by adding new balls until the
critical filling ratio ηc is reached. The main perk of this
algorithm is that each union/find step takes an effectively
constant computational time, i.e., it grows extremely slowly
with system size. This means that the time to run the entire
simulation is, for all practical purposes, simply proportional to
the number of balls needed to reach the critical filling fraction.

As previously mentioned, we want to implement fixed
boundary conditions. To do so, we add a special object, which
is adjacent to all the balls whose center is in a box on either
boundary. This ensures that the balls in the first or last layer
of boxes all belong to the same cluster, which is then the
percolating cluster.

APPENDIX C: DATA ANALYSIS AND TESTS

After obtaining the order parameter profiles, by averaging
the results of a few thousand realizations, an additional step
is needed before performing the fit. The points closest to the
boundary are most affected by finite-size effects. Therefore,
despite having smaller errors than the central points, a few
of them have to be discarded. In order to determine how
many to discard in an unbiased way, as well as to avoid a
sharp distinction between discarded and included points, we
introduce a window function w(x). The weight of each point
in the fit is given by the square of the ratio between this
function and the error of that point. This function starts off
from 0 at the boundary, ramps linearly to 1 around a movable
point t , and maintains the value 1 up to the center of the slab.

To determine the location of the point t , we start from
t = −1 (the boundary point) and gradually move towards
t = 0. For each value of t we compute the χ2 of our data and
the corresponding p value. We stop once the p value reaches
the reference value p = 0.95.

Some more tests are need to ensure that the errors on the
critical filling ratios do not meaningfully affect our results. To
that end, we checked that simulations performed at ηc + σηc

and at ηc − σηc give profiles indistinguishable within the error,
where σηc is the error given in [41] (2D) and [44] (3D). In
particular, for small sizes and especially in two dimensions,
where σηc is very small, varying the number of balls by just
one changes the filling ratio from below ηc − σηc to above
ηc + σηc . This does not alter the profile and the subsequent
�φ , either in two or three dimensions.
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