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In the one-dimensional low-density Jaynes-Cummings Hubbard (JCH) model, we find that when the hopping
strength is much smaller than the coupling strength, the average restricted energy gap ratio exhibits an abnormal
statistical behavior that is neither a Poisson nor a Gaussian orthogonal ensemble. But the average half-chain
entanglement entropy exhibits ergodicity, and the eigenstate thermalization hypothesis (ETH) is valid for the
observable. These results are quite different from those of the standard JCH model. In addition, when the hopping
and the coupling strengths are of the same order, quantum chaos still appears in the low-density JCH model,
which is in contrast to the integrability of the one-dimensional hard-core bosons. Finally, the dipole-dipole
interaction breaks the particle-hole symmetry and leads the abnormal statistical properties to be closer to
those of the integrable system at the weak hopping strength limit, but the quantum chaos properties cannot
be affected when the hopping strength is of the same order as the coupling strength. Our results demonstrate the
counterintuitive behavior in the low-density JCH model and explain the physics behind them from the perspective
of the energy spectrum.

DOI: 10.1103/PhysRevE.106.064107

I. INTRODUCTION

The important step in the understanding of quantum
chaotic systems and integrable systems comes from the anal-
ysis of the distribution of the spacings between neighboring
energy levels [1–4]. The quantum levels of integrable systems
are not correlated and levels may cross, so the distribution is
Poissonian [5–7] and the average of the restricted gap ratio is
r̃poisson ≈ 0.3863 [8–10]. In quantum chaotic systems, cross-
ings are avoided and the level spacing distribution is given by
the Wigner-Dyson distribution [5,6,11,12], and the restricted
gap ratios agree with predictions of the Gaussian orthogonal
ensemble, r̃GOE ≈ 0.5307 [8,10,13].

Most quantum chaotic systems have been shown to be
thermalized [14–18], and the necessary condition for ther-
malization is the eigenstate thermalization hypothesis (ETH)
[19–21], which is numerically shown to be valid in quantum
many-body systems [21–23]. For an observable, the matrix
elements can be described by the ETH in the eigenstate of
the general quantum Hamiltonian [24,25]. When the valid-
ity of the ETH is established, the diagonal matrix elements
of the observables are smooth functions of energy. In other
words, the eigenstate-to-eigenstate fluctuations decrease ex-
ponentially fast with increasing system size [22,23,26–29]. In
addition, the off-diagonal matrix elements are exponentially
small in the system size [14,26,30–32].

We discuss the above concerns in the standard JCH model
[33–35] and have obtained some important conclusions. For
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the periodic boundary condition, the energy spectrum is mas-
sively degenerate in the JCH model with weak hopping
strength. After removing the degenerate levels, the energy
spectrum obeys the Poisson distribution, which proves that
the system is nearly integrable, and the finite-size scalings
of the diagonal and the off-diagonal matrix elements show that
the ETH is invalid [36]. For the open boundary condition, we
find that in the JCH model with the weak hopping strength,
the energy spectrum meets the standard Poisson distribution
and the average of the restricted gap ratio is close to 0.3863,
which presents that the JCH model is not a quantum chaotic
system and the ETH is invalid [37].

The coupling between the atom and the photon produces
a photon blocking effect [33,38], where the presence of
a single photon in a driven cavity prevents more photons
from entering, which provides a reasonable approximation for
the existence of a low-density JCH model. Second, the JC
(Jaynes-Cummings) model can be solved analytically. When
the weak hopping strength is introduced, the standard JCH
model formed by coupling multiple JC models is a nearly
integrable system [36], and the one-dimensional hard-core
bosons are integrable [17,39,40], so we guess that the low-
density JCH model is also integrable. To test this conjecture,
we discuss whether the statistics of the energy spectrum and
thermalization properties conform to the indicators of an inte-
grable system in the low-density JCH model. In addition, we
can calculate larger system sizes by the exact diagonalization
in the low-density JCH model, which is helpful for us to
observe finite-size scalings of the matrix elements.

The study of the low-density JCH model is only limited
to the quantum phase transition. Supersolids are found in
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the triangular lattice [41,42], and that model focuses on the
single excitation rather than a single photon in each lattice
site. In this paper we are concerned about the similarities and
differences of the thermal properties in the low-density JCH
model and the standard JCH model. In addition, since the
dipole-dipole interaction between atoms can lead to the emer-
gence of supersolids in the JCH model, we want to explore
what interesting thermalization properties it will lead to in the
low-density JCH model.

We first calculate the statistic of neighboring energy level
spacings described by the averages of restricted gap ratios
r̃av , which exhibits an intermediate value between the Poisson
and Gaussian orthogonal ensemble with the weak hopping
limit J/g = 0.01, 0.001, and agrees with predictions of the
Gaussian orthogonal ensemble in the case of J/g = 1 in the
low-density JCH model. But in the low-density extended
Jaynes-Cummings Hubbard (EJCH) model with weak hop-
ping limit, r̃av is smaller than the intermediate value and has a
strong dependence on system size. Through the half-chain en-
tanglement entropy and its average, we find that the maximum
value touches the Page value, and the slope is close to the Page
value at J/g = 0.01, 0.001 in the low-density JCH model, but
the results converge in the low-density EJCH model. Finally,
we discuss matrix elements of observables and verify that
the Hamiltonian eigenstates in the bulk of the spectrum obey
ETH in the low-density JCH model with different parameters
J/g = 0.01, 0.001, 1, but the ETH is invalid in the low-density
EJCH model with parameters J/g = 0.01, 0.001.

The paper is organized as follows. We introduce the sym-
metry of the low-density JCH model and EJCH model in
Sec. II. We study the average restricted energy gap ratio and
the half-chain entanglement entropy in Sec. III. In Sec. IV
we analyze thermalization properties and explore the relation
between the symmetry and the distribution of matrix elements
with a weak hopping strength limit. We verify the validity of
the ETH when the hopping strength is of the same order of
the coupling strength in Sec. V. We draw our conclusions in
Sec. VI.

II. MODEL AND SYMMETRY

The Hamiltonian of a one-dimensional low-density JCH
model is (h̄ = 1)

Ĥ (t ) =
M∑
j

[ωcâ†
j â j − J (â†

j â j+1 + â†
j+1â j ) + ε0σ̂

+
j σ̂−

j

+ g(â j σ̂
+
j + â†

j σ̂
−
j )], (1)

where the first and third terms describe the free energies
of photons and atoms on every site, â†

j (â j ) is the creation
(annihilation) operator of the photon, while σ̂+

j = |e〉〈g| and
σ̂−

j = |g〉〈e| are the spin-flip operators for atoms on site j. The
parameters ωc and ε0 are the frequency of the cavity field and
the transition frequency of the atom, respectively. The second
term is the nearest-neighbor hopping of the photons, and the
hopping strength is denoted by J . The last term is the coupling
between photons and atoms in the same site with strength
g. We define the total excitation number operator involved
photons and atoms as N̂ = ∑M

j=1 N̂j = ∑M
j=1(â†

j â j + σ̂+
j σ̂−

j ),

and the total number of excitations 〈N̂〉 is conservative, which
equals the number of lattice sites M. Importantly, we mainly
focus on the case that the JCH model is excited at low density
ρ ≡ 〈N̂〉/M = 1, where the maximum of photons is taken one
in each cavity, so (â†

j )
2 = (â j )2 = 0.

In the resonant case (ωc = ε0), using the operator Û =
exp{−i

∑M
j=1(ωcâ†

j â j + εσ̂+
j σ̂−

j )}t , the Hamiltonian can be
changed as follows in the rotating frame [37]:

ĤJCH = g
M∑
j

(â j σ̂
+
j + â†

j σ̂
−
j ) − J

M∑
j

(â†
j â j+1 + â†

j+1â j ).

(2)
For the standard JCH model, the Hamiltonian has reflec-
tion symmetry and chiral symmetry. The reflection symmetry
makes extra degenerates in the energy spectrum, so it is nec-
essary to calculate the statistics of the energy spectrum in the
subspace of reflection symmetry. The chiral symmetry leads
the energy spectrum to be symmetric around E = 0, and the
diagonal elements also exhibit symmetry with the eigenvalue
[37]. However, in the low-density JCH model, the system
also has particle-hole symmetry, which not only leads to level
crossings but also affects the distribution of the diagonal
and off-diagonal elements for specific observables. After the
particle-hole transformation Ĉ = ∏M

j (â†
j + â j )σ̂ x

j κ̂ , the cavity
field operator â and the two-level atomic operator σ̂+ become
â† and σ̂−, respectively. κ̂ is a complex conjugate operator to
ensure that the particle-hole operator is antilinear [43]. For
example, the particle-hole operator should satisfy ĈiĈ−1 =
−i, and the particle-hole symmetry of the Hamiltonian Ĥ is
verified by ĈĤ Ĉ−1 = ∏M

j (â†
j + â j )σ̂ x

j Ĥ∗ ∏M
j σ̂ x

j (â†
j + â j ) =

Ĥ . In addition, the photon operators satisfy an anticom-
mutation relationship {âi, â†

i } = 1 instead of a commutation
relationship [âi, â†

i ] = 1 in the same site. At different sites,
the photons obey [âi, â†

j ] = [âi, â j] = [â†
i , â†

j ] = 0. This is an
interesting system, and as we will see later, this anticommuta-
tion relationship has a pronounced impact on the distribution
of the different observables.

In the low-density JCH model we introduce the dipole-
dipole interaction between atoms and discuss the symmetry
and thermalization properties. The Hamiltonian of the ex-
tended low-density JCH model is defined as

ĤEJCH = ĤJCH + V
M∑
j

n̂σ
j n̂σ

j+1, (3)

where n̂σ
j = σ+

j σ−
j is the number of excitations of the atomic

levels at lattice site j, and V denotes the dipole-dipole interac-
tion strength, which breaks the particle-hole symmetry. After
the particle-hole transformation, the dipole-dipole interaction
term becomes V

∑M
j (n̂σ

j − σ̂ z
j )(n̂σ

j+1 − σ̂ z
j+1), which breaks

the invariance of the Hamiltonian.
Once the open boundary condition is applied, the Hamil-

tonians ĤJCH and ĤEJCH commute with the total excitation
number N̂ , i.e., [ĤJCH, N̂] = [ĤEJCH, N̂] = 0, so they are
U(1) symmetric. But we focus on reflection symmetry and
particle-hole symmetry, because the distribution of the en-
ergy spectrum depends on their properties. Using the exact
diagonalization, the largest lattice site is M = N = 9, whose
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Hamiltonian matrix has dimension D = ∑N
s=0( N!

s!(N−s)! )2 =
48 620, and the dimension of the subspace with symmetries
is Dodd ≈ D/4.

III. SPECTRAL STATISTICS AND HALF-CHAIN
ENTANGLEMENT ENTROPY

In Eq. (2) it can be seen that when the coupling strength
g = 0, only the hopping term of the photon remains in the
Hamiltonian, which is similar to hard-core bosons on a one-
dimensional lattice. When the hopping strength J = 0, the
Hamiltonian reduces to the JC model, which is solvable. But
here we focus on the systems where the coupling strength and
the hopping strength are not equal to zero. In the following
discussion, reduced hopping strength and the reduced dipole-
dipole interaction strength are obtained by dividing by the
coupling strength.

The average of the statistics of the restricted gap ratio is an
important indicator to characterize the integrability and chaos.
The restricted gap ratio is defined as [8]

r̃α = min{Eα+1 − Eα, Eα − Eα−1}
max{Eα+1 − Eα, Eα − Eα−1} , (4)

where Eα is the eigenvalue ordered in increasing values of
energy. We study the average of r̃α over the range of η r̃av =
〈r̃〉η. η satisfies the inequalities as follows:

Eav − Eα

Eav − Emin
< η if Eα < Eav (5)

and

Eα − Eav

Emax − Eav

< η if Eα > Eav, (6)

where Eav = 〈Ĥ〉 = D−1Tr{Ĥ} is the average energy of the
system. We have proved that different values of η have little
effect on the spread of the eigenstate-to-eigenstate fluctuations
of the observable with increasing system size [37], so we
choose η = 1/3. In Figs. 1(a) and 1(b), we show the average
restricted energy gap ratio r̃av in Eqs. (2) and (3) as a function
of the reduced hopping strength J/g. Here we discuss two
cases by tuning the parameters of the Hamiltonian. First,
when the hopping strength is much smaller than the coupling
strength (J/g � 1), the average restricted energy gap ratio
converges to r̃av ≈ 0.42 in the low-density JCH system from
Fig. 1(a). This shows that this abnormal statistical behavior
is neither a Poisson nor the Gaussian orthogonal ensemble
but an intermediate distribution independent of the finite-size
effects. From Fig. 1(b) it can be seen that r̃av is lower than 0.42
for different system sizes, which means that the dipole-dipole
interaction leads the intermediate distribution to be close to
the Poisson distribution. In addition, the average restricted
energy gap ratio increases with increasing system size, which
has a strong dependence on the system size. Second, when the
hopping strength and the coupling strength are of the same
order, r̃av is distributed near 0.5307 and the system shows
stable chaotic behavior, which is less dependent on the system
size. In addition, when the dipole-dipole interaction is consid-
ered, the parameter range where quantum chaos emerges is
enlarged, which is more pronounced at small system sizes.

FIG. 1. The average restricted energy gap ratio r̃av as a function
of the reduced hopping strength J/g in different system sizes. The
dashed line represents r̃GOE ≈ 0.5307. The low-density JCH system
is shown on the top, and the low-density EJCH system with a re-
duced interaction strength between atoms V/g = 0.5 is shown on the
bottom.

In ergodic systems, the eigenstate thermalization hypothe-
sis is proved to be valid, which is the mechanism of system
thermalization [14,44], where the eigenstates of the Hamilto-
nian are fully random strongly entangled states (Page value)
[45]. Therefore the average half-chain entanglement entropy
has a volume law and exhibits the characteristics of rapidly
reaching saturation in time [46–48]. Conversely, in a non-
ergodic system, the eigenstates are weakly entangled states,
and the average half-chain entanglement entropy obeys an
area law with the system size, which exhibits a log(t ) scaling
behavior in time [46,49–53].

Next, we discuss the entanglement entropy of the sys-
tem. The eigenvalue of the Hamiltonian is defined as Eα ,
and its corresponding eigenstate is |α〉. It is convenient
to compare the behavior of different system sizes us-
ing reduced eigenvalues εα = [Eα − min(Eα )]/[max(Eα ) −
min(Eα )]. Consider an important quantity with basis vectors
independent, the half-chain entanglement entropy, which is
defined in the following way. First, dividing the system into
two subsystems A and B, when the number of lattice sites
is even, the length of both the chains A and B takes M/2.
When the number of lattice sites is odd, one takes M/2 − 1
and the other takes M/2 + 1. So the total Hilbert space is
the tensor product D(M ) = DA

⊗
DB, and DA and DB are the

dimensions of the Hilbert space of the subsystems A and B.
Then the reduced density matrix for A is ρ̂α

A = TrB[|α〉〈α|],
where TrB is the partial trace over DB. Thus the half-chain
entanglement entropy is defined to be

Ŝα
M/2 = −TrA

[
ρ̂α

A lnρ̂α
A

]
. (7)
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FIG. 2. (a)–(d) Change of the entanglement entropy between A
and B with the reduced eigenvalue εα . The top of each figure shows
different hopping strengths J/g and dipole-dipole interaction V/g.
The horizontal lines are the Page value for different system sizes
M. (e) Average of the entanglement entropy as a function of system
size M.

For fully random states or the ergodic states, the mean von
Neumann entanglement entropy is given by the Page value
[45,54],

SPage(A) = lnDA − DA

2DB
, (8)

where the horizontal line represents the random vector av-
erage. We discuss the half-chain entanglement entropy Ŝα

M/2
and the corresponding Page value as a function of the re-
duced eigenvalue in three cases of the parameter J/g =
0.001, 0.01, 1. It can be seen from Fig. 2(a) that Ŝα

M/2 has an
obvious structure, which is discontinuous with the change of
reduced eigenvalues, but its maximum value is very close to
the Page value. When the dipole-dipole interaction is consid-
ered, Ŝα

M/2 cannot touch the Page value for all system sizes
in Fig. 2(b), which means that the low-density EJCH system
does not conform to the properties of quantum chaos at J/g =
0.001. These results are similar to the case where the hopping

FIG. 3. The diagonal elements of observables 〈α|n̂M/2|α〉 and
〈α|T̂ |α〉 as a function of the reduced eigenvalues for different sys-
tem sizes. The reduced hopping strength of photons is J/g = 0.001,
and the reduced interaction strength is V/g = 0.5 in the low-density
EJCH system. The graphical results are similar to the reduced hop-
ping strength J/g = 0.01, and other parameters are invariant.

strength is J/g = 0.01. When the hopping strength becomes
of the same order of the coupling strength, Figs. 2(c) and
2(d) show that the dipole-dipole interaction has little effect on
Ŝα

M/2. In addition, compared with the weak hopping limit, Ŝα
M/2

changes continuously as a function of the reduced eigenvalue,
and its maximum value completely coincides with the Page
value, marking the setting-on of quantum chaos. We further
study the average over the eigenstates of the entanglement
entropy, and the scales with the system size M are shown in
Fig. 2(e). At different values of J/g and V/g, the slope is dif-
ferent. In the ergodic cases (J/g = 0.001, J/g = 0.01, J/g =
1 and J/g = 1,V/g = 0.5), the slopes are very close to that
of the fully random Page value. When the ergodicity is bro-
ken (J/g = 0.01,V/g = 0.5 and J/g = 0.001,V/g = 0.5), the
slope is smaller than the Page value.

IV. THERMALIZATION PROPERTIES AT THE WEAK
HOPPING LIMIT

In order to gain further insight into whether the low-density
JCH system is close to integrability and chaos and the effect
of the dipole-dipole interaction on the system at the weak
hopping limit, we discuss the distribution of diagonal and
off-diagonal matrix elements of the observables as a function
of the system sizes to test the validity of the ETH in the
low-density JCH and EJCH systems.

A. Diagonal matrix elements of observables

In the weak hopping limit, Figs. 3(a) and 3(c) show the
diagonal elements of the occupation operator of photons in
central site n̂M/2 and the kinetic energy operator of photons
T̂ = 1

M

∑M
j (â†

j â j+1 + â†
j+1â j ) in the low-density JCH system,
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and different colors represent different system sizes. It can
be seen from Fig. 3(a) that the diagonal matrix elements of
n̂M/2 are equal to 0.5, and this behavior is independent of
the system size. In addition, there is no fluctuation of the
diagonal matrix elements, which is completely inconsistent
with the distribution behavior of the standard JCH system
[37]. Further, we find that the particle-hole symmetry in the
low-density JCH model leads to the absence of fluctuations.
When the system has particle-hole symmetry, the cavity field
operator â becomes â+, and then the average value of the
occupation operator of photons 〈â+â〉 = 〈ââ+〉 = 1 − 〈â+â〉,
thus 〈â+â〉 = 0.5. However, in Fig. 3(c) the diagonal elements
of the kinetic energy operator have large fluctuations which
are not affected by the particle-hole symmetry. In Figs. 3(b)
and 3(d), we discuss the distribution of the diagonal ele-
ments in the eigenstates of the low-density EJCH system
for n̂M/2 and T̂ . It can be seen from Fig. 3(b) that when
the dipole-dipole interaction is considered, the fluctuations of
the diagonal elements for n̂M/2 are large for different system
sizes, because the dipole-dipole interaction breaks particle-
hole symmetry. Another interesting phenomenon is that the
dipole-dipole interaction reduces the fluctuations of the diag-
onal elements of T̂ , which can be drawn from the comparison
of Figs. 3(c) and 3(d). In addition, when the dipole-dipole in-
teraction is considered, the variation of the diagonal elements
of T̂ with the reduced eigenvalues shifts from discontinuous
to continuous. Therefore we believe that n̂M/2 is not suitable
as an observable to discuss the validity of the ETH due to the
particle-hole symmetry in the low-density JCH model, but it
can still be used as an observable in the low-density EJCH
model with the dipole-dipole interaction. Therefore, in the
following discussion, we do not take the occupation operator
of photons as an observable in the low-density JCH system.

In Fig. 3(c), the fluctuation of the diagonal matrix element
of T̂ is greatly large in the eigenstate of the low-density JCH
system, and the fluctuation does not show a significant de-
crease with the increase of the system sizes. In order to make
a more explicit relationship between fluctuation and system
size, we calculate the eigenstate-to-eigenstate fluctuation of
the diagonal matrix elements, which is given by

Zα (O) = 〈α + 1|Ô|α + 1〉 − 〈α|Ô|α〉. (9)

Within the energy window defined by η, the mean is defined
as

〈Z〉η(O) = ||Zη||−1
∑

|α〉∈Zη

|Zα (O)|, (10)

where ||Zη|| is the number of corresponding eigenstates in Zη.
Figure 4(a) shows the mean statistics of eigenstate-to-

eigenstate fluctuations 〈Z〉η(n̂M/2) in the low-density EJCH
model with J/g = 0.001 and V/g = 0.5. The result shows
that 〈Z〉η(n̂M/2) does not decrease with increasing system
size. Figure 4(b) presents the mean statistics of eigenstate-to-
eigenstate fluctuations 〈Z〉η(T̂ ) as a function of system size
in the low-density JCH system with J/g = 0.01 and J/g =
0.001. We can see that the dots are very close to the black
line, implying that the scaling of the mean fluctuation is con-
sistent with an exponential decrease with increasing system
sizes. Therefore the diagonal part of the ETH is valid for the
abnormal statistical behavior plotted at the weak hopping limit

FIG. 4. Statistical mean of fluctuations of diagonal elements vs
system size for same observables and model parameters as in Fig. 3.
The black line as a reference exponentially decreases with size M.
Here η = 1/3.

in Fig. 1(a). In addition, when the dipole-dipole interaction is
considered, 〈Z〉η(T̂ ) deviates from the exponentially decreas-
ing in Fig. 4(c), which leads to a violation of the ETH at the
weak hopping limit in the low-density EJCH model.

B. Off-diagonal matrix elements of observables

Next we discuss the distribution of the off-diagonal matrix
elements of T̂ to test the off-diagonal part of the ETH in the
weak hopping limit. The discussions of the off-diagonal ma-
trix elements are limited to a narrow energy window centered
around the middle of the spectrum, which is defined by the
following expression:

(
1 − ε

2

)
<

ε̄

εav

<
(

1 + ε

2

)
. (11)

Here ε is defined as the width of the window, ε̄ = εα+εβ

2 ,
and εβ is the reduced eigenvalue, where the corresponding
eigenstate is |β〉.

Another reason why the occupancy operator cannot be
used as an observable in the low-density JCH model is
that the values of the off-diagonal elements for n̂M/2 are
all zero, which is also caused due to the particle-hole
symmetry. When the cavity field operator â becomes â+,
the off-diagonal element 〈α|â+â|β〉 = 〈α|ââ+|β〉 = 〈α|1 −
â+â|β〉 = −〈α|â+â|β〉, and thus 〈α|â+â|β〉 = 0.

Figures 5(a) and 5(b) show the off-diagonal matrix ele-
ments of T̂ as a function of reduced eigenvalue difference ω.
As ω increases, the off-diagonal elements tend to decrease and
the distribution has obvious structure. This structure comes
from the fact that the eigenvalues are divided, such as in
Fig. 6(a). The eigenvalues are divided into many parts, and
each part has a large number of quasidegenerate levels. When
the dipole-dipole interaction is considered, we can see that
the distribution is still structural, but there are more blocks of
eigenvalues and some energy levels are repulsive. Therefore
the dipole-dipole interaction has an influence on the distri-
bution of the off-diagonal elements. Figures 5(c) and 5(d)
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FIG. 5. (a, b) Absolute value of the off-diagonal matrix elements
of the kinetic energy operator |〈α|T̂ |β〉| vs the difference of the
reduced eigenvalues ω = εα − εβ . The eigenstates are chosen within
the energy window of ε = 0.1. The black lines are running averages
with a subset length of 100. Other parameters have the same values
as in Fig. 3. (c, d) Average of the absolute value of the off-diagonal
matrix elements |Tα,β | vs the number of eigenstates Nε within a
narrow energy window around εav , and solid lines are fit to a(Nε )−0.5.

describe the averages of the absolute value of the off-diagonal
matrix elements |Tα,β | as a function of the system sizes at
the weak hopping limit (J/g = 0.01 and J/g = 0.001) in the
low-density JCH and EJCH models. In the low-density JCH
model, finite-size scalings of |Tα,β | conform to the exponential
decay, which satisfies the ETH. When adding the dipole-
dipole interaction, |Tα,β | does not satisfy exponential decay
and violates the ETH in the low-density EJCH model.

Finite-size scalings of the diagonal and off-diagonal el-
ements of the kinetic energy operator with system size in
Figs. 4(b) and 5(c) show that the ETH is valid at the weak
hopping limit in the low-density JCH model. This result is
opposite to that of the standard JCH system under weak hop-
ping. One explanation is that when there is no hopping term,
the energy spectrum structure of the low-density JCH model
is simple and the number of eigenstates is less compared to
the standard JCH model, which is easily changed by per-
turbation. In the low-density JCH model, when the hopping
term of photons in different cavities is not considered, the
energy level distribution of this lattice chain is similar to that
of the one-dimensional chain of harmonic oscillators, where
all levels are equidistant. When the weak hopping strength
of photons is added as a perturbation term compared to the
original Hamiltonian, a single energy level is split into mul-
tiple energy levels, as shown in Fig. 6(a), and the repulsion
between energy levels is stronger when the hopping strength
is larger. Figure 6(b) shows the energy level distribution with
different hopping strengths in the standard JCH model. We
can see that they have common features, that is, the energy
level is split and the energy level repulsion is stronger as
the hopping strength increases. When the hopping term is
not considered, both models are integrable and the energy

FIG. 6. The energy eigenvalues Eα for different reduced hopping
strengths of the photon in the low-density JCH model (a) and stan-
dard JCH model (b). The selected sizes M of numerical calculation
are M = 6.

spectrum can be solved analytically. However, as the hopping
strength increases, the standard JCH model can become a
nonintegrable model with a large hopping strength, and a
small hopping strength is enough to generate a nonintegrable
system in the low-density JCH model. We argue that when
the hopping term is not considered, the low-density JCH
model has fewer energy levels with a simple distribution and
fewer eigenstates compared with the standard JCH model.
Thus thermalization properties are more easily altered by the
perturbed hopping term in the low-density JCH model.

V. EIGENSTATE THERMALIZATION AND
QUANTUM CHAOS

In this section we demonstrate that the Hamiltonian eigen-
states in the bulk of the spectrum obey the ETH in the
low-density JCH system when the hopping strength is equal to
the coupling strength (J/g = 1). Another purpose is to discuss
how the dipole-dipole interaction affects the thermalization
property of the system in this case.

In Figs. 7(a) and 7(b) the distributions of the diagonal
matrix elements of the kinetic energy operator with eigenval-
ues are continuous and narrow. And the eigenstate-eigenstate
fluctuations of the diagonal elements decrease exponentially
with the increase of the system size from the subplots. Thus,
in the low-density JCH and EJCH systems, the diagonal part
of the ETH is valid. In addition, compared with the weak
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FIG. 7. 〈α|T̂ |α〉 as a function of the reduced energy for J/g = 1.
Symbols represent results for M = N = 7 (green), M = N = 8 (red),
and M = N = 9 (black). The subplots are the mean statistics of
eigenstate-to-eigenstate fluctuations in Zη vs MD. Solid lines are
exponential decaying guides to the eyes.

hopping strength limit, the dipole-dipole interaction has little
effect on the distribution of the diagonal matrix elements in
the case of J/g = 1.

To further verify whether the off-diagonal part of the ETH
holds in the low-density JCH and EJCH models with the case
of J/g = 1, we introduce a ratio of off-diagonal elements,
defined as [55]

�Ô(ω) := |Oαβ |2/|Oαβ |2. (12)

�Ô = π/2 corresponds to the matrix element of the normal
distribution, |Oαβ |2 represents the coarse-grained average of
|Oαβ |2 over a small reduced ω window, and the width of the
window is 0.05.

In Figs. 8(a) and 8(b) we show the ratios of the kinetic
energy operator �T̂ in the low-density JCH and EJCH models,
respectively. For most ω, �T̂ is indistinguishable from �Ô =
π/2, indicating the distribution of off-diagonal elements is
Gaussian. At large values of ω, �T̂ deviates from π/2. Fur-
thermore, in Fig. 8(a) the dependence of �T̂ on the system
size is more obvious, which can be obtained by comparing
the green circle and the black star, but the fluctuations of the
distribution decrease as the system size increases. When the
dipole-dipole interaction is considered, the results are slightly
different. From Fig. 8(b), for small ω, �T̂ has no dependence
on small system size, and when ω increases, the size effect
becomes obvious. However, as a whole, �T̂ can be described
by a normal distribution. Therefore, from the above results we
can conclude that in the case of the parameter J/g = 1, the

FIG. 8. The ratio of off-diagonal elements �T̂ vs the difference
of the reduced eigenvalues. The blue line represents �Ô = π/2.

FIG. 9. The energy eigenvalues Eα for different reduced hopping
strengths J/g = 0.001 (a) and J/g = 1 (b) in the low-density JCH
model. The selected sizes M of numerical calculation are M = 6.

low-density JCH and EJCH systems are in good agreement
with the ETH.

From the standpoint of the energy spectrum, we can see
that the dipole-dipole interaction has a large influence on the
low-density JCH system in the weak hopping limit (J/g =
0.01, 0.001), while it has a small influence in the same order
of magnitude (J/g = 1). As shown in Fig. 9, there are different
hopping strengths of the photon and dipole-dipole interaction
strengths between atoms. From Fig. 9(a) we can see that in the
weak hopping limit without the dipole-dipole interaction term,
the energy spectrum is divided into blocks in the low-density
JCH model, and there are many energy levels close to each
other in each block. When small dipole-dipole interaction
strength is considered, energy levels are rejected, and when
large dipole-dipole interaction strength is considered, the re-
pulsion between the energy levels becomes obvious. However,
when the hopping strength is of the same order of the coupling
strength, as shown in Fig. 9(b), the changes in the energy spec-
trum are small despite the dipole-dipole interaction strength
is large. Therefore the dipole-dipole interaction can easily
change the energy spectrum distribution of the low-density
JCH model at the weak hopping limit, while it has little effect
on the system energy spectrum when the hopping strength
increases.

VI. CONCLUSION

When the open boundary condition is applied, the low-
density JCH system has U(1) symmetry, chiral symmetry,
reflection symmetry, and particle-hole symmetry. When a
dipole-dipole interaction is considered, the particle-hole sym-
metry is broken. From an energy spectrum perspective, we
find that the average restricted energy gap ratios converge to
0.42 in the low-density JCH system with the weak hopping
limit for the finite size, which is not a Poisson or a Gaussian
orthogonal ensemble. The dipole-dipole interaction leads the
system to exhibit closer integrable behavior in the weak hop-
ping limit. When the hopping strength is of the same order
of the coupling strength, the average restricted energy gap
ratio is close to 0.53 whether the dipole-dipole interaction
is applied or not, which shows stable ergodicity. Next, from
the perspective of eigenstates, we analyze that the half-chain
entanglement entropy appears structurally distributed but the
maximum value and the slope are very close to the Page value
at the weak hopping limit, which implies that the low-density
JCH system is ergodic. When the dipole-dipole interaction
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is considered, the maximum value of the half-chain entan-
glement entropy cannot touch the Page value in all system
sizes and the slope is smaller than the Page value; thus the
low-density EJCH system is more inclined to be integrable at
the weak hopping limit.

We focus on the distribution of the matrix elements of the
occupation operator and the kinetic energy operator to test
the validity of the ETH. In the low-density JCH model, the
diagonal element distribution of the occupation operator has
no fluctuation and the off-diagonal elements are all equal to
zero due to the particle-hole symmetry, which is not suitable
as an observable to test the validity of ETH. In addition, in the
weak hopping limit, finite-size scalings of the diagonal and
off-diagonal elements for the kinetic energy operator show

that the ETH is valid in the low-density JCH system, while
the dipole-dipole interactions destroy the validity of the ETH.
When the hopping strength is equal to the coupling strength,
the systems obey ETH whether the dipole-dipole interaction
is considered or not. Our results provide a clear understanding
of the thermalization properties in the low-density JCH model
that cannot be inferred analogously from the standard JCH
model.
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