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The second law of thermodynamics imposes a fundamental asymmetry in the flow of events. The so-called
thermodynamic arrow of time introduces an ordering that divides the system’s state space into past, future, and
incomparable regions. In this work, we analyze the structure of the resulting thermal cones, i.e., sets of states
that a given state can thermodynamically evolve to (the future thermal cone) or evolve from (the past thermal
cone). Specifically, for a d-dimensional classical state of a system interacting with a heat bath, we find explicit
construction of the past thermal cone and the incomparable region. Moreover, we provide a detailed analysis
of their behavior based on thermodynamic monotones given by the volumes of thermal cones. Results obtained
apply also to other majorization-based resource theories (such as that of entanglement and coherence), since
the partial ordering describing allowed state transformations is then the opposite of the thermodynamic order
in the infinite temperature limit. Finally, we also generalize the construction of thermal cones to account for
probabilistic transformations.
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I. INTRODUCTION

Thermodynamic evolution of physical systems obeys a
fundamental asymmetry imposed by nature. Known as the
thermodynamic arrow of time [1], it is a direct manifestation
of the second law of thermodynamics, which states that the
entropy of an isolated system cannot decrease [2,3]. In other
words, the thermodynamic evolution inherently distinguishes
the past from the future: systems spontaneously evolve to fu-
ture equilibrium states, but do not spontaneously evolve away
from them. Even though recognition of the thermodynamic
arrow of time is an old discussion [4,5], it still raises deep
questions relevant both to philosophy and the foundations of
physics [6,7]. Despite many attempts, the full understanding
of the time asymmetry in thermodynamics seems to be still
beyond our reach. In recent years, we have seen renewed
interest in exploring the thermodynamics of a few quanta,
which motivated the development of a powerful theoretical
toolkit [8–11] that allows one to revisit old questions.

The toolkit in question, providing a robust approach to
study thermodynamics of small systems, is given by the
resource-theoretic framework [12–15]. It not only recovers
the macroscopic results, but also presents a suitable platform
to address relevant problems within the field of thermody-
namics, including a rigorous derivation of the third law [16]
and study of cooling mechanisms [15,17]. Furthermore, it
provides a perfect setup for modeling thermalization in many-
body physics [18]. Regarding the thermodynamic arrow of
time, a resource-theoretic analysis was performed in Ref. [19],
where the author investigated this problem from the point of
view of order theory. However, Ref. [19] focused on structural
differences between classical and quantum theories in contrast
to the geometric aspects of thermal cones that we investigate
here.

In this work we aim at characterizing the thermody-
namic arrow of time by investigating allowed transformations
between energy-incoherent states that arise from the most
general energy-conserving interaction between the system and
a thermal bath. These transformations encode the structure of
the thermodynamic arrow of time by telling us which states
can be reached from a given state, here called the present state,
in accordance with the laws of thermodynamics. Under these
constraints, the state space can then be naturally decomposed
into three parts: the set of states to which the present state can
evolve is called the future thermal cone; the set of states that
can evolve to the present state is called the past thermal cone;
while states that are neither in the past nor the future thermal
cone form the incomparable region.

Although substantial insights have been obtained by
studying the future thermal cone [17,20,21], explicit charac-
terization of the incomparable region and the past thermal
cone has not been performed. Our main results consist of two
theorems addressing this gap. The first one yields a geometric
characterization of the past majorization cone (i.e., the set
of probability distributions majorizing a given distribution)
by means of explicit construction, which, together with the
incomparable region and future thermal cone, fully specifies
the timelike ordering in the probability simplex in the limit of
infinite temperature. The second result, derived using a novel
tool of an embedding lattice, generalizes the first one to the
case of finite temperatures. Similar results are also obtained
for probabilistic scenarios [22]. The approach presented here
allows us to conduct a rigorous study of the causal structure
of the thermal cones. It is known from earlier works that the
future (thermal) cone is convex [17,23]; our results extend this
knowledge by showing rigorously that the past (thermal) cone
can always be decomposed into d! convex parts and, in the
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zero-temperature limit, only one of them retains a nonzero
volume, rendering the entire past thermal cone convex. We
also introduce new thermodynamic monotones given by the
volumes of the past and future thermal cones.

Our results can also be seen as an extension of the famous
Hardy-Littlewood-Pólya theorem [24], as they specify the past
cone and the incomparable region in addition to the previously
studied future cone. Therefore, they can also be employed to
study other majorization-based resource theories, such as the
theory of entanglement [25] or coherence [26,27]. Concerning
local operations, an analogy between special relativity and the
set of pure states of bi-partite systems was previously made
in Ref. [28], where the authors correspondingly divided the
state space into three parts. Here, we consider a more general
partial-order structure, the thermomajorization order, which
generalizes the previous and recovers it in the limit of infinite
temperature.

The paper is organized as follows. We set the scene in
Sec. II by recalling the resource-theoretic approach to ther-
modynamics and introducing the necessary concepts. We also
collect there known results concerning the conditions for state
transformation under majorization and thermomajorization.
In Sec. III, we state the first of our main results concern-
ing the construction of majorization cones and discuss its
interpretation within the thermodynamic setting and in other
majorization-based theories. This construction is also gener-
alized for probabilistic transformations. Section IV is devoted
to the analogous study of the thermal cones, generated by
thermomajorization relation, where we also introduce the tool
of embedding lattice, instrumental for the proof of the second
main result. In Sec. V, we introduce thermodynamic mono-
tones given by the volumes of the past and future thermal
cone, discuss their intuitive operational interpretation and
describe their properties. We also comment on the different
natures of future and past cones for entanglement transfor-
mations. Finally, we conclude with an outlook in Sec. VI.
The technical derivation of the main results can be found in
Appendix A. In Appendix B, we derive the analog of the
majorization cones for probabilistic transformations. Next,
Appendix C presents methods used to obtain insights into
the volumes of majorization cones in the context of quantum
entanglement. Appendix D shows how to obtain the coherent
equivalents of the future and past cones together with the
incomparable regions for coherent states under thermal op-
erations [29] and Gibbs-preserving operations [30].

II. SETTING THE SCENE

A. Thermodynamic evolution of energy-incoherent states

In what follows, we study the thermodynamics of finite-
dimensional quantum systems in the presence of a heat bath
at temperature T . The system under investigation is described
by a Hamiltonian H = ∑

i Ei|Ei〉〈Ei|, and it is prepared in a
state ρ; while the heat bath, with a Hamiltonian HE , is in a
thermal equilibrium state,

γE = e−βHE

Tr(e−βHE )
, (1)

where β = 1/kBT is the inverse temperature with kB denoting
the Boltzmann constant. The evolution of the joint system is

assumed to be closed, and therefore described by a unitary
operator U , which is additionally enforced to conserve the
total energy,

[U, H ⊗ 1E + 1 ⊗ HE ] = 0. (2)

More formally, the set of allowed thermodynamic transfor-
mations is modelled by thermal operations [12,14,29], which
consists of completely positive trace-preserving (CPTP) maps
that act on a system ρ with Hamiltonian H as

E (ρ) = TrE [U (ρ ⊗ γE )U †], (3)

with U satisfying Eq. (2) and the state γE given by Eq. (1) with
an arbitrary Hamiltonian HE . Note that the energy conserva-
tion condition, Eq. (2), can be interpreted as encoding the first
law of thermodynamics. Moreover, the fact that the heat bath
is in thermal equilibrium implies that every thermal operation
E is a map which preserves the Gibbs state,

E (γ ) = γ , (4)

with γ being the thermal Gibbs state of the system given
by Eq. (1) with HE replaced by H . Thus, Eq. (4) com-
bined with a contractive distance measure δ resulting in
δ(ρ, γ ) � δ(E (ρ), E (γ )) = δ(E (ρ), γ ), incorporates the core
physical principle of the second law of thermodynamics as it
captures the idea of evolution towards thermal equilibrium.

In this work we focus on energy-incoherent states, i.e.,
quantum states ρ that commute with the Hamiltonian H . This
restriction can be justified in the quasiclassical regime, in
which systems are quantised and possess only a small number
of energy levels, but the decoherence is so strong that the
interference effects between the different energy levels be-
come negligible. Energy-incoherent states can be equivalently
represented by a d-dimensional probability vectors p of their
eigenvalues, which coincide with populations in the energy
eigenbasis. Note that γ commutes with H and thus can be
represented by a probability vector

γ = 1

Z
(e−βE1 , ..., e−βEd ), where Z =

∑
i

e−βEi . (5)

Here, one should note the difference between the state γ and
the probability vector γ . The most general evolution between
two probability vectors, p and q, is described by a stochastic
matrix �, where � satisfies �i j � 0 and

∑
i �i j = 1. In the

thermodynamic context, however, we may restrict the analysis
to stochastic matrices preserving the Gibbs state, i.e., to �

such that �γ = γ , in short called Gibbs-preserving (GP) ma-
trices in the literature [29,30]. This is because of the following
theorem linking the existence of a thermal operation be-
tween incoherent states to the existence of a Gibbs-preserving
stochastic matrix between probability distributions represent-
ing these states [12,29,31].

Theorem 1 (Theorem 5 of Ref. [12]). Let ρ and σ be quan-
tum states commuting with the system Hamiltonian H ,
and γ its thermal Gibbs state with respect to the inverse
temperature β. Denote their eigenvalues by p, q and γ , re-
spectively. Then, there exists a thermal operation E , such that
E (ρ) = σ , if and only if there exists a stochastic map � such
that

�γ = γ and �p = q. (6)
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As a result of the above theorem, while studying thermody-
namic transformations between energy-incoherent states, we
can replace CPTP maps and density matrices with stochas-
tic matrices and probability vectors, respectively. Then, the
rules describing what state transformations are allowed under
thermal operations, can be expressed by a partial-order rela-
tion between probability vectors corresponding to initial and
final states. In the infinite-temperature limit, these rules are
encoded by the majorization relation [32], and in the finite-
temperature case by thermomajorization [29,33].

B. Infinite temperature and the majorization order

In the infinite temperature case, β = 0, the thermal Gibbs
state γ is described by a uniform distribution

η = 1

d
(1, . . . , 1). (7)

Theorem 1 implies that a state p can be mapped to q if
and only if there exists a bistochastic matrix (�, such that
�η = η), which transforms p into q. To formulate the solution
we need to recall the concept of majorization [32]:

Definition 1 (Majorization). Given two d-dimensional
probability distributions p and q, we say that p majorizes q,
and denote it by p � q, if and only if

k∑
i=1

p↓
i �

k∑
i=1

q↓
i for all k ∈ {1 . . . d}, (8)

where p↓ denotes the vector p rearranged in a nonincreasing
order.

Equivalently, the majorization relation can be expressed
in a more geometric way by defining a majorization curve,
i.e., a piecewise linear curve fp(x) in R2 obtained by join-
ing the origin (0,0) and the points (

∑k
i=1 ηi,

∑k
i=1 p↓

i ), for
k ∈ {1, . . . , d}. Then, a distribution p majorizes q if and only
if the majorization curve fp(x) of p is always above that of q,

p � q ⇐⇒ ∀x ∈ [0, 1] : fp(x) � fq(x). (9)

Since majorization does not introduce a total order, a given
pair of states p and q may be incomparable with each other:
neither p majorizes q, nor q majorizes p. In terms of majoriza-
tion curves, this implies that both curves intersect each other
(see Fig. 1).

We are now ready to state the connection between
majorization relation and bistochastic state transformations
captured by the celebrated Hardy-Littlewood-Pólya theorem
[24].

Theorem 2 (Theorem II.1.10 of Ref. [23]). There exists a
bistochastic matrix �, �η = η, mapping p to q if and only
if p � q.

Furthermore, it is important to mention that the majoriza-
tion order forms a lattice structure [34], within which there
exists a natural timelike hierarchy of elements.

Definition 2 (Lattice). A partially ordered set (L,�)
forms a lattice if for every pair of elements p, q ∈ L, there
exists a least upper bound, called join and denoted by p ∨ q,
such that p ∨ q � p and p ∨ q � q; and a greatest lower

FIG. 1. Majorization curve. For three different states p, q, and c,
we plot their majorization curves fp(x), fq(x) and fc(x), respectively.
While p majorizes q [since fp(x) is never below fq(x)], both states are
incomparable with c, as their majorization curves cross with fc(x).

bound, called meet and denoted by p ∧ q, such that p ∧ q � p
and p ∧ q � q.

Viewing the lattice structure of majorization order from
the perspective of the laws governing state transformation
under bistochastic matrices, it becomes clear that a join can
be understood as the last point of the common “past” for a
given two elements of the lattice, and similarly, a meet can
be seen as the first point of the common future [19]. The
existence of both join and meet within the majorization order
lattice has been proven in Ref. [34] and will be instrumental
in constructing the past and incomparable regions.

C. Finite temperature and thermomajorization order

Theorem 2 can be generalized from bistochastic matrices
to Gibbs-preserving matrices, and the aim of this section is
to present such a result without focusing on its derivation
(for details see Ref. [31]). To achieve this, we first need to
introduce the thermodynamic equivalent of the majorization
partial order, which can be achieved by first presenting the
concept of β-ordering, and then introducing the notion of
thermomajorization curves [29]. For a given initial state p and
a thermal Gibbs distribution γ with inverse temperature β, the
β-ordering of p is defined by a permutation πp that sorts pi/γi

in a nonincreasing order,

pπ−1
p (i)

γπ−1
p (i)

�
pπ−1

p (i+1)

γπ−1
p (i+1)

, for i ∈ {1, . . . , d − 1}. (10)

Thus, the β-ordered version of p is given by

pβ = (pπ−1
p (1), . . . , pπ−1

p (d ) ). (11)

Note that each permutation belonging to the symmetric group,
π ∈ Sd , defines a different β-ordering on the energy levels of
the Hamiltonian H .

A thermomajorization curve f β
p : [0, 1] → [0, 1] is de-

fined as a piecewise linear curve composed of linear segments
connecting the point (0,0) and the points defined by consecu-
tive subsums of the β-ordered form of the probability pβ and
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FIG. 2. Thermomajorization curve. For three different states
p, q, and c, with a thermal Gibbs state γ = (1, e−β, e−2β ), and
β > 0, we plot their thermomajorization curves f β

p (x), f β
q (x) and

f β
c (x), respectively. While p thermomajorizes q (since f β

p (x) is
never below f β

q (x)), both states are incomparable with c, as their
thermomajorization curves cross with f β

c (x).

the Gibbs state γβ ,(
k∑

i=1

γ
β

i ,

k∑
i=1

pβ
i

)
:=

(
k∑

i=1

γπ−1
p (i),

k∑
i=1

pπ−1
p (i)

)
, (12)

for k ∈ {1, . . . , d}.
Finally, given two d-dimensional probability distributions

p and q, and a fixed inverse temperature β, we say that p
thermomajorizes q and denote it as p �β q, if the thermoma-
jorization curve f β

p is above f β
q everywhere, i.e.,

p �β q ⇐⇒ ∀x ∈ [0, 1] : f β
p (x) � f β

q (x). (13)

As before, it may happen that given two vectors, p and q,
are incomparable, meaning that f β

p and f β
q cross at a some

point (see Fig. 2). Furthermore, the thermomajorization order
cannot be seen as a lattice in the sense that for p and q, which
do not share the same β order, there is no unique join or meet
[19].

We can now state the generalization of Theorem 2 from
bistochastic matrices to Gibbs-preserving matrices which, via
Theorem 1, yields the necessary and sufficient conditions for
the existence of a thermal operation between two energy-
incoherent states [29,35].

Theorem 3 (Theorem 1.3 of Ref. [12]). There exists a
Gibbs-preserving matrix �, �γ = γ , mapping p to q if and
only if p �β q.

III. MAJORIZATION CONES

The reachability of states under bistochastic matrices can
be studied by introducing the notion of majorization cones,
defined as follows:

Definition 3 (Majorization cones). The set of states that a
probability vector p can be mapped to by bistochastic ma-
trices is called the future cone T+(p). The set of states that
can be mapped to p by bistochastic matrices is called the
past cone T−(p). The set of states that are neither in the past
nor in the future cone of p is called the incomparable region
T∅(p).

Definition 3 provides us with a stage for studying
thermodynamics of energy-incoherent states in the infinite-
temperature limit. What is more, it also allows us to explore
a more general class of state transformations whose rules are
based on a majorization relation, e.g., the resource theories
of entanglement [25] or coherence [26,27,36,37]. These more
general settings are discussed in more detail in Sec. III B,
whereas now we focus on thermodynamic transformations.

A. Geometry of majorization cones

The future cone can be easily characterized by employing
the Birkhoff’s theorem [23] stating that every bistochastic
matrix can be written as a convex combination of permutation
matrices. Thus, the set of d × d bistochastic matrices is a
convex polytope with d! vertices, one for each permutation
in Sd . Combining this observation with Theorem 2, we obtain
the future cone of p:

Corollary 4 (Future cone). For a d-dimensional probabil-
ity vector p, its future cone is given by

T+(p) = conv [{	p,Sd � π �→ 	}], (14)

where 	 denotes a permutation matrix corresponding to the
permutation π with d elements, and conv[S] the convex hull
of the set S.

The above corollary implies that the future cone of p
is a convex set with all distributions lying in T+(p) being
majorized by p. Since the d-dimensional sharp distribution,
(0, . . . , 1, .., 0), majorizes all probability distributions, its fu-
ture cone is the entire probability simplex, which we will
denote by �d . For later convenience, we will introduce the
concept of d! Weyl chambers, each composed of probability
vectors which can be ordered nondecreasingly by a common
permutation π. In particular, we will refer to the chamber
corresponding to the identity permutation as the canonical
Weyl chamber.

If there is no transformation mapping p into q nor q into
p, then we say that these two states are incomparable. The
incomparable region can be characterized by incorporating
into the analysis the concept of quasiprobability distributions,
which are defined by relaxing the nonnegativity condition
on the entries of a normalized probability distribution. The
following result, the proof of which is employing the lattice
structure of majorization order and can be found in Ap-
pendix A, specifies the incomparable region of p.

Lemma 5 (Incomparable region). For a d-dimensional
probability distribution p = (p1, . . . , pd ), consider the
quasiprobability distributions t (n) constructed for each
n ∈ {1, . . . , d},

t (n) = (
t (n)
1 , p↓

n , . . . , p↓
n , t (n)

d

)
, (15)

with

t (n)
1 =

n−1∑
i=1

p↓
i − (n − 2)p↓

n , t (n)
d = 1 − t (n)

1 − (d − 2)p↓
n , (16)

and define the following set

T :=
d−1⋃
j=1

conv[T+(t ( j) ) ∪ T+(t ( j+1))]. (17)
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Then, the incomparable region of p is given by

T∅(p) = [int(T )\T+(p)] ∩ �d , (18)

where the backslash \ denotes the set difference and int(T )
represents the interior of T .

We will refer to the quasiprobability distributions t (n)

as tangent vectors. The intuition behind this name and the
importance of t (n) can be explained by noticing that any
convex function g(x) lies fully under its tangent at any
point y, denoted as ty(x) � g(x), with equality guaranteed
only for ty(y) = g(y). It follows from the definition of t (n)

that its majorization curve ft (n) (x) is parallel to the nth lin-
ear piece of fp(x) for x ∈ [(n − 1)/d, n/d], and the first
and last elements of t (n) guarantee tangency and normaliza-
tion. Finally, since the adjacent linear fragments of fp(x)
share the elbows of the function, the consequent tangent
vectors t (n), t (n+1) are both tangent at a selected elbow,
fp(n/d ) = ft (n) (n/d ) = ft (n+1) (n/d ). Therefore, any convex
combination of the form at (n) + (1 − a)t (n+1) will be “tan-
gent” at the nth elbow of the p majorization curve. The fact
that t (n) may be a quasiprobability distribution does not pose
a problem, since this vector can be projected back onto the
probability simplex. The projected vector t (n) will be denoted
by t (n)

proj, and can be obtained by successively applying the map
{
t (n)
m−1, t (n)

m

} �−→ {
min

(
t (n)
m−1 + t (n)

m , t (n)
m−1

)
, max

(
t (n)
m , 0

)}
(19)

to pairs of entries of t (n) going from m = d to m = 2. In
each step, the map either zeros the second component by
shifting its value to the first one or, if the second component is
nonnegative, it leaves them both unperturbed. Geometrically,
the state is shifted along the edges of the future cone of t (n)

and every time it hits a plane defining one of the faces of the
probability simplex 
d , a new direction is selected, until the
state is composed exclusively of nonnegative entries.

Using Lemma 5, we can now prove the following theorem
that specifies the past cone.

Theorem 6 (Past cone). The past cone of p is given by

T−(p) = �d\ int(T ). (20)

Proof. One only needs to use the fact that

T−(p) = �d\[T∅(p) ∪ T+(p)], (21)

and employ Lemma 5 to replace T∅(p) in the above with
Eq. (18).

Let us make a few comments on the above results. First,
note that the incomparable region arises only for d � 3. This
can be easily deduced from Lemma 5, as for d = 2 the two
extreme points, t (1) and t (2), are precisely the initial state p.
Second, the future thermal cone is symmetric with respect to
the maximally mixed distribution η, and consequently, the in-
comparable and past cones also exhibit a particular symmetry
around this point. As we shall see, this symmetry is lost when
we go beyond the limit of infinite temperature. Third, although
the past cone is not convex as a whole, it is convex when
restricted to any single Weyl chamber. Therefore, we may
note that the tangent vectors t (n) provide the extreme points of
the past not only from the viewpoint of a single-chamber but
also to the entire probability simplex. This can be understood
by noting that t (n) are located at the boundary between the

FIG. 3. Majorization cones and Weyl chambers. (a) Probability
simplex 
3 and a state p = (0.6, 0.3, 0.1) represented by a black
dot • together with its majorization cones. The division of 
3 into
different Weyl chambers is indicated by dashed lines with the central
state η = (1/3, 1/3, 1/3) denoted by a black star �. (b) The past
cone of a state p restricted to a given Weyl chamber is convex
with the extreme points given by t (n) from Eq. (15) and the sharp
state. (c) The causal structure induced by bistochastic matrices (i.e.,
thermal operations in the infinite temperature limit) in a given Weyl
chamber.

incomparable and the past cone, and by symmetry, it applies
to all their permuted versions. As a consequence, the past is
constructed from d! copies of the past in the canonical Weyl
chamber, each copy transformed according to the correspond-
ing permutation π [see Figs. 3(a) and 3(b)]. Finally, one can
make an analogy to special relativity with bistochastic ma-
trices imposing a causal structure in the probability simplex

d . There exists a “light cone” for each point in 
d , which
divides the space into past, incomparable, and future regions
[see Fig. 3(c)].

The central idea behind Lemma 5 and Theorem 6 can
be better understood through a visualization using partial-
order diagrams. To illustrate the principles of such diagrams,
we will first focus on the special case of a three-level sys-
tem. Then, the past cone has three nontrivial extreme points:
t (1), t (2), and t (3). Furthermore, as shown in Fig. 4(a), these
extreme points satisfy the following partial-order relation:
the sharp state s1 majorizes both t (1) and t (3), and these
two vectors majorize the initial state p = t (2). As it was
proved in Lemma 5, the union of the future cones of these
extreme points provides us, after subtracting the future of
the vector p, with the incomparable region of p. In the
particular case of d = 3 since t (1), t (3) � t (2), we find that
conv[T+(t (1) ), T+(t (2) )] = T+(t (1) ) and similarly for t (3).
However, it is important to note the fact that t (1) and t (3)

are incomparable, and in turn, their respective future cones
after subtracting future of p characterize disjoint parts of the
incomparable region. Finally, the tangent vector t (2) reduces
to the original probability vector, t (2) = p, only for d = 3, and
this fact is fully understood from the construction of the t (n)

vectors (see Appendix A).
It is evident from Lemma 5 that each pair of tangent vectors

(t (n), t (n+1)) characterizes a given part of the incomparable
region. However, notice that the futures of the extreme points
considered one by one do not give the full description of
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FIG. 4. Partial-order diagrams for majorization. Graphical repre-
sentation of the partially ordered set formed by the extreme points of
the past cone in the probability simplex 
d . Each arrow indicates that
one of the elements precedes the other in the majorization ordering.
(a) Diagram for d = 3. (b) Diagram for d = 4. Note that any convex
combination between t (2)

proj and t (3), here denoted by t (2,3)
λ , results in

an incomparable vector with respect to t (1)
proj and t (4).

the incomparable region—one needs to consider their convex
hulls to fill in the gaps. This particular feature of the construc-
tion can be demonstrated by considering the case of d = 4.
Observe that in this case, we have a set of four tangent vectors
t (n) with n ∈ {1, 2, 3, 4}. Straightforward calculation shows
that t (1) majorizes t (2) and t (4) majorizes t (3), therefore we
find certain simplification, namely conv[T+(t (1) ), T+(t (2) )] =
T+(t (1) ) and similarly for t (3) and t (4). Nevertheless, t (1) is in-
comparable to t (4); similarly t (2) belongs to the incomparable
region of t (3) [see Fig. 4(b)]. From this we find the nonin-
clusions T+(t (1) ) �⊂ T+(t (4) ) and T+(t (4) ) �⊂ T+(t (1) ), similarly
T+(t (2) ) �⊂ T+(t (3) ) and T+(t (3) ) �⊂ T+(t (2) ). Naively, one may
be led to a conclusion that the incomparable region can
be characterized by the future cones of t (1) and t (4) alone.
However, any convex combination λt (2) + (1 − λ)t (3) ≡
t (2,3)
λ results in an incomparable vector t (2,3)

λ ∈ T∅(t (i) ) for
i = 1, 2, 3, 4 and 0 < λ < 1 [see Fig. 4(c)], and hence, in a
“new” fragment of the incomparable region. To account for
the entire incomparable region one must take the union of
all future cones of t (2,3)

λ for λ ∈ [0, 1]. This corresponds to
the convex hull of the future cones1 T+(t (2) ) and T+(t (3) ).
Furthermore, the construction is limited only to convex com-
binations of futures for consecutive tangent vectors since
mixtures of two nonsuccessive ones, for instance t (1) and t (4),
do not give any additions to the incomparable region. Such
combinations belong to the past cone of p as every point of
λt (1) + (1 − λ)t (4) would majorize p.

B. Links to other resource theories

The two well-known examples of majorization-based re-
source theories, where our results are also applicable, include
the resource theories of entanglement and coherence. These
are defined via the appropriate sets of free operations and free

1Geometrically, the mixture of t (2) and t (3) corresponds to the edge
that connects these two points.

FIG. 5. Entanglement cone in the simplex of the Schmidt coeffi-
cients of a 3 × 3 system. Conversely to thermodynamics, the past
of entanglement transformations is the thermodynamic future and
viceversa. The black dot • indicates the Schmidt vector of the initial
state p = (0.7, 0.2, 0.1), whereas the black star � represents the
maximally entangled state η = (1/3, 1/3, 1/3).

states: local operations and classical communication (LOCC)
and separable states in entanglement theory [38], and incoher-
ent operations (IO) and incoherent states in coherence theory
[26]. Within each of these theories, there exists a represen-
tation of quantum states via probability distributions that is
relevant for formulating state interconversion conditions un-
der free operations. In entanglement theory, a pure bipartite
state ρ = |�〉〈�| can be written in terms of the Schmidt de-
composition given by |�〉 = ∑

i ai|ψi, ψ
′
i 〉, and represented

by a probability vector p with pi = |ai|2. Then, Nielsen’s theo-
rem [25] states that an initial state p can be transformed under
LOCC into a target state q if and only if p ≺ q. Similarly,
in the resource theory of coherence with respect to a fixed
basis {|i〉}, one can represent a pure state ρ = |ψ〉〈ψ | by a
probability vector p with pi = |〈i|ψ〉|2. Then, a given initial
state p can be transformed into q via incoherent operations if
and only if p ≺ q [27].

Therefore, we observe that the partial order emerging in
the two cases is precisely the opposite to the thermodynamic
order in the infinite temperature limit (for more details see
Ref. [39]). Consequently, the thermodynamic past and future
become the future and past for entanglement and coher-
ence, while the incomparable region remains unchanged (see
Fig. 5). Note that, for entanglement and coherence, sharp
states s are in the future cone of any given state, while for
thermodynamics (at β = 0), they are in the past. The flat
distribution η is in the past of any state in entanglement and
coherence theories, whereas in thermodynamics it is in the
future.

One can make a general remark concerning resource
monotones, applying to the entanglement, coherence and
thermodynamic scenarios alike. Consider an entangled state
|ψ〉 ∈ HN ⊗ HN with the associated Schmidt coefficients p
and concurrence C(|ψ〉) as an example of a resource mono-
tone [40]. If another state |φ〉 with Schmidt coefficients q is
in the future cone of |ψ〉, q ∈ T+(p), then C(|φ〉) � C(|ψ〉).
Otherwise, if it lies in its past cone, q ∈ T−(p), then we
know that C(|φ〉) � C(|ψ〉). However, if the two states are
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FIG. 6. Probabilistic majorization cones for d = 3. For a three-level system with a state given by p = (0.7, 0.2, 0.1) represented by a
black dot • and a maximally entangled state η = (1/3, 1/3, 1/3) represented by a black star �, we plot its probabilistic majorization cone
for probabilities of transformation P decreasing from 1 to 0.5 with 0.125 steps (a–e), respectively. Observe that, for P = 1, we recover the
structure of the standard majorization cones, while as P decreases the interconvertible region T↔(p,P ) expands and the incomparable region
T∅(p,P ) shrinks, disappearing altogether between panels (d) and (e).

incomparable, q ∈ T∅(p), then nothing can be said about the
relation between both concurrences.

C. Probabilistic majorization cones

Finally, it should be observed that the notion of majoriza-
tion cones, as presented until now, deals with deterministic
transformations. However, this approach can be extended to
probabilistic transformations using Vidal’s criterion for en-
tanglement [22,41] and coherence transformations [42] under
LOCC and IO, respectively. In the case of probabilistic trans-
formations of bipartite entangled states under LOCC, this is
captured by the following theorem.

Theorem 7 (Theorem 1 of Ref. [22]). Consider two bipar-
tite pure states |ψ〉 and |φ〉, whose Schmidt decompositions
are described by probability vectors p and q, respectively. The
maximal transformation probability from |ψ〉 to |φ〉 under
LOCC is given by

P (p, q) = min
1�k�d

∑d
j=k p↓

j∑d
j=k q↓

j

. (22)

In Appendix B we discuss the extension of majorization
cones to probabilistic ones, denoted as Ti(p;P ), with i ∈
{−,∅,+} and P being the minimal probability of transfor-
mation. Here we will limit ourselves to a brief qualitative
discussion about the behavior of the probabilistic majoriza-
tion cones as the transformation probability changes from
P (·, ·) = 1 to P (·, ·) < 1 (see Fig. 6). Note that the only
common points of the future and past for P = 1 are the current
state of the system p and its permutations. Conversely, for
P < 1 this is not the only case; consequently, we may define
the interconvertible region of p at the probability level P as
the intersection between the probabilistic past and probabilis-
tic future, T↔(p,P ) ≡ T+(p,P ) ∩ T−(p,P ). This region is
nonempty for every P < 1. It is easily shown that the future
and the past cones grow as the probability of transformation
decreases, T+(p,P ′) ⊂ T+(p,P ) and T−(p,P ′) ⊂ T−(p,P )
for P ′ > P . Therefore, the only region that decreases together
with P is the incomparable region, T∅(p,P ′) ⊃ T∅(p,P ).
Interestingly, for every state p, we observe that there is a
critical value P∗, at which no two states are incomparable,

i.e., T∅(p,P ) = ∅ [see Figs. 6(a) and 6(e)]. Analogous results
hold in the context of coherence, as Theorem 7 has its coun-
terpart when considering pure state transformations under IO
operations [42,43].

Finally, it is worth mentioning, that a criterion similar to
the Vidal’s criterion was established for probabilistic trans-
formation in the context of thermal operations [44]. In this
case, the construction of the probabilistic cones for majoriza-
tion generalizes directly to the thermomajorization by using
the construction of thermomajorization cones which we will
introduce in the next section.

IV. THERMAL CONES

Let us turn our attention to a more general scenario, as-
suming that the temperature is finite, β > 0. In this case,
the reachability of energy-incoherent states under Gibbs-
preserving matrices can be studied by introducing the notion
of thermal cones, defined as follows:

Definition 4 (Thermal cones). The set of states that an
energy-incoherent state p can be mapped into by Gibbs-
preserving matrices is called the future thermal cone T β

+ (p).
Similarly, the set of states that can be mapped to p by Gibbs-
preserving matrices is called the past thermal cone T β

− (p).
Finally, the set of states that are neither in the past nor in the
future of p is called the incomparable thermal region T β

∅ (p).
Despite apparent similarities, the case of β > 0 turns out

to be significantly harder than β = 0. Difficulties stem mostly
from a simple fact demonstrated in Ref. [19]—even though
thermomajorization forms a lattice in each β order, it does not
provide a common lattice for the entire probability simplex.
Thus, before extending Lemma 5 and Theorem 6 to the ther-
mal setting (proofs of which rely heavily on the existence of
a join), we will introduce an embedding lattice—a structure
which encompasses thermomajorization order as its subset—
and we will demonstrate operations shifting to and from the
newly introduced picture.

A. Embedding lattice

To define a β-dependent embedding M of the simplex

d into a subspace 
M

d ⊂ 
2d −1, illustrated by a graphical
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FIG. 7. Embedded majorization curve. Embedding M : 
d → 
2d −1 of d-dimensional probability distribution p (here d = 3) into a
2d − 1 = 7-dimensional space is most easily understood by noting that each thermomajorization curve (left) has elbows corresponding to
a subset of �M on the horizontal axis. The embedding includes all entries of �M by subdividing the Lorenz curve into 2d − 1 fragments.
Conversely, the projection Pπp corresponds to selecting only a subset of of elbows that correspond to a selected order, in this case the original
order πp. In the x axes we used the shorthand notation γi j = γi + γ j .

example in Fig. 7, we first introduce the vector �M with
entries given by all possible partial sums of the Gibbs dis-
tribution,

�M =
{∑

i∈I

γi : I ∈ 2{1,...,d}
}

, (23)

with 2{1,...,d} denoting the power set of d indices. Moreover,
we enforce that it is ordered nondecreasingly, i.e., for i > j
we have �M

i � �M
j . Then, the embedded probability vector,

pM := M(p), is defined by

pMi = f β
p

(
�M

i

) − f β
p

(
�M

i−1

)
, (24)

where f β
p is the thermomajorization curve of p.

Within this embedding, the thermomajorization indeed
proves to be almost-standard majorization relation between
the embedded distributions,

p �β q ⇐⇒ ∀ j :
j∑

i=1

pMi �
j∑

i=1

qM
i

def⇐⇒ pM �M qM, (25)

where the last symbol �M denotes the majorization variant
related to the embedding lattice. Finally, we note that the only
deviation from the standard majorization lies in the convexity
condition in the embedding space, which is imposed not on the
probabilities pMi themselves, but on their rescaled versions,

i � j ⇒ pMi
γM

i

�
pMj
γM

j

, (26)

with scaling factors directly related to the embedded majoriza-
tion curve of the Gibbs state γM. This ordering should be
compared (but not confused) with the β-ordering introduced
in Eq. (10), pointing to a relation with thermomajorization
which we will use to show the lattice structure of the intro-
duced space.

The projection Pπ of an arbitrary probability vector
q ∈ 
2d −1 satisfying Eq. (26) onto a selected β-order π in
the original space can be defined descriptively as taking only
those elbows of the embedded majorization curve that match
the values of cumulative Gibbs distribution for the selected
permutation. Formally, the projected vector, qP

π := (Pπ(q))β ,

is entry-wise defined by

(
qP

π

)
i
=

k(i)∑
j=k(i−1)

q j, (27)

with the indices k(i) defined by the requirement that
�M

k(i) = ∑i
j=1 γπ−1( j).

In particular, it is worth noting two properties of the
embedding M and projections Pπ. First, given a vector
p ∈ 
d with a β-order πp, we find that by construction
Pπp (M(p)) = p, which follows directly from Eq. (27).
However, for π �= πp we find that p �β Pπ(M(p)).
The statement is easily shown by observing that the
Lorenz curve of Pπ(M(p)) connects by line segments
d + 1 points of the Lorenz curve corresponding
f β

p (
∑

i(M(p)Pπ )i ) and therefore majorization is re-
solved by linear approximation of a convex function,
f [(1 − t )x + ty] � (1 − t ) f (x) + t f (y) for any x, y. The
second property is concerned with q ∈ 
2d −1 satisfying
Eq. (26) and can be summarized as the fact that projecting
and re-embedding the vector will always give the object
majorized by the original vector: q �M M(Pπ(q)). It follows
similarly to the prior majorization by the argument of linear
approximation of a convex function.

It is necessary to stress that the introduced embedding
structure is distinct from the one used in the usual method of
reducing thermomajorization to majorization [29]. Most im-
portantly, the standard approach requires going to the limit of
infinite embedding dimension to recover thermomajorization
for arbitrary β as a special case of standard majorization. In
our proposition, a thermomajorization curve in dimension d is
embedded within a 2d − 1-dimensional space. The main dif-
ference lies in the nonconstant widths of the segments of the
Lorenz curve and the fact that once the embedded vector pM

is constructed, its entries should not be subject to reordering.
Finally, we present the argument proving that the embedding
together with embedded majorization indeed provide a lattice
structure.

Corollary 8. The subset of the probability simplex 
2d −1
satisfying Eq. (26) and subject to the embedded
majorization �M defined in Eq. (25) forms a lattice.
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FIG. 8. Thermal cones for d = 3. For a three-level system with population given by p = (0.4, 0.36, 0.24), represented by a black dot •, and
energy spectrum E1 = 0, E2 = 1 and E3 = 2, we plot its thermal cone for (a) β = 0, (b) β = 0.5, (c) β = 1.0, and (d) β → ∞. By increasing
β, the thermal state (black star �) tends toward the ground state E1, and the past thermal cone becomes convex.

Proof. The embedded majorization �M may be reinter-
pretted as thermomajorization defined for a specific Gibbs
state γM and restricted to a particular Weyl chamber of the
probability space 
2d −1 by comparing Eq. (26) with an anal-
ogous sorting rule from Eq. (10). This direct isomorphism
between thermomajorization order �β restricted to a single
Weyl chamber, known to provide a lattice structure, and the
embedded majorization �M proves the statement.

B. Geometry of thermal cones

As already mentioned, for finite temperatures the rules
underlying state transformations are no longer captured by
a majorization relation, but rather by its thermodynamic
equivalent known as thermomajorization [29,33]. As a result,
Birkhoff’s theorem cannot be employed anymore, and the
characterization of the future thermal cone is no longer given
by Theorem 4. However, the set of Gibbs-preserving matrices
still forms a convex set [20,21], and the extreme points of
the future thermal cone can be constructed by employing the
following lemma:

Lemma 9 (Lemma 12 of Ref. [17]). Given p, consider the
following distributions pπ ∈ T β

+ (p) constructed for each per-
mutation π ∈ Sd . For i ∈ {1, . . . , d}:

(1) Let xπ
i = ∑i

j=0 e−βE
π−1 ( j) and yπ

i = f β
p (xπ

i ).
(2) Define pπ

i := yπ
π(i) − yπ

π(i)−1, with y0 := 0.

Then, all extreme points of T β
+ (p) have the form pπ for

some π. In particular, this implies that T β
+ (p) has at most d!

extremal points.
The above lemma allows one to characterize the future

thermal cone of p by constructing states pπ for each π ∈ Sd ,
and taking their convex hull. It is worth mentioning that
T β

+ (p) can also be constructed by finding the whole set of
extremal Gibbs-preserving matrices [17,20]. This follows the
same spirit as in Sec. III, where the majorization cone was
characterized by employing Theorem 2. However, this is a
harder problem to solve, and so the extremal Gibbs-preserving
matrices were characterized only for d � 3 [20,21]. Here, we
provide the construction of T β

+ (p) as a simple corollary of
Lemma 9.

Corollary 10 (Future thermal cone). The future thermal
cone of a d-dimensional energy-incoherent state p is given
by

T β
+ (p) = conv[{pπ,π ∈ Sd}]. (28)

Furthermore, one can use the embedding lattice to
provide an alternative formulation for the future thermal
cone:

Observation 11. Since pπ = Pπ(M(p)), the future ther-
mal cone of an energy-incoherent state p can be expressed in
terms of all possible projections from the related embedding,

T β
+ (p) = conv [{Pπ(M(p)),π ∈ Sd}]. (29)

Our main technical contribution is captured by the fol-
lowing lemma that generalizes Lemma 5 and provides the
construction of the incomparable thermal region for finite
temperatures. Its proof is based on the concept of embedding
lattice that we introduced in Sec. IV A and can be found in
Appendix A 2.

Lemma 12 (Incomparable thermal region). Given an
energy-incoherent state p and a thermal state γ , consider dis-
tributions t (n,π) in their β-ordered form, constructed for each
permutation π ∈ Sd ,

(t (n,π) )β =
(

t (n,π)
π(1) , pβ

n

γπ(2)

γ
β

n

, . . . , pβ
n

γπ(d−1)

γ
β

n

, t (n,π)
π(d )

)
, (30)

with

t (n,π)
π(1) =

n∑
i=1

pβ
i − pβ

n

γ
β

n

(
n∑

i=1

γ
β

i − γπ(1)

)
, (31a)

t (n,π)
π(d ) = 1 − t (n,π)

π(1) − pβ
n

γ
β

n

d−1∑
i=2

γπ(i). (31b)

Defining the set

T β =
⋃

π∈Sd

n−1⋃
i=1

conv[T β
+ (t (i,π) ) ∪ T β

+ (t (i+1,π) )], (32)

the incomparable region of p is given by

T β

∅ (p) = [int(T β )\T β
+ (p)] ∩ �d . (33)

Analogously to the infinite temperature case, Lemma 12
allows us to obtain the past thermal cone of p.

Theorem 13 (Past thermal cone). The past thermal cone of
p is given by

T β
− (p) = �d\ int(T β ). (34)
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FIG. 9. Thermal cones for d = 4. For a four-level system with
population given by p = (25, 13, 7, 3)/48, represented by a black
dot •, and energy spectrum E1 = 0, E2 = 1, E3 = 2, and E4 = 3, we
plot its thermal cone for (a) β = 0, (b) β = 0.2, and (c) β = 1.0. The
thermal state depicted by a black star �, and its trajectory (dashed
line) is also shown. By increasing the inverse temperature β, the
geometry of each region drastically changes.

Proof. Following the same reasoning as in the proof
of Theorem 6, we only need to use the fact that
int(T β ) = T β

+ (p) ∪ T β

∅ (p).
In Figs. 8 and 9, we illustrate Lemma 12 and Theorem 13

for a three-level system and a four-level system in different
temperature regimes. We also provide a Mathematica code
[45] that constructs the set of extreme points of the future and
past thermal cones for arbitrary dimensions.

As before, the past thermal cone forms a convex polytope
only when restricted to a single Weyl chamber, now defined
as a set of probability vectors with common β order. The
extreme points of the past thermal cone correspond to tangent
vectors t (n,π) or by their projection onto the boundary of the
probability simplex. The exceptional points in comparison
with the infinite-temperature case may appear when consid-
ering extreme points of

⋃d−1
i=1 conv[(T β

+ (t (i,π) ) ∪ T β
+ (t (i+1,π) )]

for a given chamber π. Vertices arising in this way may not
correspond to any tangent vector (see Fig. 10). Moreover, the
t (n,π) vectors are also responsible for the convexity of the past
thermal cone, and the following observation illustrates this:

Corollary 14. Approaching the limit of β → ∞, the past
thermal cone becomes convex.

Proof. By dividing the probability simplex into equal
chambers with the thermal state in the barycenter, the past

thermal cone is the union of d! convex pieces. As β → ∞,
the thermal state collapses to the ground state. There is only
one chamber in this limit, and therefore, the past thermal cone
is a single convex piece [see Fig. 8(d) for an example in the
particular case of d = 3].

The intuition behind the above observation can be under-
stood by studying the behavior of a three-level system and
the tangent vector t (3,(132)). By a decreasing temperature, this
extremal point tends towards the edge of the simplex and
reaches the edge at β → ∞ [see Figs. 8(c) and 8(d)].

To wrap up the considerations of the geometry of thermal
cones, let us go back, once again, to the analogy between
the thermal cones and special relativity. Consider that given a
specific division of space-time into future, past and spacelike
regions, one is able to recover the specific event generating
it, which we may refer to as Present. Concisely—there is
a one-to-one relation between events and the divisions of
space-time they generate. The situation is exactly reflected for
thermal cones with β > 0—given a specific arrangement of
incomparable region and future and past thermal cones, one
can exactly recover the current state of the system [see the
black dot • in Figs. 8(b)–8(d)]. It is in stark contrast with
the majorization cones for β = 0, where every division into
past, future and incomparable possesses d!-fold symmetry
[see Fig. 8(a)] and hence, the present state of the system
cannot be recovered solely on its basis unless provided with
additional information like the permutation which sorts the
probabilities in nondecreasing order.

V. VOLUME OF THERMAL CONES

In the previous sections, we characterized and discussed
the behavior of thermal cones by introducing explicit con-
structions of the past, the future and the incomparable
region. It is then natural to ask what is the role played
by their volumes in quantifying the resourcefulness of dif-
ferent states [43,46]. Thus, for a d-dimensional probability
vector p we define the relative volumes of its thermal
cones as

V β
i (p) := V

[
T β

i (p)
]

V (
d )
with i ∈ {∅,−,+}, (35)

where V denotes the volume measured using the Euclidean
metric.

We start our analysis of volumes of thermal cones by
presenting an operational interpretation in terms of guessing
probabilities for the future and past of a given state subject
to a thermal evolution; such interpretation provides a solid
basis for presenting the aforementioned volumes as resource-
theoretic monotones. Subsequently, we proceed to an in-depth
analysis of the volumes with a particular focus on their be-
havior as a function of the inverse temperature β. Finally,
we explain how to modify the analysis to obtain meaningful
volumes of entanglement cones.

A. Interpretation

Consider a task of predicting the future, which roughly
translates to guessing a state q by having knowledge that it
has originated from a given prior state p. In this case, the
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FIG. 10. Extreme points of T β
− (p). The past thermal cone for a three-level system with population give by p = (0.7, 0.2, 0.1), energy

spectrum E1 = 0, E2 = 2, and E3 = 3, and the inverse temperature β = 0.5. At each chamber π, the nontrivial extreme points of the past
are given by t (n,π) (for n ∈ {1, 2, 3} and π ∈ Sd ) and by extreme points of

⋃d−1
i=1 conv[(T β

+ (t (i,π) ) ∪ T β
+ (t (i+1,π) )] (red dots). The remaining

ones are sharp states, points in the boundary between chambers (green dots) and those which are on the edge of the probability simplex, i.e.,
(γ i, j )k = (γiδik + γ jδik )/(γi + γ j ), for i �= j, and k ∈ {1, 2, 3}.

probability of correctly guessing a state that is ε-distant from
q is given by

Pr(q, ε | q ∈ T+(p)) = V (Bε (q))

V β
+ (p)

, (36)

where Bε (q) is an ε-ball centered at q. We may get rid of the
dependence on ε and q by taking the ratio for two different
states p1 and p2,

Pr[q, ε | q ∈ T β
+ (p2)]

Pr[q, ε | q ∈ T β
+ (p1)]

= V β
+ (p1)

V β
+ (p2)

. (37)

Thus, the ratio of volumes yields a relative probability of
guessing the future of two different states. In particular, if
p2 ∈ T β

+ (p1), then also T β
+ (p2) ⊂ T β

+ (p1) and in conse-
quence

Pr[q, ε | q ∈ T β
+ (p2)]

Pr[q, ε | q ∈ T β
+ (p1)]

> 1. (38)

This can be understood as follows—as the evolution of a
system progresses, the future becomes easier to guess or, in
other words, more predictable.

In complete analogy, we may define a game in which,
instead of guessing—or predicting—the future of a state p,
one has to guess its past. For such a game, it is easy to show
that

Pr[q, ε | q ∈ T β
− (p2)]

Pr[q, ε | q ∈ T β
− (p1)]

= V β
− (p1)

V β
− (p2)

, (39)

so that the ratio of volumes yields the relative proba-
bility of guessing the past. Given p1 ∈ T β

− (p2) we have
V β

− (p1)/V β
− (p2) < 1, which simply means that as the evolu-

tion towards equilibrium progresses, one finds the past of a
given state harder and harder to guess correctly.

B. Properties

We now show that the volumes of the thermal cones are
thermodynamic monotones, i.e., functions of a state that de-
crease under thermal operations.

Theorem 15. The relative volumes V β
+ and

1 − V β
− = V β

+ + V β

∅ are thermodynamic monotones.
Moreover, both monotones are faithful, taking the value
0 only when applied to the Gibbs state γ .

Proof. One can straightforwardly show that both quan-
tities decrease monotonically under thermodynamic oper-
ations. This is a simple consequence of the fact that
for p and q connected via a thermal operation, we have
T β

+ (q) ⊂ T β
+ (p) and T β

− (p) ⊂ T β
− (q) which automatically

implies V β
+ (q) � V β

+ (p) and V β
− (q) � V β

− (p).
To demonstrate its faithfulness, first note that every state

that is not thermal can be mapped to a thermal state, thus
showing that 1 − V−(γ ) = 0. Similarly, the Gibbs state can-
not be mapped via thermal operations to anything else than
itself, thus V+(γ ) = 0. Now, to show that both monotones are
nonzero for any state different from the Gibbs state, it suffices
to demonstrate that V+(p) > 0 for any p �= γ . It is enough
to consider, without loss of generality, a state p thermalized
within a (d − 1)-dimensional subspace, i.e., pi/p j = γi/γ j

for all i �= j �= 1. For k ∈ {2, . . . , d}, using β-swaps between
levels 1 and k defined as [17]

{p1, pk} �−→
{

γ1 − γk

γ1
p1 + pk,

γk

γ1
p1

}
,

we generate d − 1 new points shifted from the original
state by displacements (δk )i = δkεik defined by the Levi-
Civita symbol εik and δk �= 0. The entire set {δk}d

k=2 of
displacements is linearly independent; therefore, they define a
(d − 1)-dimensional simplex of nonzero volume. Conversely,
if we assume that δk = 0 for any k, then we are led to a
conclusion that the system is thermalized between levels 1
and k and, by transitivity, it must be equal to the Gibbs state
γ , which leads to a contradiction with the initial assumption.
Finally, we restore the full generality by noticing that any
state q contains in its future cone states thermalized in any
of the (d − 1)-dimensional subspaces and, consequently, their
entire future cone. Therefore, the nonzero volume of the latter
implies the nonzero volume of the former.

The behavior of V+ and V− as a function of β strongly
depends on the β-ordering of the state under consideration.
Among all β-orderings, there are two extreme cases, namely
the one where the population and energies are arranged in
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FIG. 11. Volume of the thermal cones as a function of β. For all
permutations of the state p = (0.52, 0.12, 0.36), we plot the volume
of the future thermal cone V β

+ (top), the incomparable thermal region
V β

∅ (center) and the past thermal cone V β
− (bottom). Each color

corresponds to a permutation associated with a given chamber of
the probability simplex. Among all states, two are distinct: the max-
imally active (red curve) pmax = (0.12, 0.36, 0.52) and the passive
(black curve) pp = (0.52, 0.36, 0.12) states. Any other permutation
of the initial state characterizes a different active state. The kinks
in V β

+ match with the inverse temperatures at which p changes its
β-ordering (vertical lines of matching colors). The three different
simplices at the bottom show how the Weyl chambers change with
β.

nonincreasing order (pi � p j for Ei � Ej), and the other in
which the populations are “antiordered” with respect to the
energies (Ei � Ej implies pi � p j). These two distinct β-
orderings characterize passive and maximally active states,
respectively [47,48]. At the bottom left of Fig. 11, for a
three-level system, we depict each Weyl chamber with dif-
ferent colors: passive states lie in the black chamber, whereas
maximally active states lie in the red one.

Let us first focus on the volume of the future thermal
cone and analyze how it changes by increasing the inverse

temperature β from β = 0 to β → ∞. In the present analysis,
the initial state is kept fixed, while the thermal state is taken
to be a function of temperature γ = γ (β ), and it follows a
trajectory from the center of the probability simplex to the
ground state (see Fig. 8 for an example considering a three-
level system). If at β = 0 the initial state p is passive, then the
volume of its future thermal cone first decreases with β and
then starts to increase when γ passes p (i.e., when p changes
its β-ordering), tending asymptotically to a constant value (see
black curves in Fig. 11). However, if at β = 0 the initial state p
is maximally active, then the behavior of the volume of T β

+ (p)
differs from the previous case. As the thermal state approaches
the ground state with increasing β, the distance between maxi-
mally active states and γ increases with β, because the ground
state and p are located in opposite chambers. Consequently,
the volume increases asymptotically to a constant value (see
red curves in Fig. 11). For general states, one can provide a
qualitative explanation of the behavior of their volumes based
on their β-orderings. The inverse temperatures β for which
one finds kinks in the future volume Vβ

+(p) (vertical lines in
Fig. 11) match with the transitions from a given β-ordering to
another one. This should be compared with the isovolumetric
level sets in Fig. 12, where a matching nonsmooth behavior is
found. Observe that similar kinks are not encountered for the
past volume Vβ

−(p), related to the smooth behavior of the cor-
responding level sets. However, by considering a passive state
p and all its permutations, we can demonstrate that maximally
active and passive states have maximum and minimum future
volumes, respectively:

Corollary 16. For a d-dimensional energy-incoherent state
p with Hamiltonian H , and all states defined by permuting
its population, the future thermal cone of the permutation
resulting in the maximally active and passive states achieve
maximum and minimum volumes, respectively.

Proof. The Corollary is proven by noting that all permuta-
tions of p are thermomajorized by the one corresponding to
the maximally active state pmax, while the associated passive
state pp is thermomajorized by all the other permutations.
Consequently, T+(pp) ⊂ T+(	p), while T+(	p) ⊂ T+(pmax)
for any permutation matrix 	.

Corollary 16, also implies that the volume of the past
thermal cone is minimum and maximum for the one cor-
responding to the maximally active and passive states,
respectively (see Fig. 11). To provide further characterization
of the volumes, we apply Lemma 12 to a nonfull rank state,
which allows us to derive the following result:

Corollary 17. The past thermal cone of a nonfull rank state
has volume zero despite being nonempty.

Proof. Without loss of generality, consider a state of non-
full rank p = (p1, . . . , pd−1, 0). Applying Eq. (30) yields
t (d,π) = (1, 0, . . . , 0), for all π. Consequently, the incompa-
rable region is given by all points in the interior of the
probability simplex, except those that are in the future of p.
Then, according to Theorem (33), all the points of the past
will be located at the edge, and therefore the volume of T β

− (p)
is zero.

Understanding the behavior of the thermal incomparable
region is not directly straightforward. However, Corollary 17
helps us to find the state of nonfull rank with the largest
incomparable region:
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FIG. 12. Isovolumetric curves. The volume of the future V β
+ ,

incomparable V β

∅ , and past thermal regions V β
− , in the space of

three-dimensional probability distributions for an equidistant en-
ergy spectrum E1 = 0, E2 = 1 and E3 = 2 and inverse temperature
(a) β = 0 and (b) β = 0.5. The thermal state is depicted by a grey
star �.

Corollary 18. The nonfull rank state with the largest ther-
mal incomparable region is given by

g = 1

Z
(e−βE1 , . . . , e−βEd−1 , 0), where Z =

d−1∑
i=1

e−βEi .

(40)

Proof. Consider an arbitrary nonfull rank state p. Accord-
ing to Corollary 17, the volume of the thermal incomparable
region can be written as V β

∅ (p) = 1 − V β
+ (p). Now note that,

p �β g, and T+(g) ⊂ T+(p). This implies that g is the nonfull
rank state with the smallest future thermal cone and, therefore,
with the largest incomparable region.

So far, the behavior and properties of the volumes have
been analyzed and discussed without explicitly calculating
them. There are several known algorithms for computing
volumes of convex polytopes, such as triangulation, signed

decomposition methods, or even direct integration [49,50].
These algorithms can be employed to obtain the volumes
of past and future cones; the volume of the incomparable
region can be calculated using the fact that the total volume
of the probability simplex 
d is equal to one. For a three-
dimensional energy-incoherent state p, expressions for the
volumes can be easily derived. The starting point is to consider
the Gauss area formula [51], which allows us to determine
the area of any polygon with vertices described by Cartesian
coordinates. Taking into account a polygon P whose vertices,
assumed to be arranged along the boundary in a clockwise
manner, are denoted by Pi = (xi, yi ), with i = {1, . . . , n}, the
Euclidean volume can be expressed as

V = 1

2

∣∣∣∣∣
n∑

i=1

det

(
xi xi+1

yi yi+1

)∣∣∣∣∣, (41)

where xn+1 = x1 and yn+i = y1. For β = 0, deriving the vol-
ume of the thermal cones is straightforward, since the vertices,
or extreme points, are permutation of p. In this case, we arrive
at the following closed-form expressions:

V 0
+(p) = (3p↓

1 − 1)2 − 3(p↓
2 − p↓

1 )2, (42)

V 0
∅ (p) = 1 − 3(1 − p↓

1 )2 + (1 − 3p↓
3 )2 − 2V 0

+(p)

+3θ (1/2 − p↓
1 )(1 − 2p↓

1 )2, (43)

V 0
−(p) = 12p↓

2 p↓
3 − 3θ (1/2 − p↓

1 )(1 − 2p↓
1 )2, (44)

where θ is the Heaviside step function. The situation involving
a finite β is not as simple as before. Now, the extreme points
are obtained by applying Lemma 9, and, although computa-
tionally it is an easy task to calculate them, a neat and concise
closed-form expression cannot be derived.

Finally, let us look at isovolumetric curves for different
values of β. In Fig. 12, we plot these curves for a three-
level system and four different temperatures. As expected,
the symmetry is broken for any β > 0 as E3 > E2 > E1.
A simple fact worth mentioning is that the volume of
the future thermal cone of the highest excited state sd =
(0, . . . , 0, 1) is always independent of β, maximum, and equal
to unity. Conversely, the past thermal cone volume is max-
imum for a Gibbs state and equal to unity. Moreover, these
curves give insight into how resourceful states are distributed
within the space of states.

C. The volumes of entanglement cones

Finally, we will briefly discuss the general qualitative as-
pects of the volumes of entanglement cones based on the
numerical considerations. Detailed formal methods used to
obtain them are discussed in Appendix C.

Naturally, depending on the context, the probability dis-
tribution p may pertain to the Schmidt coefficients of a pure
entangled state or the coefficients resulting from decom-
posing the state in a distinguished basis in the context of
coherence [36,37]. Despite the close connection between
the resource theory of thermodynamics (at β = 0) with
the resource theories of entanglement and coherence,
crucial differences appear already at the level of a single state
as the order is reversed [28], hence, interchanging the future
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FIG. 13. Isovolumetric sets for entanglement cones. To calculate the isovolumetric lines for (a) the past cone, (b) the incomparable region,
and (c) the future cone for entanglement resource theory of states in H3×3 one considers the density of the Schmidt coefficients p induced by
the Haar measure in the space H9 of pure bipartite states, as depicted in panel (d) by showing a sample of 5 × 104 points in 
3. Observe the
scarcity of points in the central region, resulting in characteristic concentration of states with large future in the center of the simplex and large
past in the vicinity of the vertices.

T+ with the past T−. The difference is even more pronounced
within the context of volumes for the entanglement of pure
states under LOCC operations. The distribution of Schmidt
coefficients induced by the uniform Haar measure in the space
of pure bipartite states is significantly different from the flat
distribution in the probability simplex 
d [52]. In particular,
one observes a repulsion from the center and, in the case of en-
tangled systems of unequal dimension, from the facets of the
simplex. Consequently, this implies a significant difference in
the qualitative features of the isovolumetric curves. Figure 13
shows the isovolumetric curves for d = 3 with equal-sized
systems. Observe that states with large future volumes V+
are concentrated around the center of the simplex, which is
explained by the repelling property. Inverse effects can be seen
for the states with large past volumes V−, which concentrate
at the boundaries of the simplex. The differences become
even more pronounced for systems of unequal dimensions,
as we demonstrate in qualitative figures in Appendix C (see
Fig. 16).

VI. OUTLOOK

In this paper, we have investigated the structure of
the thermodynamic arrow of time by dividing the space
of energy-incoherent states into the past, the future, and
the incomparable region, in analogy with the future, past,
and spacelike regions of Minkowski spacetime, respectively.
These regions of the probability simplex, called thermal
cones, encode in a natural way the achievability of state
transformations under thermal operations. In particular, we
considered the energy-incoherent states in the presence of
a thermal bath at a finite temperature and in the limit of
temperature going to infinity. The incomparable and past ther-
mal cones were fully characterized and carefully analyzed in
both regimes. Furthermore, we identified the volumes of the
thermal cones as thermodynamic monotones and performed
detailed analysis of their behavior under different conditions.
Our results can also be applied directly to the study of en-
tanglement, as the order defined on the set of bipartite pure

entangled states by local operations and classical communica-
tion is the opposite of the thermodynamic order in the limit of
infinite temperature. In this context, the future thermal cone
becomes the past for entanglement, and the past becomes the
future. Moreover, a similar extension to coherence resource
theory can also be drawn.

There are quite a few research directions that one may
want to take to generalize and extend the results presented in
this paper. First, one may generalize our analysis beyond the
energy-incoherent states to the full space of quantum states,
where the available tools are comparatively scarce [19,53,54].
As explained in Appendix D, for qubit systems one can em-
ploy different known techniques to construct coherent thermal
cones under both Gibbs-preserving and thermal operations, as
shown in Fig. 14.

FIG. 14. Coherent thermal cones. For a two-level system with
initial state ρ, represented by a black dot •, and thermal state repre-
sented by a black star � with Bloch vectors rρ = (0.2, 0, 0.5) and
rγ = (0, 0, 1/3), respectively, we depict in the real cross-section of
the Bloch ball, the coherent thermal cone (a) under Gibbs-preserving
operations (b) under thermal operations.
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Beyond the qubit case, the problem is still open.2

Second, a newly introduced notion of continuous thermo-
majorization was presented in Ref. [55,56], where the authors
obtained the necessary and sufficient conditions for the exis-
tence of a Markovian thermal process underlining a given state
transformation. A natural task then is to provide an equivalent
construction of the past and incomparable regions for that
memoryless thermodynamic ordering. Finally, we point out
a possible technical extension of our results. Our investigation
was performed in the spirit of single subsystems, but a pos-
sible extension comprising many noninteracting subsystems
(possibly independent and identically distributed) could be
done by defining a proper function to analyze the behavior
of the thermal cones.
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APPENDIX A: DERIVATION OF THE INCOMPARABLE
REGION—PROOF OF LEMMAS 5 AND 12

In this Appendix, we consider lemmas defining the bound-
aries of the incomparable region – an essential step in learning
the full form of the past thermal cone. First, we consider the
case of β = 0, covered by Lemma 5, and develop the notion
of the so-called tangent vectors t (n) comprising the boundary
of the incomparable region. The notion of tangent vectors is
generalized and used in the proof of Lemma 12 concerning
the incomparable region for β > 0.

1. Infinite temperature

a. Tangent vector

The first notion we will need in the proof is that of a tan-
gent probability vector, called the tangent vector for short,
which will prove to be an essential ingredient.

Let 
d be the set of probability vectors of dimension d
with real entries, 
d = {(p1, . . . , pd ) ∈ Rd :

∑
i pi = 1}, and

let us restrict ourselves to vectors ordered in a nonincreas-
ing order, i.e., pi � pi+1. To avoid complication we assume,
without loss generality, that all pi �= p j . In what follows,
we will denote probability vectors by bold lowercase letters
p ∈ 
d and their corresponding cumulative counterparts by
bold uppercase vectors P : Pi = ∑i

j=1 pi with i ∈ {0, . . . , d}.
For any vector p we introduce a tangent vector t (p) ≡ t ∈ 
d

by imposing that all its components except the first and the
last are equal, ti = t j for all 1 < i < j < d; furthermore, we

2Note that this problem was formally solved in Ref. [54], in which
a complete set of necessary and sufficient conditions was found for
arbitrary quantum state transformations under thermal operations.
However, this set of conditions is convoluted and hard to character-
ize, thus beyond implicit formulation, the problem remains open.

require that the cumulative vector T agrees with the vector
P in at most two consecutive points, i.e., Ti = Pi and Tj > Pj

for all j ∈ {1, . . . , d − 1}\{i} or Tj = Pj for j ∈ {i, i + 1} and
Tj > Pj elsewhere. The two imposed conditions follow the
intuition of tangency and, by construction, satisfy the ma-
jorization relation t ≺ p. Furthermore, note that T0 = P0 = 0
and Td = Pd = 1 and thus are naturally excluded from the
considerations (see Fig. 15 for an example considering d =
4).

Indeed, assuming equality between T and P at exactly two
consecutive points restricts the tangent vectors to a set of d
unique probability vectors t (n) defined as

t (n)(p) ≡ t (n) = (
t (n)
1 , pn, . . . , pn, t (n)

d

)
, (A1)

for 1 � n � d with the first and last components given by

t (n)
1 =

n−1∑
i

pi − (n − 2)pn , t (n)
d = 1 − t (n)

1 − (d − 2)pn. (A2)

Observe that the tangent vectors t (n) that agree with
the Lorenz curve of p at two successive points can
be used to construct all possible tangent vectors t that
satisfy the condition of agreement at at least a single
point, Ti = Pi. Indeed, consider a vector t (λ, i) ≡ t = (1 −
λ)t (i) + λt (i+1). Direct calculation shows that it is tangent
at just one point, Ti = λT (i)

i + (1 − λ)T (i+1)
i = Pi. Similarly

we arrive at Tj > Pj for j �= i and 0 < λ < 1.
Thus, starting with a discrete set of d tangent vectors

t (n) we recover the entire continuous family of tangent
vectors t (λ, i). Indeed, this argument can be further
formalised by considering the Lorenz curves fp(x) and ft (x).
Considering the left and right derivatives of the former,
limx→ i

d −
f ′

p(x) = d · pi and limx→ i
d +

f ′
p(x) = d · pi+1,

we obtain the extremal slope values for the tan-
gent lines at the ith elbow. Now, considering the
second Lorenz curve by construction we have that
ft (i/d ) = fp(i/d ) and its derivative at this point,
f ′
t (i/d ) = d[(1 − λ)pi + λpi+1], span all values between

the extremal slope values d · pi and d · pi+1, therefore
exhausting the family of possible tangent lines at the ith
elbow.

b. Lattice

Lattices provide a setting within which it is natural to
represent the precedence or succession of elements within a
given set. In particular, they can be used to equip a given set
with a timelike structure, as provided by the definition of a
lattice (see Definition 2).

It is well known that the partially ordered set (
d ,�) of
d-dimensional probability vectors with real entries in nonin-
creasing order under majorization forms a lattice [19,34]. In
particular, within this setting, the join p ∨ q can be interpreted
as the last common past point of p and q. Similarly, the meet
p ∧ q can be seen as the first common future point of the
pair p, q. The procedure to obtain the join and meet has been
illustrated in Ref. [19], and since part of our proof relies on
the existence of the join, we will now review the algorithm
used to construct it.
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FIG. 15. Lorenz curves of the tangent vectors t (n). Majorization curves of the state p = (0.43, 0.37, 0.18, 0.02) (black) and (a) t (1) (b) t (2)

(c) t (3) (d) t (4) and (e) all tangent vectors j ∈ {1, 2, 3, 4}, respectively.

To construct the join of p and q, we start with a probability
vector r(0) with elements defined by

r (0)
i = max {Pi, Qi} − max {Pi−1, Qi−1}. (A3)

At this stage, it may occur that the entries of r(0) are not
ordered nonincreasingly. However, it is possible to arrive at
a properly ordered probability vector r = p ∨ q defining the
actual join in no more than d − 1 steps. In each step k � 0
we define N � 2 as the smallest point of increase between
two consecutive components of the probability vector r (k),
that is, r (k)

N > r (k)
N−1. Next, M � N − 1 is defined in such a

way that by introducing constant probabilities for the entries
with i ∈ {M, . . . , N} the growth is eliminated. It is done by
requiring that

r (k)
M �

∑N
i=M r (k)

i

N − M + 1
=: ak . (A4)

Thus, the next iterative step r(k+1) is defined by setting its
components as

r (k+1)
i =

{
ak for i ∈ {M, . . . , N},
r (k)

i otherwise.
(A5)

This construction is repeated until for some k′ the probability
vector r(k′ ) ≡ r is ordered nonincreasingly; in this way we get
the proper join.

c. Incomparable region and the boundaries

As a final piece of information needed to understand the
proofs, we introduce the definition of the boundary of the past
cone.

Definition 5 (Boundary of the past thermal cone).
Consider a d-dimensional energy incoherent state p ∈ Pd

with d � 3. We define the boundary of the past thermal
cone as the set of probability vectors q � p for which the
cumulative vector Q is equal to the cumulative vector P at
least one point. In other words, P j < Q j for some proper
subset of the indices j and Pi = Qi for all other indices.

One may define the boundary of the future cone in a similar
way by changing the direction of the inequalities. By consid-
ering the common part of the boundary between future and
past, one comes to a simple observation:

Observation 19 (Common point of future and past cones).
A point that lies simultaneously at the common part of the
boundary between the future and the past must fulfill
∀iPi = Qi. Therefore, for β = 0 we have the equality of p
and q up to a permutation, giving a total of d! common points
between the future and the past of any vector p.

Equipped with the notion of tangent vectors t (n), the join
p ∨ q and the boundary of the past cone, we are now prepared
to tackle the Lemma 5 concerning the incomparable region,
and this is done by proving the following result:

Lemma 20. Consider p, q ∈ 
d and assume that p � q.
Then, q belongs to the incomparable region of p, q ∈ T∅(p), if
and only if it belongs to the future majorization cone of some
vector t tangent to p, q ∈ T+(t ), with

t ≡ t (p; λ, n) = λt (n)(p) + (1 − λ)t (n+1)(p),

for some n ∈ {1, d − 1} and λ ∈ [0, 1].
Proof. To prove the “if” direction, we take a probability

vector lying in the interior of the future of the tangent vector,
q ∈ int[T+(t )]. Then, to prove that q ∈ T∅(p), one needs to
show that q � p. By construction, we have Tk � Pk , for every
k �= n, with equality when k = n, so Pn = Tn > Qn with the
equality excluded by putting q in the interior of the future.
Consequently, Pn > Qn, and thus q � p and by the initial
assumption, p � q. Therefore, q ∈ T∅(p).

To demonstrate the “only if” direction, let us take an
arbitrary q ∈ T∅(p) and recall that there always exists the
last common past point for p and q called join, r = p ∨
q. From the construction of the join r, it is found that
the entries of the cumulative distribution R will be di-
vided into three subsets, namely points common with P,
common with Q and the ones lying above either, that is
Ip := {i : 0 < i < d, Ri = Pi}, Iq := {i : 0 < i < d, Ri = Qi}
and J := {0 < j < d, : Rj > max(Pj, Qj )}, respectively. In
particular, looking at Eq. (A5) one can see that it is either
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the case that M − 1 ∈ Ip and N + 1 ∈ Iq, or M − 1 ∈ Ip and
N + 1 ∈ Iq or by invoking geometric intuition, endpoints of
the flat fragments of R will join P and Q. Thus, at each step,
the sets Ip and Iq will be nonempty. By this argument, we may
choose any index i ∈ Ip and construct a tangent vector t ′ for
the join r at the ith elbow,

t ′ ≡ t (r; μ, i) = μt (i)(r) + (1 − μ)t (i+1)(r), (A6)

for any μ ∈ [0, 1]. This vector obeys, by construction, the ma-
jorization relation t ′ � r � q. Furthermore, due to the choice
i ∈ Ip it is also a tangent vector for the p,

t ′ = t ≡ t (p; λ(μ), i) = λ(μ)t (i)(p) + (1 − λ(μ))t (i+1)(p), (A7)

for λ(μ) ∈ [0, 1]. Therefore, by the properties of the tangent
vector t it follows that q ∈ T+(t ).

The last step necessary to demonstrate the Lemma 5 is to
notice that the tangent vectors t (p; λ(μ), i) are convex com-
binations of t (i)(p) and t (i+1)(p) and their future majorization
cones are convex, therefore, union of their future cones corre-
sponds to the convex hull of the future cones of the extreme
points⋃

λ∈[0,1]

T+(t (p; λ, i)) = conv[T+(t (i) ) ∪ T+(t (i+1))], (A8)

which completes the statement of Lemma 5.�

2. Finite temperatures

The proof of Lemma 12 for β > 0 is developed in the
simplest way by considering the embedding M introduced
in Sec. IV A, which takes d-dimensional probability distri-
butions p ∈ 
d to its higher-dimensional image M(p) ∈ 
M

d
which allows us to closely follow the steps of the proof for
β = 0.

After shifting our focus to the embedded space,
we construct the corresponding tangent vectors
tM(p; λ, n) = λtM(n)(p) + (1 − λ)tM(n+1)(p) that respect
the rules for constructing the majorization curve within the
embedded space. In particular, in full analogy to the β = 0
case, the full family can be given in terms of vectors tangent
to the nth linear fragment of the embedded majorization
curve,

tM(n)(p) =
(

tM(n)
1 ,

pn

γn
γM

2 , . . . ,
pn

γn
γM

2d −1, tM(n)
2d

)
, (A9)

where the first entry is defined in such a way that the ma-
jorization curves, defined as the piecewise-linear functions
given by their elbows {(�M

i , PM
i )}2d−1

i=0 , agree in at least
one point, f Mt (n) (�M

n ) = f Mp (�M
n ) and the last one guarantees

that
∑

i tM(n)
i = 1. Observe that vectors tM(n) constructed in

this way are tangent with respect to the embedded Lorenz
curve, i.e., tM(n)

i /γM
i = tM(n)

j /γM
j , thus taking into account

the varying intervals on the horizontal axis. Equipped with
these, we pose a technical lemma similar to Lemma 20,

As a preliminary step, we give the algorithm for the con-
struction of the join in the embedding space by modifying the
crucial steps (A4) and (A5) to take into account the varying
widths and redefine the point N of increase by requiring
rM(k)

N /γM
N > rM(k)

N−1 /γM
N−1. Consequently, we redefine M by a

condition similar to Eq. (A4) that incorporates the scaling,

rM(k)
M

γM
M

�
∑N

i=M rM(k)
i∑N

i=M γM
i

=: aM
k . (A10)

Finally, we define the join candidate in the kth step in full
analogy to Eq. (A5) as

rM(k+1)
i =

{
aM

k γM
i for i ∈ {M, . . . , N},

rM(k)
i otherwise.

(A11)

The algorithm defined in this way follows precisely
the same logic as the one given in Ref. [19] and
thus it always terminates, in this in no more than

dM(p, q)−1={∑ j
i=1 γπ−1

p (i)}d
j=1 ∪ {∑ j

i=1 γπ−1
q (i)}d

j=1−1 steps.
As a final remark, one has to note that the family of tan-

gent vectors tM(n)(rM) should be indexed by n ∈ {1, . . . , d ′},
where the number d ′ of constant-slope fragments of the join,
even though bounded, dM(p, q) � d ′ � d , is a priori not well
defined due to many possible ways of disagreement between
the β orders of p and q. With these tools, we are ready
to present the technical lemma needed for constructing the
incomparable region for β > 0.

Lemma 21. M(q) ≡ qM belongs to the incomparable re-
gion of M(p) ≡ pM, qM �M pM, if and only if it belongs
to the future thermal cone of some vector tM tangent to pM,
qM � tM, with

tM ≡ tM(p; λ, n) = λtM(n)(p) + (1 − λ)tM(n+1)(p),

for some n ∈ {1, d − 1} and λ ∈ [0, 1].
Proof. The proof follows in complete analogy with the

standard majorization case as presented in the proof for
Lemma 20 by replacing the standard majorization � in every
statement with the majorization variant �M given for the em-
bedding space and employing the adjusted join construction,
summarized in Eqs. (A10) and (A11).

To go back from the embedded space 
M
d to the

formulation of Lemma 12 in the original space 
d we
combine two observations following from embedding and
projection operations. First, note that majorization in em-
bedded space implies majorization between projections, thus
tM �M q ⇒ Pπ(tM) �β Pπ(q) for every order π. Second,
observe that embedding preserves the majorization rela-
tions between the vectors, therefore q ∈ T∅(p) ⇔ M(q) ∈
T∅(M(p)). These two statements show that it is enough to
consider vectors t (n,π) = Pπ(tM(n) ) and convex combinations
of their future thermal cones, thus proving Lemma 12. �

APPENDIX B: CONSTRUCTION OF PROBABILISTIC
MAJORIZATION CONES

For the convenience of the reader, we restate the theorem
concerning probabilistic transformations: To have a direct
connection to majorization, we reformulate the above theorem
as follows:

∀1�k�d : P (p, q) �
∑d

j=k p↓
j∑d

j=k q↓
j

= 1 − ∑k−1
j=1 p↓

j

1 − ∑k−1
j=1 p↓

j

= 1 − Pk

1 − Qk
.

(B1)

064109-17



A. DE OLIVEIRA JUNIOR et al. PHYSICAL REVIEW E 106, 064109 (2022)

By setting P (p, q) = 1, we recover the standard majorization
condition on deterministic convertibility,

∀1�k�d : 1 �
∑d

j=k p↓
j∑d

j=k q↓
j

⇔ p ≺ q. (B2)

To determine the probabilistic past cone T−(p,P ) at probabil-
ity P , we consider

∀1�k�d : P � 1 − Qk

1 − Pk
⇒ P − PPk � 1 − Qk

⇒ Qk � PPk + (1 − P )

⇒ q ≺ p̃, (B3)

with an auxiliary distribution

p̃i =
{
P p↓

1 + (1 − P ) for i = 1,

P p↓
i otherwise,

(B4)

which is always a proper probability distribution ordered
nonincreasingly, p̃ = p̃↓, therefore providing a proper Lorenz
curve. Following a similar procedure for the future cone
T+(p,P ) leads to

P � 1 − Pk

1 − Qk
⇒ P−1 − P−1Pk � 1 − Qk

⇒ Qk � P−1Pk + (1 − P−1)

⇒ q � p̂, (B5)

with the second auxiliary distribution

p̂i =
{
P−1 p↓

1 + (1 − P−1) for i = 1,

P−1 p↓
i otherwise.

(B6)

In contrast to the case of the past cone, the distribution p̂ in this
formulation is not ordered nonincreasingly beyond a certain
value of P . At first glance, one might think that reordering
should solve the problem; however, it would be equivalent
to a decrease in the probabilistic future with decreasing P ,
which creates a contradiction. The solution is provided by
noting that Vidal’s criterion deals with rescaled entries of the
Lorenz curve rather than the probabilities per se. Therefore,
the Lorenz curve for p̂ should remain convex for all values
of P without the need for reordering. Consider the following
critical values of P , namely,

Pn = (n − 1)p↓
n −

n−1∑
i=1

p↓
i + 1, (B7)

for which the first n entries of the distribution p̂ will not
be ordered nonincreasingly, resulting in an improper Lorenz
curve. The resulting nonconvexity is controlled by replacing

{ p̂1, . . . , p̂n} → 1

n

n∑
i=1

p̂i{1, . . . 1}, (B8)

which ensures that p̂ = p̂↓. This way, the auxiliary ordered
distributions p̃ and p̂, together with the construction for the
deterministic majorization cones presented in Appendix A,
provide the full construction of the probabilistic cones, with
the additional cautionary note that the role of future and past

majorization cones is reversed when we consider entangle-
ment and coherence theories.

APPENDIX C: VOLUMES OF ENTANGLEMENT
MAJORIZATION CONES

Consider a uniform Haar distribution of pure states in a
composed space |ψ〉 ∈ HN ⊗ HM with N � M. The partial
tracing induces a measure in the space of reduced states,
ρ = Tr2 |ψ〉〈ψ |, characterized by the distribution of eigenval-
ues � = {λ1, . . . , λN } of the reduced state [52]:

PN,M (�) = CN,Mδ

(
1 −

∑
i

λi

)∏
i

λM−N
i θ (λi)

∏
i< j

(λi − λ j )
2,

(C1)
where δ and θ are the Dirac δ and Heavyside step functions,
respectively. The normalization constant is given by

CN,M = �(NM )∏N−1
j=0 �(M − j)�(N − j + 1)

, (C2)

where � is the Gamma function. Before we continue with our
discussion, let us first understand the role played by all factors
in Eq. (C1). As previously mentioned, CN,M is the normaliza-
tion. The δ function ensures that the spectrum sums to one
(is normalized), whereas the step function will guarantee that
it is positive. Now, notice that the first product (	 notation)
essentially does not influence the behavior of the distribution
for N = M and introduces the repelling of the faces of the
probability simplex otherwise, as it goes to zero whenever
λi = 0 for any i. The second product is responsible for the
repelling from distributions with any two entries equal, since
it goes to zero whenever λi = λ j for any i �= j. Sampling
from the PN,M distribution, ordinarily done by generating
state vectors |ψ〉 ∈ HNM which would be computationally
prohibitive for large M, can be achieved using only O(N )
random numbers for any dimension of the secondary system.
It has been demonstrated in Ref. [46] that the distribution
PN,M is precisely the Laguerre unitary ensemble generated by
Wishart matrices of size N and parameter M [57] and, in turn,
generated using a tridiagonal method containing only O(N )
random real numbers [58], which indeed allows one to study
the PN,M distributions for arbitrary high-dimensional ancillary
systems. The procedure for generating the isovolumetric lines
for the majorization cones with a given distribution, PN,M ,
proceeds as follows:

(1) Generate a sample of n sets of eigenvalues
{�1, . . . , �n} taken from the distribution PN,M using the
tridiagonal method.

(2) Consider regularly spaced grid of points S
in a single chamber of the full probability simplex

N (e.g., p1 � p2, . . . , pd ) to avoid repeated counting
(achieving N! decrease in operations)

(3) For each p ∈ S consider its majorization cones Ti(p)
and divide S into Si ≡ {�i ∈ Ti(p)}.

(4) This way we arrive at the approximations of the vol-
umes of the three regions,

Vi ≈ |Si|
n

,

where |X | denotes the number of elements in a set X .
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FIG. 16. Isovolumetric sets for entanglement 3 × M bipartite systems. The density P3,M (�) of Schmidt coefficients of pure states for
qutrit-quMit systems depends heavily on the dimension M of the second system. Panels (a–d) and (e–h) present the isovolumetric lines for
past, incomparable, and future regions and the density of the states for M = 6 and M = 30, respectively. Note that for larger M the density
P3,M is more and more concentrated around the regions close to the center [compare panels (d) and (h)]. This affects the subset of states with
large future volume, making it smaller [panels (c) and (g)] as well as the set of states with large past volume, enlarging it [panel (a) with panel
(e)].

We applied this method for N = 3 with M = 3, displayed
in the main text of Fig. 13, and additionally with M = 6 and
30, as shown in Fig. 16. These two cases show the significant
dependence of the isovolumetric lines on the size of the envi-
ronment.

APPENDIX D: COHERENT THERMAL CONES FOR A
TWO-LEVEL SYSTEM

This Appendix explains how to use the results of Refs. [53]
and [19] to construct the future and past thermal cones for a
two-level system under thermal and Gibbs-preserving opera-
tions.

a. Coherent thermal cones for thermal operations

Consider initial and target states of a two-level system, ρ

and σ , with both written in the energy eigenbasis as

ρ =
(

p c
c 1 − p

)
, σ =

(
q d
d 1 − q

)
, (D1)

where c and d are assumed to be real without loss of gen-
erality, which amounts to considering a cross-section of the
Bloch ball in the XZ plane. Moreover, the thermal ground
state occupation of the considered two-level system will be
denoted by γ . It has been shown that for thermal operations,
the coherences of the initial and target states have to satisfy
the following inequality [53],

d � c

√
[q(1 − γ ) − γ (1 − p)][p(1 − γ ) − γ (1 − q)]

|p − γ | . (D2)

Thus, we find the boundary of the future thermal cone by sat-
urating Eq. (D2), and solving it for q we obtain the achievable
ground state occupation as a function of target coherence d ,

q1(d ) = (γ − p)
√

c2(1 − 2γ )2 + 4γ d2(1 − γ )

2γ c(γ − 1)

+ (p − γ ) − 2γ p(1 − γ )

2γ c(γ − 1)
. (D3)

Therefore, the coherent future thermal cone is given by the
region delimited by Eq. (D3) from one side and a line segment
connecting (−c, p) and (c, p). To characterize the coherent
past thermal cone, it will be convenient to introduce a number
dcross � 0 defined by the relation d2

cross + q(dcross)2 = 1. The
coherent past thermal cone is generically composed of two
disjoint regions. The first region is contained between a line
segment connecting the points (c, p) and (dcross, p), the curve
q1(d ) for d ∈ [c, dcross] and the boundary of the Bloch ball,
together with its reflection with respect to the Z axis. The
second one is obtained in a similar manner by focusing on the
past state rather than the target, and thus by solving Eq. (D2)
with interchanges p ↔ q and c ↔ d . This results in

q2(d ) = 2γ c2 +
√

c2(p − γ )2[(1 − 2γ )2d2 − 4c2(γ − 1)γ ]

2[d2 + (γ − 1)γ c2]

+ d2[p − γ − 2γ p(1 − γ )]

2[d2 − (1 − γ )γ c2]
, (D4)
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with d ∈ [dmin, dmax], where dmin and dmax are real pos-
itive solutions of equation q(d )2 + d2 = 1, such that
dcross � dmin � dmax. However, for large values of coherence
c, we note that this second region may not appear at all.
Finally, the incomparable region T∅(ρ) is obtained by sub-
tracting the past and future cones from the entire Bloch ball.

b. Coherent thermal cones for Gibbs-preserving operations

Consider a parametrization of qubit states ρ in the Bloch
sphere representation,

ρ = 1 + rρ · σ

2
, (D5)

where σ = (σx, σy, σz ) denotes the vector of Pauli matrices.
The Bloch vectors of the starting state ρ, target state ρ ′ and
the Gibbs state γ are given by

rρ = (x, y, z), rρ ′ = (x′, y′, z′), rγ = (0, 0, ζ ), (D6)

where the z coordinate of the Gibbs state can be related to
the partition function Z by ζ = 2Z−1 − 1 � 0. According to
Ref. [19], there exists a GP quantum channel E such that
E (ρ) = ρ ′ if and only if R±(ρ) � R±(ρ ′) for both signs,
where R±(ρ) = δ(ρ) ± ζ z and

δ(ρ) :=
√

(z − ζ )2 + (x2 + y2)(1 − ζ 2). (D7)

Consequently, the future thermal cone T+(ρ) of any qubit state
ρ under GP operations can be directly constructed from the
above result. For a generic qubit state ρ, we first orient the
Bloch sphere so that its XZ plane coincides with the plane
containing ρ and a thermal state γ , i.e., rρ = (x, 0, z). Then,
define two disks, D1(ρ) and D2(ρ) with corresponding circles
C1(ρ) and C2(ρ), of radii

R1(ρ) = R−(ρ) + ζ 2

1 − ζ 2
, R2(ρ) = R+(ρ) − ζ 2

1 − ζ 2
, (D8)

centered at

z1(ρ) = {0, 0, ζ [1 + R1(ρ)]},
z2(ρ) = {0, 0, ζ [1 − R2(ρ)]}. (D9)

Therefore, the future thermal cone under GP quantum
channels is given by the intersection of two disks of
radii R1(ρ) and R2(ρ) centered at z1(ρ) and z2(ρ),
T+(ρ) = D1(ρ) ∩ D2(ρ). The incomparable region is given
by mixed conditions, i.e., ρ ′ ∈ T∅(ρ) if and only if
R±(ρ) � R±(ρ ′) and R∓(ρ) < R∓(ρ ′), or in terms of
the disks given beforehand, T∅(ρ) = D1(ρ) ∩ D2(ρ)\T+(ρ).
Finally, the past cone T−(ρ) can be easily given by subtracting
the future cone and the incomparable region from the entire
Bloch ball.
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