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Negative compressibility of a nonequilibrium nonideal Bose-Einstein condensate
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An ideal equilibrium Bose–Einstein condensate (BEC) is usually considered in the grand canonical (μV T )
ensemble, which implies the presence of the chemical equilibrium with the environment. However, in most
experimental scenarios, the total amount of particles in BEC is determined either by the initial conditions or
by the balance between dissipation and pumping. As a result, BEC may possess the thermal equilibrium but
almost never the chemical equilibrium. In addition, many experimentally achievable BECs are non-ideal due
to interaction between particles. In the recent work [Shiskov et al., Phys. Rev. Lett. 128, 065301 (2022)], it
has been shown that invariant subspaces in the system Hilbert space appear in non-equilibrium BEC in the
fast thermalization limit. In each of these subspaces, Gibbs distribution is established with a certain number
of particles that makes it possible to investigate properties of non-ideal non-equilibrium BEC independently in
each invariant subspace. In this work, we analyze the BEC stability due to change in dispersion curve caused
by non-linearity in BEC. Generally, non-linearity leads to the redshift or blueshift of the dispersion curve and
to the change in the effective mass of the particles. We show that the redshift of the dispersion curve can lead
to the negative compressibility of BEC and onset of instability, whereas the change in the effective mass always
makes BEC more stable. We find the explicit condition for the particle density in BEC, at which the negative
compressibility appears. We show that the appearance of BEC instability is followed by the formation of stable
and spatially inhomogeneous BEC.
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I. INTRODUCTION

The first Bose–Einstein condensates (BECs) were exper-
imentally demonstrated in 1995 [1,2], almost 70 years after
the theoretical prediction [3,4]. Nowadays, BECs have a wide
range of applications in low-energy optoelectronics [5–7],
including fast optical switching operating at quantum limit
[8], as well as driving chemical reactions [9]. Besides prac-
tical applications, recently, great interest has been attracted
to the fundamental problems concerning physical properties
of BECs. One such fundamental problem is the stability of
BEC. Several different mechanisms for instability formation
in BEC such as mechanical collapse [10–21], dynamical in-
stability [22–30], and modulational instability [31–46] have
been proposed and experimentally verified.

In many experimental implementations, BEC may be in
temperature equilibrium, but the chemical equilibrium is al-
most never established. For example, in BECs formed by
trapped atoms, the total number of particles is determined by
the initial conditions and does not change as the system moves
toward the thermal equilibrium [2,47,48]. In BECs based on
excitons and polaritons, there is not even thermal equilibrium
because the total number of particles is determined by the
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balance of the rates of external pumping and losses, as, for
example, in polariton BECs [6,49–62].

In most realizations, BEC is not only non-equilibrium but
also is non-ideal due to the presence of non-linear effects.
The nature of non-linearity can be different depending on
the implementation of the condensate. In inorganic semicon-
ductors, the non-linearity of polariton BECs is caused by
the Coulomb interaction between exciton components. This
interaction leads to the depletion of the condensate and the
appearance of a linear region in its dispersion curve. For po-
lariton BECs based on organic dyes [6,49–62], non-linearity
has a different nature since the spatial localization of Frenkel
excitons suppresses the Coulomb interaction between the ex-
citons. The non-linearity of such polaritons is associated with
the saturation of the exciton component, which leads to the
change in the permittivity [63,64]. In this case, non-linearity
does not lead to a significant distortion of the dispersion curve
of polaritons, i.e., no linear region in the vicinity of k = 0
appears [62,63,65–71]. Instead, the dispersion curve shifts
as a whole. Vibron-polaritons are other systems with similar
non-linear collective interaction between particles. BEC based
on vibron polaritons has not been reached experimentally
yet, and this problem is of interest to a large number of
researches at the present time. This interest is partially due
to possible application of BEC for polariton chemistry [9].
For vibron-polariton systems, the non-linearity is associated
with the anharmonicity of the vibrational subsystem. This
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anharmonicity in the overwhelming majority of cases leads
to the redshift of the natural frequency of the vibrons. Below,
we use the term “non-linearity” referring to the dependence of
the dispersion curve on the number of particles.

In this regard, the important problem of the influence of
non-ideal and non-equilibrium nature of BEC on such macro-
scopic characteristics as stability and compressibility arises.
The problem has so far remained difficult for investigation
because the consistent description of BEC in the grand canon-
ical ensemble (μV T ensemble) is impossible, since the latter
assumes both temperature and chemical equilibrium between
the condensate and the environment which may be absent
in many situations. For these reasons, the BEC description
requires the first principles methods such as the Gross–
Pitaevskii equation [72], the Lindblad equation [73–76], and
the Maxwell–Boltzmann equations [77–85]. However, it is
important to have the analytical expressions of the influ-
ence of non-linearity on the properties of a non-equilibrium
BEC.

Generally, the thermalization process by itself leaves the
total number of particles unchanged in non-equilibrium BECs
[74]. Thus, the total number of particles is the integral of
motion for this relaxation process. Due to the presence of
the integral of motion, the invariant subspaces appear in
the system Hilbert space [86]. These invariant subspaces are
characterized by a certain number of particles distributed in
the system as a whole [86,87]. In the fast thermalization
limit, a Gibbs distribution with an equilibrium temperature
is established in each invariant subspace regardless of other
relaxation processes [87,88]. The Gibbs distribution with the
fixed total number of particles corresponds to the canoni-
cal ensemble (NV T ensemble). Thus, in the case of fast
thermalization, the NV T ensemble plays a key role in the
dynamics of non-equilibrium BEC and can make it possible
to analyze BEC stability and obtain analytical estimates for
compressibility.

In this paper, we consider non-ideal two-dimensional (2D)
BEC in a canonical (NV T ) ensemble. We find the com-
pressibility of BEC and show that the compressibility of
an ideal BEC always remains positive and increases with
the number of particles in the condensate. For a non-ideal
BEC, when the non-linearity leads to a redshift, a nega-
tive compressibility of the condensate may occur. Negative
compressibility indicates the instability of a non-ideal ho-
mogeneous BEC, which is followed by the formation of
stable, but spatially inhomogeneous BEC. We also show that
the change in the effective mass always makes BEC more
stable.

II. BEC NON-LINEARITY AND CHANGE
IN THE DISPERSION CURVE

We consider a non-ideal 2D Bose gas localized in the
region V (V has the dimension of area) with the degeneracy
g of each state. Such a non-ideal Bose gas is described by the
Hamiltonian

Ĥ = Ĥ ideal + Ĥnon-ideal, (1)

where Ĥ ideal is the ideal part and Ĥnon-ideal is the non-ideal part
of the Hamiltonian.

FIG. 1. Change in the dispersion curve due to non-linearity. The
blue solid line denotes the original dispersion curve, the orange
dotted line shows the change in the dispersion curve due to (a) Ĥ shift

and (b) Ĥ stiffness. The change in the dispersion curve corresponds to
(a) �ωN > 0, δαN = 0 (κ1 > 0, κ2 = 0) and (b) �ωN = 0, δαN > 0
(κ1 = 0, κ2 > 0).

The ideal part of the Hamiltonian, Ĥ ideal, has the form

Ĥ ideal =
∑
k,λ

h̄ωkâ†
k,λ

âk,λ, (2)

where k is the wave vector of Bose gas particles, the frequency
ωk corresponds to this wave vector, ωk = ω0 + αk2, and λ

enumerates different states with the same wave vector.
Due to the non-linearity, an increase in the number of parti-

cles leads to a change in the dispersion curve. As noted in the
Introduction, in polariton systems based on organic dyes, the
non-linearity is associated with a change in the permittivity
[63,64]. In this case, changes in the dispersion curve near
k = 0 can be divided into two parts: change in the energy
of the ground state of polaritons (the energy of each state
of polaritons changes by the same value) and change in the
effective mass of polaritons (Fig. 1). The main contribution to
the change of the dispersion curve is proportional to the total
number of the polaritons [63]. We describe this change in the
dispersion curve phenomenologically through the non-linear
part of the Hamiltonian (1) in the following form:

Ĥnon-ideal = Ĥ shift + Ĥ stiffness (3)

with

Ĥ shift = h̄κ1

2V
N̂ (N̂ − 1), (4)

Ĥ stiffness = h̄κ2

V
(N̂ − 1)

∑
k,λ

αk2â†
k,λâk,λ, (5)

where N̂ is the operator of the total number of particles dis-
tributed in the system as a whole, κ1 and κ2 characterize the
non-linearity of the Bose gas. We assume that κ1 and κ2 do
not depend on V .

The Hamiltonians Ĥ shift and Ĥ stiffness lead to the shift in the
energy of the ground state of the system and to the change in
the effective mass of particles, as shown in Fig. 1. Indeed, the
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Heisenberg equation for âk,λ has the form

dâk,λ

dt
= −i

[(
ω0 + κ1N̂

V

)
+

(
1 + κ2N̂

V

)
αk2

]
âk,λ

− i
κ2

V

∑
q,λ′

αq2â†
q,λ′ âq,λ′ âk,λ. (6)

For a fixed number of particles N , the non-linearity Ĥ shift leads
to a shift of the entire dispersion curve by the frequency

�ωN = κ1N

V
. (7)

This shift is proportional to the particle density, which
is typical for BEC implementations based on polaritons
[62,63,65–71]. For sufficiently large k in BEC, the term∑

q,λ′ q2〈â†
q,λ′ âq,λ′ 〉 is much less compared to 〈N̂〉k2. In this

case, the non-linearity of Ĥ stiffness leads to a relative change in
the effective mass

δαN = κ2N

V
. (8)

III. THE ROLE OF NVT ENSEMBLE IN EQUILIBRIUM
AND NON-EQUILIBRIUM BEC

Below, we analyze the stability of BEC and the Bose gas
before condensation employing formalism of NV T ensem-
ble. NV T ensemble directly corresponds the case, where the
condensate does not exchange the particles with the environ-
ment. As it was discussed in the Introduction, this situation is
mostly realized in experiments with trapped atoms [2,47,48].
However, NV T ensemble may play an important role in the
evolution of the non-equilibrium BEC [88,89], when the con-
densate dissipates, but remains sustained due to an external
pumping. The analysis with NV T ensemble is relevant to the
non-equilibrium BEC, when the effective thermalization rate
of BEC overcomes its dissipation rate [87–89]. This situation
can be realized in experiments with polaritons [57,90,91].

The evolution of non-equilibrium BECs in the presence
of dissipation, pumping, and thermalization processes can be
described through the Lindblad master equation [73,87–89]

∂ρ̂(t )

∂t
= i

h̄
[ρ̂(t ), ĤLP] + Ldiss(ρ̂(t ))

+ Lpump(ρ̂(t )) + Ltherm(ρ̂(t )), (9)

where ρ̂(t ) is the density matrix of the BEC, Lpump, Ldiss, Ldiss

are the Lindblad superoperators that describe pumping of the
BEC, the dissipation of BEC, and thermalization of the BEC,
respectively. This equation reliably takes into account the
open nature of the condensates, including the thermalization
processes. Generally, this equation is difficult to solve due to
the great amount of degrees of freedom of the condensate. One
way to overcome this difficulty is to use one of the mean-field
approaches, i.e., Maxwell–Boltzmann equations [77–85]. Ex-
act way to solve the Lindblad equation (9) has been developed
in [87,88]. There, it has been shown that, in the fast thermal-
ization limit, the complexity of the Lindblad equations can be
substantially reduced due to the presence of the integral of
motion in the thermalization process. The general form of the
solution of the Lindblad equation (9) in the fast thermalization

limit is

ρ̂(t ) =
+∞∑
N=0

PN (t )ρ̂N , (10)

where the summation goes over the total number of polaritons
and ρ̂N is the thermalized density matrix of the states with ex-
actly N polaritons, which forms an invariant subspace [87,88].
Therefore, the dynamics of non-equilibrium BEC in this case
is determined by the corresponding thermodynamical NV T
ensemble [87,88]. Thus, the analysis of BEC stability in an
NV T ensemble is relevant not only for equilibrium BEC, but
also for non-equilibrium BEC with the fast thermalization.

IV. PARTITION FUNCTION OF NON-IDEAL BEC

For definiteness, below we consider the degeneracy g = 1
and g = 2. The latter situation is typical for BECs based on
polaritons, which have two polarizations and, accordingly,
each state with a certain wave vector k has degeneracy 2. The
density of states, ν, is

ν = gV

4π h̄α
, [ν] = eV−1. (11)

We assume that νkBT � 1, that is the number of states in the
energy interval (h̄ωk=0, h̄ωk=0 + kBT ) is much greater than
one.

The partition function, Z ideal
N , of an ideal Bose gas in the

NV T ensemble is

Z ideal
N (T ) =

∑′
e− ∑

k,λ nk,λ h̄(ωk−ω0 )/kBT , (12)

where T is the temperature of the Bose gas, kB is the Boltz-
mann constant, nk,λ is the number of particles in the state
with wave vector k and polarization λ, and

∑′ is the sum
over all possible configurations of particles, provided that total
number of particles distributed in the system as a whole equals
N . The partition function obeys the recursive relation [88,92–
97]

Z ideal
N (T ) =

N−1∑
n=0

Z ideal
n (T )

(
g

N
+ νkBT

N (N − n)

)
, (13)

where Z ideal
0 (T ) = 1.

Depending on the relation between νkBT and N , two re-
gions can be separated in the {N,V, T } plane: Bose gas is far
from the condensation state (N � νkBT ), the Bose gas is in
the BEC state (N � νkBT ) [88]. From Eq. (13) it follows that

Z ideal
N (T ) ≈ (νkBT )N

N!
(14)

before BEC formation (N � νkBT ) and

Z ideal
N (T ) ≈

(
1 − νkBT

N

)
eπ2νkBT/6, for g = 1, (15)

Z ideal
N (T ) ≈ (N − νkBT ln N )eπ2νkBT/6, for g = 2 (16)

after BEC formation (N � νkBT ) [88].
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The partition function in the NV T ensemble of the non-
ideal BEC with the non-linearity (3) is

ZN (T ) =
∑′

e− ∑
k,λ nk,λ h̄(ωk−ω0 )/kBT

× e−h̄�ωN (N−1)/2kBT e−δαN (N−1)
∑

k,λ nk,λ h̄(ωk−ω0 )/NkBT .

(17)

Comparing the expressions (12) and (17) we obtain (see
Appendix)

ZN (T ) = Z ideal
N (T ∗)e−h̄�ωN (N−1)/2kBT , (18)

where T ∗ = T/(1 + δαN (N − 1)/N ). Note that since δαN de-
pends on V [Eq. (8)], therefore, T ∗ also depends on V .

The explicit expressions for the partition functions (14)–
(16) and (18) enable us to find the compressibility of the non-
ideal BEC and investigate its stability.

V. COMPRESSIBILITY OF A NON-IDEAL BEC

The compressibility, βT , can be found according to
βT = −(V kBT ∂2 ln ZN/∂V 2)−1 [98]. From Eq. (18) it
follows that ∂2 ln ZN (T )/∂V 2 = ∂2 ln Z ideal

N (T ∗)/∂V 2 −
(N/V 2)(h̄�ωN/kBT ), where T ∗ depends on V . Therefore,
the compressibility of the non-ideal Bose gas before
the condensate formation [N � νkBT/(1 + δαN )] is [see
Eq. (14)]

βT ≈ V

NkBT

(
2 − 1

(1 + δαN )2
+ h̄�ωN

kBT

)−1

. (19)

After the formation of BEC (N � νkBT/(1 + δαN )), the com-
pressibility becomes [see Eqs. (15)–(16)]

βT ≈ V

kBT

[(
νkBT

N

)2 (1 + 2δαN )2

(1 + δαN )4
+ h̄�ωN

kBT
N+

+
(

2 + π2

6

)
νkBT

N

δα2
N

(1 + δαN )3

]−1

, for g = 1, (20)

βT ≈ V

kBT

[(
νkBT ln N

N

)2 (1 + 2δαN )2

(1 + δαN )4
+ h̄�ωN

kBT
N+

+
(

2 + π2

6

)
νkBT ln N

N

δα2
N

(1 + δαN )3

]−1

, for g = 2.

(21)

For the ideal BEC, when �ωN = 0 and δαN = 0, the com-
pressibility is always positive, and, hence, the ideal BEC is
stable. However, when ideal BEC is formed, βT ∝ N2. There-
fore, as the the total number of particles grows, the volume
occupied by the BEC becomes more sensitive to the changes
in pressure. This situation is exactly opposed to the behavior
of an ideal Bose gas before the BEC formation. In the latter
case, βT ∝ N−1 and an increase in the number of particles
leads to a decrease in the compressibility. Thus, above the con-
densation threshold, as the total number of particles increases,
the volume fluctuations strongly increase, and BEC becomes
less stable. Indeed, the square of the thermal fluctuations of
the volume, (�V )2, is proportional to the compressibility of
βT , so (�V )2 = V kBT βT [98].

FIG. 2. Polariton stability diagram below (a) and above (b) the
BEC formation (g = 1). Unstable regions are shaded with gray and
correspond to the negative isothermal compressibility. (b) corre-
sponds to N = 103νkBT .

Let us consider the case when the non-linearity does not
lead to a change of the effective mass (δαN = 0). In this case,
the compressibility is always positive at blueshift (�ωN > 0).
However, in the case of redshift (�ωN < 0), non-linearity can
lead to the negative compressibility and instability (Fig. 2).
In this case, there is a certain critical number of particles, at
which the instability emerges. We denote this critical number
of particles for a Bose gas below the condensation threshold
as NBose

c and above the condensation threshold as NBEC
c . From

Eqs. (19)–(21) it follows that

NBose
c = V kBT

h̄|κ1| ⇐⇒ h̄�ωNBose
c

= −kBT, (22)

NBEC
c = (

NBose
c

)1/4
(νkBT )1/2, for g = 1, (23)

NBEC
c√

ln NBEC
c

= (
NBose

c

)1/4
(νkBT )1/2, for g = 2. (24)

Thus, instability can appear both in non-ideal BEC and
non-condensed Bose gas. In a non-condensed Bose gas, in-
stability occurs when the frequency redshift reaches kBT/h̄
[see Eqs. (22) and (7)]. In BEC, instability arises at a much
smaller number of particles. Indeed, from the expressions
(23)–(24) it follows that NBEC

c � NBose
c for νkBT � NBose

c .
Moreover, NBEC

c ∝ V 3/4, therefore, the critical concentration
of particles, N/V , at which instability occurs in BEC falls
as V −1/4, whereas, in a non-condensed Bose gas, the critical
concentration does not depend on V .

The analysis presented above shows that the homogeneous
BEC becomes unstable if N > NBEC

c . In this case, the in-
homogeneous BEC can be stable. To show this, we denote
the concentration of the particles in BEC as n(N,V ) = N/V
and the corresponding critical concentration as nBEC

c (V ) =
NBEC

c /V . Suppose that the unstable homogeneous BEC
[n(N,V ) > nBEC

c (V )] splits into M equal parts. The con-
centration of the particles in each part remains the same
because n(N,V ) = n(N/M,V/M ), but the critical concentra-
tion in each part increases as nBEC

c (V/M ) = 4
√

M × nBEC
c (V ).

For large enough M the inhomogeneous BEC may become
stable because the critical concentration can rise above the
concentration of BEC.

A change in the effective mass of the particles has a dif-
ferent effect on the stability of the system before and after
BEC formation. Before the BEC formation, the change in the
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dispersion curve strongly affects the stability of the system:
if the non-linearity leads to an increase in the effective mass
(δαN > 0), then a larger redshift �ωN is required to reach the
instability, but, in the opposite case (δαN < 0), the stability
region with respect to �ωN narrows [Fig. 2(a)]. This behavior
is expected. Indeed, with the increase in the effective mass, the
additional pressure due to non-linearity is positive, thus, the
system becomes more stable. However, if the effective mass
decreases with the increase of the number of particles, then the
corresponding additional pressure is negative, thus, the system
becomes more unstable.

The change in the effective mass has a less significant
effect on the BEC stability [Fig. 2(b)]. This is because the
change in the shape of the dispersion curve leads to two
opposite effects, that almost compensate each other. For in-
stance, let us consider δαN > 0. On the one hand, at δαN > 0,
the effective mass increases, which leads to the increase in
pressure. On the other hand, ν decreases, therefore, the frac-
tion of particles in the ground state rises, that reduces the
pressure. A more detailed analysis of Eqs. (20)–(21) shows
that, regardless of the sign of δαN , the final additional pressure
is always positive in BEC.

VI. CONCLUSION

We considered a non-ideal two-dimensional Bose–Einstein
condensate (BEC) in a canonical ensemble, when the non-
linearity leads to a change in the dispersion curve, namely,
an increase in the effective mass and a shift of the dispersion
curve. We obtained the explicit expression for the partition
function of the two-dimensional non-ideal BEC, which made
it possible to study compressibility. We demonstrated that
a change in the effective mass due to the non-linearity has
little effect on stability of BEC. We also showed that when
non-linear interactions in BEC result in a blueshift of the
dispersion curve, the compressibility always remains positive.
However, in the case of redshift, the BEC compressibility
becomes negative at a sufficiently high particle concentration.
In this case the homogeneous BEC becomes unstable, whereas
the inhomogeneous BEC can be stable. Thus, the BEC can
become unstable at redshift because negative compressibility
leads to pressure fluctuations arising in different parts of the
BEC are not compensated by the surrounding condensate, but,

on the contrary, begin to grow with time. One can suppose that
this may lead to a non-uniform distribution of BEC particles.

The instability of Bose gas at redshift occurs both in the
BEC and in the Bose gas prior to condensation. In the lat-
ter case, the instability occurs when the frequency redshift
exceeds kBT/h̄. However, the BEC formation significantly
reduces the concentration of particles required for the onset
of the instability. Moreover, the critical concentration of the
particles before the formation of a BEC does not depend on
the occupied region, but after the formation of a BEC, the
critical concentration of particles decreases with an increase
in the size of the condensate.

In this paper, we considered Bose gas in a 2D case, how-
ever, this theory can be straightforwardly extended to the
three-dimensional (3D) case. Indeed, one can see that the
relation between the partition functions for ideal and non-ideal
Bose gases [Eq. (18)] do not depend on the dimension and
there are effective methods to calculate the partition function
for the ideal Bose gas [88,99,100]. Further investigation of 3D
case we leave for future works.
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APPENDIX: DERIVATION OF EQ. (18)

In expression (17) we combine the first and the third expo-
nents and obtain

ZN (T ) =
∑′

e− ∑
k,λ nk,λ h̄(ωk−ω0 )(1+δαN (N−1)/2)/kBT

× e−h̄�ωN (N−1)/2kBT . (A1)

Since the sum
∑′ runs only over the states with

∑
k,λ nk,λ =

N , we can treat N as the constant in the right-hand side of
Eq. (A1). We introduce T ∗ = T/(1 + δαN (N − 1)/N ),

ZN (T ) = e−h̄�ωN (N−1)/2kBT
∑′

e− ∑
k,λ nk,λ h̄(ωk−ω0 )/kBT ∗

. (A2)

We use the definition of the Z ideal
N (T ) [Eq. (12)] and obtain

Eq. (18).
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