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We study the thermodynamic properties of the magnetic dipolar spin ice on a 2D pentagonal Cairo lattice
by using the numerical Metropolis and the complete enumeration methods. We use the model of point Ising-
like dipoles considering long-range interactions with up to 100 nearest neighbors and with periodic boundary
conditions. There are two explicit peaks both in the temperature behavior of the heat capacity and in the magnetic
susceptibility. The low-temperature peak is caused only by long-range interactions and is not present in the model
where each dipole interacts only with four nearest neighbors. The height of the peak depends logarithmically on
the quantity of dipoles, which indicates a phase transition. The nature of the low-temperature phase transition is
related to the transformation from order to disorder in orthogonal sublattices while maintaining the spin ice state
and the spin ice rule in the sublattice of crosses. The high-temperature heat capacity peak is associated with the
melting of spin ice, i.e., with the crossover from spin ice to paramagnetic chaos. Its height is constant and does
not depend on the quantity of dipoles. It is shown that the choice of the radius of the dipole-dipole interaction
has a significant effect on the statistical properties of the model. The model may even show the appearance of
the long-range order and the phase transition in the case of long-range interaction or its absence in the case of
short-range interaction.
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I. INTRODUCTION

Artificial spin ice is a group of metamaterials consisting
of magnetic nanoscale islands arranged so that the resulting
structure exhibits collective magnetic properties that a single
particle does not have.

The island in frames of the dipole model can be represented
as a single-domain nanodimensional ferromagnetic capable of
interacting with other islands through dipole-dipole exchange.
It is oval-shaped, which leads to magnetic anisotropy along
the long axis, making its behavior Ising-like. The volume is
chosen so as to be a single domain, and at the same time, the
magnetic field induced by neighboring islands was enough
to change the magnetic moment of an island. Due to these
properties, the island mimics the behavior of a point Ising-like
dipole.

The lattice geometry may impose configuration con-
straints, due to which not all pairwise interactions can be
simultaneously satisfied. This phenomenon is called frus-
tration, and systems are frustrated. The first experimentally
created structure was the square spin ice, aimed at mimicking
the magnetic behavior of the atomic lattice of the pyrochlores
Dy2Ti2O7 and Ho2Ti2O7 [1] in planar projection [2–4]. It is
much easier to experimentally observe nanoscale islands on
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a plane than atoms in a bulk. A fine tuning of the lattice
geometry of the artificial spin ice and the shape of the
islet becomes possible. This allows us to choose convenient
values of physical parameters, such as magnetic suscepti-
bility, anisotropy, energy barriers between similar energy
configurations, etc. Thus, new geometries of 2D spin ices
have been proposed that have no analogs among existing
materials.

A distinct class is vertex-frustrated lattices [5,6], where it
is impossible to choose all vertices to be in their lowest energy
configuration, due to topological constraints. As a result, these
vertex-frustrated structures always contain excited vertices.
These include derivatives of spin ice structures like Brickwork
[7,8], Shakti [4,9,10], Tetris [11], Santa Fe [12], and Saint
George [13] and others like kagome [4,14–18] and Cairo
[19–23] [Fig. 1(a)].

Some computational studies on spin ice consider inter-
actions only between the nearest neighbors [10,14–16,24],
treating the long-range energy as zero in order to simplify
the calculations, which is not always justified, or represent
vertex interactions as “dumbbells” or “charge” models, which
are also short range. The dipole-dipole interaction depends
on distance r between dipoles and in some cases can cause
long-range ordering [4,25]. This has been shown for the 3D
tetrahedral lattice of pyrochlore [26,27], where the number of
neighbors changes as ∼r3 and the dipole energy of one pair
as ∼r−3. So the total energy induced by far-distant neighbors
is of the same order and can compete with the energy of the
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(a) (b)

FIG. 1. 2D Dipolar spin ice on a Cairo lattice. (a) Ferromagnetic
islands are shown as gray ovals. Letters a, b, c denote lattice parame-
ters. (b) One of the possible GS configurations of Cairo dipolar spin
ice with periodic boundary conditions both in short- and long-range
interaction models. The point dipoles are in the middle of the arrows;
the direction represents the magnetic moment. The key structural
elements of the lattice are horizontal α, vertical β spins, and crosses
γ consisting of δ spins. The unit cell of the lattice ε is shown as a
square. The blue (silver) arrows are the moments directed along the
field induced by its four nearest neighbors. The red (dim gray) arrows
are the moments for which the magnetic field induced by the nearest
neighbors is compensated.

nearest neighbors. The number of neighbors in a 2D lattice
increases much slower, as ∼r2.

In this paper we consider the dipolar spin ice on a 2D
pentagonal Cairo lattice [19–23] [Fig. 1(a)], which is geomet-
rically frustrated and seems to be a good candidate to research
the effect of long-range interactions on the plane. Dipolar
ferromagnetic islands are placed onto the bonds (edges) of
the lattice. The longer side and the anisotropy axis of the
island are aligned along the edge of the lattice. Previously
it was shown that the point dipole model describes well the
behavior of thermally active artificial nanosystems made of
permalloy islands, e.g., kagome [28], square [29], and Cairo
[23] spin ices. Each ferromagnetic island is associated with a
point moment in the dipole model we use. The moments are
located in the center of the nanoparticle and have a dipole-
dipole interaction between themselves. As shown in [2], the
oval shape of the nanomagnetic island induces a strong shape
anisotropy, forcing it to be always magnetized along its long
side. The shape anisotropy of the island is sufficient to use the
Ising-like model; i.e., each magnetic moment has two states.
The magnetic moment is located in the center of the island
and is aligned with the corresponding edge of the lattice.
Hereafter we will use the terms “spin” and “dipole,” which
are synonymous with the “moment.”

The dipoles are marked with arrows in Fig. 1(b); the di-
rection represents the direction of magnetization. The lattice
structure consists of “crosses,” which like in square spin ice
obey the ice rule “2-in and 2-out” in the ordered state. The
crosses, together with additional spins, form pentagonal cells
that produce closed chains and induce competing interactions.

We use the Monte Carlo simulation and the complete enu-
meration over all possible configurations in order to get and
explain the temperature behavior of dipole spin ice on the
Cairo lattice. In this paper we show that both the boundary
conditions and the radius of the dipole-dipole interaction have
a significant effect on the statistical properties of the model.

For example, the model may even show the appearance of
a long-range order and phase transition (in the long-range
interaction case) or its absence (in the short-range interaction
case). The fine tuning of the volume of the nano-island and
lattice parameters provides the ability to vary the temperature
of the superparamagnetic transition. As a result, experimental
observation of long-range order or disorder in the ground state
(GS) in two-dimensional artificial spin ice becomes funda-
mentally possible [30].

II. THE DIPOLAR MODEL

We consider the two-dimensional pentagonal lattice dis-
cussed in [23]. Dipoles on the lattice form elementary cells
ε containing five spins Fig. 1(b), translated in a checkerboard
pattern so that neighboring cells are rotated relative to each
other by 90◦. There are N = L × L × 5 spins in the lattice,
where L is the number of elementary cells along one side.

We conditionally divide the lattice into a sublattice of
horizontally directed α, vertically directed β spins, which
are located in the center of ε. δ spins form crosses γ

[Fig. 1(b)].
The lattice is composed of irregular pentagons [Fig. 1(a)],

where four edges have length a and one vertically or hor-
izontally directed edge b. Parameter c defines the distance
between the colinear dipoles δ, or in other words, determines
the position of the spin δ on the edge of the lattice. An increase
in c leads to a decrease in the energy of pair interactions
inside γ and increases the energy of pair interactions in ε. By
analogy with the experimental data [23], the lattice parameters
are a = 472 nm, b = 344 nm, and c = 376 nm.

The interaction energy between dipoles i and j is
defined as

Ei j,dip/D = sis j

(
( �mi �mj )

|�ri j |3 − 3
( �mi�ri j )( �mj�ri j )

|�ri j |5
)

, (1)

where �mi is the moment of spin with unit length. The moment
has only two possible opposite directions determined by Ising
variables si = ±1. �r is the dimensionless radius vector nor-
malized so that |�r| = 1 between points a apart. D = μ0μ

2a−3

is the dimensional coefficient required to relate the model of
point dipoles to the macrospin model, μ0 is vacuum perme-
ability, μ is saturation magnetization of the nanoisland, and a
is the lattice parameter described above. In this paper we con-
sider a system with specific parameters, implying the volume
of one island 300 × 100 × 2.6 nm3 by analogy with [23]. The
typical value of Ms for bulk permalloy is 8 × 105 A/m, but it
is considerably lower for thin macrospins [28]. Here we use
Ms = 105 A/m and μ = 7.8 × 10−18 Am2 ≈ 8.41 × 105μB,
so D = 7.27065 × 10−22 J.

In the long-range interaction model, we do not take into
account the energy of pairwise interactions, where a|�ri j | >

2000 nm. Hereafter we will call this model “long-range.” We
also consider the “short-range” case where interactions with
a|�ri j | > 400 nm are not taken into account. This distance is
chosen so that each spin of the lattice has exactly four neigh-
bors. In the short-range model, all four diagonally oriented
spins of ε [Fig. 1(b)] will be neighbors for spins of type α and
β. For spins of type δ, its neighbors are three adjacent spins in
its cross and the nearest spin α or β.
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We added a small vertical magnetic field �H = {0, Hy},
where Hy = 1.5 × 10−7, to the sample in order to calculate
the magnetic susceptibility:

E = D
∑
〈i, j〉

Ei j,dip − μ0μMs

∑
i

si( �mi �H ), (2)

where the summation 〈i, j〉 goes over all pairs of dipoles,
within given interaction radius. The Hy value is dimensionless
like �my,i. The dimensional constant μ0μMs is in the same
units as D.

Periodic boundary conditions (PBCs) are applied on all
edges both to the short-range and to the long-range models.
This allows us to get rid of the boundary effect and analyze
low-energy configurations.

We use the canonical single-spin Metropolis algorithm
to calculate thermodynamic averages [31,32]. Despite its
simplicity, this still remains a popular method of statistical
research in unexpectedly diverse sciences. The problem of
obtaining a rigorous solution subexponentially fast for a large
number of spins in the system is vital for a huge class of tasks.
For numerical calculations at each specific temperature, we
use 105 steps to prethermalize the system and 106 steps to
calculate averages. This ensures that equilibrium is met. One
step implies N Monte Carlo tries to flip a random si. We use
a complete enumeration of all configurations to calculate the
temperature behavior of entropy and analyze the GS.

Nonequilibrium thermodynamic effects, such as the co-
ercive force of the island, are not considered in this paper,
implying that all relaxation nonequilibrium processes have
already been completed by the time of numerical experiments.
The equilibrium for numerical Monte Carlo experiments is
satisfied by preliminary Monte Carlo annealing. As for the
exhaustive enumeration, the calculation of the complete group
of events automatically means the fulfillment of the ergodicity
condition.

III. THERMODYNAMICS OF CAIRO LATTICE

By means of the complete enumeration method and hybrid
Monte Carlo method, it was shown in [33] that in the model of
unrestricted interaction radius with the free boundary condi-
tions for a finite relatively small quantity of dipoles on the
Cairo lattice (N = 20, 40, and 80) the degeneracy of the
GS is not macroscopic. In the present work we performed
an analysis of correlations, thermodynamic functions such as
entropy, heat capacity, and magnetic susceptibility by means
of Monte Carlo for N = 5120, and exactly calculated the GS
for the Cairo lattice for long- and short-range interactions with
PBCs in the case of N = 20.

A. Heat capacity, entropy, and effect of quantity of dipoles

Figure 2 shows the heat capacity comparing long-range
(a|�ri j | < 2000 nm) and short-range (a|�ri j | < 400 nm) interac-
tion models with N = 5120 dipoles obtained with the Monte
Carlo method. We calculate it as

C(T ) = 〈E2〉 − 〈E〉2

kBT 2N
. (3)

FIG. 2. Temperature dependence of the heat capacity C(T ) of the
dipolar Cairo spin ice with N = 5120 dipoles and c = 376 nm in
long-range (upper) and short-range (lower) models with PBCs. The
dashed lines indicate the peaks of the heat capacity at T p

1 ≈ 4.62 K,
T p

2 ≈ 372.79 K, and the critical temperature Tλ ≈ 130.00 K.

The brackets 〈〉 denote Gibbs thermodynamic averaging at a
specific T . The heat capacity has two pronounced peaks in the
long range. At the same time, there is no low-temperature heat
capacity peak for the short range. This means that the peak
is caused only by long-range interactions. The dashed lines
indicate the peaks of the heat capacity at T p

1 ≈ 4.62 K and
T p

2 ≈ 372.79 K. In addition, we define the critical temperature
Tλ ≈ 130.00 K, which does not appear on the heat capacity
curve. It will be described further. We also highlight these
temperatures in Figs. 6–9 below.

It is currently unfeasible to consider all of 2N configura-
tions of the system when N is more than a few dozen due
to exponential growth. The Monte Carlo algorithm we use is
based on a partial sampling of the space of configurations with
energies corresponding to the Gibbs distribution. The fraction
of partial sampling and the sampling method itself often raises
many questions about the convergence and reliability of the
results. In addition, the Monte Carlo method does not allow
the accurate calculation of entropy, because the degeneracy
level (number of configurations) for a given energy is not
available during partial sampling over the Gibbs distribution.

For a detailed explanation of the low-temperature behavior
of the heat capacity, we obtained the exact solution of the
entropy S as a function of temperature with the complete
enumeration method for the studied models with N = 20. S
is defined as

S = 〈E〉
T

+ kB ln

[∑
i

g(Ei ) exp

(−Ei

kBT

)]
, (4)

where the summation goes over all possible values of energy
of system and g(Ei ) is the quantity of configurations with Ei

so that ∑
i

g(Ei ) = 2N . (5)

We present the temperature dependence of the heat capac-
ity C(T ) (upper) and the entropy S(T ) (lower) of the dipolar
Cairo spin ice with N = 20 dipoles at c = 376 nm in long-
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FIG. 3. Temperature dependence of the heat capacity C(T )
(upper) and entropy S(T ) (lower) of the dipolar Cairo spin ice
with N = 20 dipoles at c = 376 nm in long-range interaction and
short-range interaction models. The dashed vertical lines indicate
temperatures of heat capacity peaks.

and short-range models with PBCs in Fig. 3. As well as the
Monte Carlo method, the exact solution shows the presence
of a low-temperature peak in the heat capacity for a model
with long-range interactions, and the absence of it in a short
range. A high-temperature peak is present in both models.

It can be explained by analyzing the exact solution of the
temperature behavior of the entropy. The residual entropy
S(T → 0) in the two considered models has different values.
In a model with a long interaction radius, the degeneracy
multiplicity of the GS is smaller, while in a short range it
is greater. Thus, there is a pronounced increase in S for a
long-range model. The peak temperature of the heat capac-
ity coincides with the temperature of the maximum entropy
growth rate. The high-temperature peak of the heat capacity
is accompanied by an increase in entropy. But the reasons for
the increase in entropy at low and at high temperatures are
different.

Figure 4 shows the heights of the heat capacity peaks as
a function of the dipole quantity. The height in the high-
temperature region does not change at an increase in N ,
neither in the long-range interaction model [C(T p

2 )] nor in
the short-range interaction model (Cpeak). The value of Cpeak

is less than C(T p
2 ) since the rate of change in the average

energy is proportional to the number of pair energies, which
will naturally be larger in the case of a long-range model.

The low-temperature peak in the long-range model grows
with increasing N . In Fig. 4 the dashed line indicates the
growth function for the low-temperature peak in the long-
range model C(T p

1 ) = 0.02476 ln(N ) − 0.0817, the limit of
which is lim

N→∞
C(T p

1 ) = ∞. This confirms the presence of the

second-order phase transition. The coefficients of the function
are approximated by the method of least squares.

B. Low-energy states and ground state

One of the possible GS configurations for dipolar spin ice
on a 2D Cairo lattice with PBCs in both short- and long-range

FIG. 4. The value of the heat capacity peak as a function of quan-
tity of dipoles N for the Cairo lattice c = 376 nm in both long-range
interaction and short-range interaction models.

models is shown in Fig. 1(b). The lattice can be conventionally
divided into three sublattices, which consist of horizontal α,
vertical β spins, and crosses γ . In GSs of both models, all
crosses γ obey the ice rule and have a minimum of energy.
The color in Fig. 1(b) indicates the total interaction energy
between the α or β types of dipoles and their neighboring four
dipoles within the ε. Hereafter we will call it the “neighbor
energy.”

If we take the energy of one pair of dipoles α and δ

as a unit u, then the sum of energies between any of α or
β spin and its four neighbors will be one of five possible
values: −4u,−2u, 0, 2u, 4u. For example, in Fig. 1(b), all α

spins have neighbor energy −4u, and β’s neighbor energy
is 0. Each pair interaction between spins of type β and its
neighbors has a mirror pair with the same interaction energy
but opposite sign. In the long-range model, spins β also have
zero total energy with all interacting spins. The one exception
is the long-range interaction between two spins of type β,
which makes a small (because of the long distance) negative
contribution to the total energy. In the case of open boundary
conditions, this pattern will be violated, because not all pairs
with β spins will be compensated at the boundaries. For this
reason, the configuration of the β sublattice in GSs differs
from that presented in [33].

By using the complete enumeration method over all pos-
sible states, we have collected all GSs for the system with
N = 20 and PBCs in long-range and short-range models; see
Fig. 5. There are 24 GSs in the short-range model, and eight
of those are in the long-range model. Each configuration has a
mirrored one with the same energy where all spins are flipped,
which is why we consider only the half of states in Fig. 5. In
all GSs, dipoles in γ satisfy the ice rule (two in, two out) and
have the minimum dipole-dipole interaction energy. That is,
dipoles that are on the same line inside the cross always look
in the opposite direction.

Spins of the α sublattice are blue (silver), and β spins are
red (dim gray) in Fig. 5. Spins with neighbor energy −2u are
green (light gray). In row 1 we show the GS for both short-
and long-range models. Neighbor energy is 0 for spins of β
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FIG. 5. Ground-state configurations for the dipolar spin ice on
the Cairo lattice L = 2 with periodical boundary conditions in long-
range (row 1) and short-range (rows 1–3) models. We illustrate only
half of the configurations, implying that the other half is similar but
with all spins inverted.

sublattice. Only long-range interactions between them affect
ordering, and energy is minimized between codirected spins.
That is why β spins have ferromagnetic order. Configurations
of row 2 are equal to row 1, but β spins have chaotic order. The
energy of these configurations is the same in the short range,
but slightly higher in the long range because of the positive
energies between the β spins. So configurations of row 2 will
be GS only for the short range. In row 2 of Fig. 5 every
configuration has two β spins which are in antiferromagnetic
ordering. The order is not chaotic only because of the small
size of the system. The two spins can be either co-oriented or
opposite.

The configurations of row 3 are GS only in the short-range
model. If we take any configuration from row 2 and turn
all spins in any cross γ , all vertical and horizontal spins
around the cross will have three pairwise interactions with
energy −u and one with energy +u. The total energy will
remain minimal. In the N = 20 lattice with PBCs, all vertical
or horizontal spins are adjacent to all the crosses. So we
can flip only any one cross. But for a larger lattice we can
apply γ rotation locally to the part of the system. All vertical
and horizontal spins surrounding the cross must be ordered
antiferromagnetically.

The number of configurations in rows 2 and 3 of Fig. 5
grows with increasing N , while row 1 always consists of four
configurations (plus four mirrored). The curve S(T )/N expe-
riences a jump in the low-temperature area in the long-range
model in Fig. 3. The temperature of the jump corresponds to
the temperature of the peak of the heat capacity. The residual
entropy has a constant value, and the entropy per spin will tend
to be zero at N → ∞ in the long range. At higher tempera-
tures, the value of S(T ) depends on N . The sharpness of the
jump of S(T )/N will increase as N increases. This explains
the correlation between C(T p

1 ) and N for the long-range model
in Fig. 4.

In the short-range model, all configurations described in
Fig. 5 are GS, so the residual entropy grows with N , and we

FIG. 6. Temperature behavior of the thermodynamic averaged
magnetization of the long-range dipolar spin ice on the Cairo lattice
with N = 5120 spins and c = 376 nm. The green solid line 〈| �m|〉
is the total magnetization. The blue dashed line 〈|mx|〉 and the red
dash-dotted line 〈|my|〉 are the projections of magnetization on the X
and Y axes for the same system, respectively.

do not observe changes in entropy and heat capacity in the
low-temperature area.

IV. SPIN-SPIN CORRELATIONS

Here we consider only one subset of GSs for the long-
range model, where α spins are horizontal and β are vertical.
Another case is when the roles of α and β spins are swapped
because of the symmetry. This is determined during the freez-
ing of the system. The energy barrier for the the changing roles
of α and β is overcome only above the Curie temperature for
this system. Both cases of ordering are identical and have the
same thermodynamic properties, so we will not consider the
second one.

We use the canonical single-spin Metropolis method. It has
a known problem of critical slowdown [34]. In our system it
holds in the temperature area from T = 61 K to T = 185 K.
We resolved it by running Metropolis from different random
high-energy configurations and by averaging the heat capacity
values between runs in a given temperature area. Other tem-
peratures were calculated with a single run starting from the
GS described above.

Figure 6 shows the temperature behavior of | �m| and mod-
ules of its components |mx| and |my|. These parameters are
calculated as

| �m| =
∣∣∣∣∣

N∑
j

�mj

∣∣∣∣∣/N,

|mx| =
∣∣∣∣∣

N∑
j

mx, j

∣∣∣∣∣/N,

|my| =
∣∣∣∣∣

N∑
j

my, j

∣∣∣∣∣/N. (6)
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FIG. 7. Temperature behavior of total χ , longitudinal χx , and
transverse χy magnetic susceptibility of the long-range dipolar spin
ice on the Cairo lattice with N = 5120 spins and c = 376 nm.

The γ sublattice satisfies the ice rule in GSs and has a peri-
odic structure of magnetic ordering. The α sublattice has an
antiferromagnetic order in GSs. Therefore, | �m| = 0 for the
sublattices of α and γ spins in GSs. It can be seen from
Fig. 6 that |my| = 0.1 at T → 0 because the β sublattice has a
ferromagnetic order and consists of N/10 spins. The transition
of the β sublattice from ferromagnetic to paramagnetic state
occurs at temperature T p

1 .
Figure 6 shows that the curves |my| and | �m| are the same

at T < Tλ. This indicates that only β-type spins are remagne-
tized. The curve |mx| = 0 and does not change at T < Tλ.

By analogy, we obtained longitudinal and transverse
magnetic susceptibility curves (Fig. 7). Susceptibility is
calculated as

χ (T ) = 〈| �m|2〉 − 〈| �m|〉2

kBT N
,

FIG. 8. Temperature behavior of the correlation function for the
horizontal Gα and vertical Gβ spins of the long-range dipolar spin ice
on the Cairo lattice with N = 5120 spins and c = 376 nm.

FIG. 9. The correlation function for the nearest neighboring
spins of the crosses sublattice γ of the long-range dipolar spin ice
on the Cairo lattice with N = 5120 spins and c = 376 nm.

χx(T ) =
〈
mx

2
〉 − 〈|mx|〉2

kBT N
,

χy(T ) =
〈
my

2
〉 − 〈|my|〉2

kBT N
. (7)

The brackets 〈〉 denote Gibbs thermodynamic averaging. The
curves in Fig. 7 show that only vertical spins experience
fluctuations at T < Tλ.

Also, we show the temperature behavior of correlations
between the spins of the lattice in Figs. 8, 9 and 11. We define
the correlation parameter as

G =
n∑
i

m∑
j

Ei, j

|Ei, j |/n, (8)

where the summation
∑m

j goes over spins distanced from i
spin by a given radius. The sum

∑n
i includes only the spins

that need to be considered in the specific case. The radius

(a) (b)

FIG. 10. A part of the dipolar spin ice on the Cairo lattice with
c = 376 nm. (a) One of the GSs of the long-range model. (b) One
of configurations for Tλ. The vertical and horizontal spins have the
following color scheme: blue (silver) E = −4u, green (light gray)
E = −2u, and red (dim gray) E = 0. The blue circle indicates a
pentagon with E = −5v, and a red cross is E = −1v. The dotted
outlines around arrows show the spins that differ from the GS con-
figuration (a).

064105-6



ORDER AND DISORDER, CROSSOVERS, AND PHASE … PHYSICAL REVIEW E 106, 064105 (2022)

FIG. 11. Temperature behavior of the correlation functions for
dipole Cairo spin ice at c = 376 nm and N = 5120 in the long-range
model. Gp is the correlations of spins in all pentagons of the lattice;
Gα

p is the correlations of spins in pentagons that contain a horizon-
tal spin from the α sublattice; Gβ

p is the correlations of spins in
pentagons that contain a vertical spin from the β sublattice.

and the principle of spin selection according to which the
correlations are calculated will be defined for each parameter
separately.

The correlation parameters Gα and Gβ in Fig. 8 take
into account only the spins from the α and β sublattices,
respectively. The distance between neighboring spins of the
α and β sublattice is approximately 1153 nm when the lattice
parameter c = 376 nm. The α sublattice is ordered antifer-
romagnetically, and Gα = 4 at T < Tλ. Higher temperature
destroys this order, which leads to the disappearance of in-
terspin correlations in the sublattice α. The Gβ parameter
increases abruptly near T p

1 ; i.e., there is a transition from
an ordered ferromagnetic to a disordered state in the β

sublattice.
Thus, the temperature behavior of the heat capacity, mag-

netization, susceptibility, and correlation parameters Gα, Gβ

show that the low-temperature heat capacity peak at T p
1 is

caused entirely by the long-range dipole-dipole interactions
between the spins of the β sublattice. The short-range interac-
tions in the Cairo lattice give a zero contribution to energy, and
the rest of the lattice (α and γ sublattices) are in the minimal
energy state with respect to their nearest neighbors and do not
change its configuration. The transition from ferromagnetic
order to paramagnetic disorder of spins of the β sublattice
in the Cairo spin ice with the long-range interaction model
occurs at a temperature T p

1 .

A. High-temperature peak

Figure 2 shows that the high-temperature peak of the
heat capacity at T p

2 appears in both short- and long-range
dipole-dipole interactions. The magnetization and susceptibil-
ity (Figs. 6 and 7) also have high-temperature peaks, but their
temperature is slightly higher than T p

2 . The same behavior was
observed in square spin ice [4]. Also, the α and β sublattices
almost stop correlating at this temperature (Fig. 8).

In Fig. 9 we show the correlation function Gγ
nn, which

includes only nearest-neighboring interactions between spins
in crosses γ [Fig. 1(b)]. The behavior of the curve shows that
the order of the closest pairwise interactions breaks down at
temperature T p

2 , which leads to a complete disorder of the
system.

B. The crossover

The system has a specific behavior around Tλ. This occurs
in Figs. 6 and 7 as a merging of the curves for the two sub-
lattices and as the spontaneous anticorrelation of the vertical
spins in Fig. 8.

Let us consider the structural element of the Cairo lattice—
the pentagon. Any pentagon of the Cairo lattice includes either
one α or β spin. The lattice consists of irregular pentagons,
and the interaction energy between the nearest spins inside
a pentagon is slightly different due to the varying interspin
distance and angles. We equate such pairwise interaction en-
ergies and denote the energy as v for the sake of simplicity
of explanation. We do not use this simplification in our calcu-
lations. The minimal energy of the pentagon, when all spins
are aligned one after another, will be E = −5v, and with one
inverted (opposite) spin E = −3v + 2v = −v.

Figure 10(a) shows one of the possible configurations of
the GS in the long-range model. The blue circle indicates a
pentagon with E = −5v, and a red cross is E = −1v. It can
be seen that pentagons with E = −5v contain spins of type
α, and pentagons with E = −v consist of spins of type β

in the GS.
Figure 10(b) shows an example of the configuration of the

system at Tλ in the long-range model. We illustrate only a
part of the sublattice, which has a continuation on all sides.
The dashed outline marks the spins that differ from the cor-
responding GS configuration. It can be seen that the crosses
flip entirely, overcoming a small energy barrier and changing
the final energy of the system insignificantly. The ice rule is
always satisfied. This behavior does not lead to a dramatic
increase in heat capacity, but it affects other thermodynamic
characteristics.

Collective remagnetization of the crosses causes a lo-
cal change in the roles of spins of type α and β. That is,
spins with E = 0 appear in the α sublattice, and spins with
E = −4u appear in the β sublattice. Additionally, spins with
E = −2u appear [green in Fig. 10(b)], which are shared
by pentagons E = −5v and E = −v. The average number
of pentagons of both types in the lattice does not change
at T < Tλ. An increase in temperature above Tλ destroys
this order.

In Fig. 11 we show the correlation parameters for the pen-
tagons, where only the signs of the energies of the nearest pair
interactions are considered for each pentagon. For clarity, we
rescaled this plot to represent Gp as the average energy of the
nearest pairwise interactions within the pentagon in the units v

described above. The pentagon includes five pairs, so Gp may
be in the range from −5v to 5v. Gα

p is the correlations of the
pentagons, which contain a horizontal spin from the α sublat-
tice. Gβ

p is for pentagons with β-type spins. Gp = Gα
p + Gβ

p is
the spin correlations in all pentagons of the lattice. Figure 11
shows that some of the pentagons of Gα

p near Tλ lose their
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correlations, and in Gβ
p correlations appear, while their sum

Gp remains unchanged.
Thus, we can say that at Tλ the dipolar Cairo lattice has a

crossover from a frozen order by crosses to a disorder where
the ice rule still remains.

V. CONCLUSIONS

The dipolar spin ice model on the Cairo lattice presents rich
and tunable frustrations. It consists simultaneously of crosses,
whose behavior was previously studied in the square spin ice
[2], and irregular pentagons. At the same time, the lattice
can alternatively be divided into three sublattices of crosses,
horizontal, and vertical spins.

The phase space of the long-range model is split by
three temperatures: T p

1 , T λ, and T p
2 . Let’s define the phases

in ascending order by temperature: the completely ordered
phase → disorder in the sublattice → spin ice in crosses →
disorder. In the completely ordered phase (lowest T ), the
γ crosses obey the ice rule; the absolute direction in the
lattice is governed by the spins of α and β sublattices. α

has the antiferromagnetic order, and the energy of its spins
with nearest neighbors is minimized. Spins of β sublattice
have a ferromagnetic order due to the long-range interactions
but become disordered at T p

1 . The crosses γ still satisfy the
ice rule in the phase between T p

1 and T λ. Their absolute
positions in the lattice are held by α spins only partially: a
cross can be remagnetized with no energy costs if the four
surrounding vertical and horizontal spins have an antiferro-
magnetic ordering. The couplings between δ and β spins
break down at T λ, causing the crosses to no longer maintain
their absolute positions in the lattice and to be remagnetized
entirely, still obeying the ice rule. The T p

2 breaks the ice
rule in γ , and the system transits to a completely disordered
state.

In the short-range model, phase space is similar to the
long-range one. But there is not the completely ordered low-
temperature phase, since there are no long-range interactions
that hold an order in the β sublattice. The phases in short-
range are disorder in the sublattice → spin ice in crosses →
disorder.

In order to understand and explain the dependence of the
heat capacity peak on N from Fig. 4, we need to refer to the
definition of the average thermodynamic value of the internal
energy at a given T :

〈E〉(T ) =
∑

i g(Ei )Ei exp

(
− Ei

kBT

)
∑

i g(Ei ) exp

(
− Ei

kBT

) , (9)

where the summation goes over all possible values of en-
ergy of system and g(Ei ) is the quantity of configurations
with Ei. This is the definition of the mean value of energy
by the Gibbs distribution. The formula (3) comes from the
definition of heat capacity C(T ) = ∂〈E〉(T )/∂T/N . In other
words, the thermal energy at the phase transition is spent to
break bonds between spins, the internal energy of which is
proportional to the temperature of the phase transition [see
the exponent in Eq. (9)]. The height of the heat capacity peak

depends on the number of bonds between spins to be broken
at a given temperature. In terms of statistics, the numerator
of the heat capacity definition from formula (3) is the vari-
ance of the energy in the Gibbs distribution, or a measure
of the energy dispersion around its mean value at a given
temperature. As shown in [4], the long-range interactions
reduce the discretization of the energy space of the system
and increase the number of members of the sum in formula
(9). The neighboring energy levels are not much different
because of the low energy of the pairwise interaction between
spins of the β sublattice. The scatter of energies increases the
variance in the numerator of formula (3) at T p

1 , which is re-
ciprocal to T 2, making the heat capacity infinite at N → ∞ at
low temperatures.

In addition, we publish the densities of states and the
temperature behavior of the mean energy for the dipolar spin
ice on the Cairo lattice N = 20 in a comparison of long- and
short-range models in the Supplemental Material [35].

The energy of the short-range pair is higher than the long-
range one because of the smaller r in the denominator of
formula (1). Therefore, short-range interactions are destroyed
at higher temperatures. The destruction occurs in two stages:
the disappearance of correlations between crosses at Tλ and
the destruction of the order inside the crosses at T p

2 . Since the
short-range order breaks down in the temperature area instead
of a specific temperature, the energy needed to destroy the or-
der is consumed smoothly as the temperature rises. Therefore,
there is no infinite peak of the heat capacity at N → ∞. This
effect is called crossover [36,37]. The behavior of C(T p

1 ) and
Cpeak in Fig. 4 confirms this fact. The particular temperatures
we use to describe the phase transition are defined as the
local maximum of the function C(T ). The definition is taken
from the canonical theory of phase transitions and shows only
the local maximum of the function. In fact, phase transition
happens in a temperature area, the boundaries of which can
be defined only speculatively. By fine tuning the parame-
ters a, b, c it is possible to shift temperatures of transitions
separately.

In this paper, using calculations with the canoni-
cal Metropolis algorithm, we have shown that the two-
dimensional Cairo lattice can have a long-range order in our
model. Long-range interactions at approximately 1153 nm
distance with the lattice parameter c = 376 nm show a low-
temperature order-disorder phase transition in the β sublattice
spins, which are frustrated when considering the short-range
model.

A lattice with similar geometry, parameters a, b, c, and Ms

was considered earlier in [23]. In the experiment, the authors
cooled the system below the so-called blocking temperature
130 K, which ensures that configurations remain frozen dur-
ing x-ray magnetic circular dichroism imaging after thermal
annealing. This temperature coincides with our Tλ, which is
not the GS but meaningful in our results. The reason that
system blocks at 130 K in the experiment [23] may be in the
relaxation time of macrospins, which increases dramatically
at low temperatures, and may be longer than the time of the
experiment. The second reason is the annealing procedure.
The system may be stuck at a local energy minimum while
cooling down. Based on our results on the GS structure, it
is possible to control the reachability of the GS during the
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cooling of spin ice in the experiment. Estimated relaxation
times are a good subject for further research. The third reason
could be local defects or imprecisions in the geometry of the
experimental sample. Long-range interactions have an effect
only if all short-range pairwise interactions for the spins of the
β sublattice are fully compensated.

Despite the low-temperature T p
1 for the lattice geometry

taken as the basis, it would be interesting to experimentally
verify the existence of a low-temperature heat capacity peak
and a magnetic susceptibility. The increase in temperature T p

1
could be achieved by increasing the Ms of the material.
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