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Choice of diameters in a polydisperse model glassformer: Deterministic or stochastic?
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In particle-based computer simulations of polydisperse glassforming systems, the particle diameters σ =
σ1, . . . , σN of a system with N particles are chosen with the intention to approximate a desired distribution
density f with the corresponding histogram. One method to accomplish this is to draw each diameter randomly
and independently from the density f . We refer to this stochastic scheme as model S. Alternatively, one can
apply a deterministic method, assigning an appropriate set of N values to the diameters. We refer to this
method as model D. We show that, for sample-to-sample fluctuations, especially for the glassy dynamics at
low temperatures, it matters whether one chooses model S or model D. Using molecular dynamics computer
simulations, we investigate a three-dimensional polydisperse nonadditive soft-sphere system with f (s) ∼ s−3.
The swap Monte Carlo method is employed to obtain equilibrated samples at very low temperatures. We show
that for model S the sample-to-sample fluctuations due to the quenched disorder imposed by the diameters σ

can be explained by an effective packing fraction. Dynamic susceptibilities in model S can be split into two
terms: one that is of thermal nature and can be identified with the susceptibility of model D, and another one
originating from the disorder in σ . At low temperatures the latter contribution is the dominating term in the
dynamic susceptibility. Our study clarifies the pros and cons of the use of models S and D in practice.

DOI: 10.1103/PhysRevE.106.064103

I. INTRODUCTION

Many of the colloidal systems that have been used to study
the glass transition are polydisperse [1]. While monodisperse
colloidal fluids crystallize very easily, with the introduction of
a size polydispersity they become good glassformers [2–9].
As a matter of fact, the degree of polydispersity δ, defined as
the standard deviation of the particle diameter divided by the
mean particle diameter, may strongly affect glassy dynamics.
For example, for three-dimensional hard-sphere colloids, it
has been shown that, for moderate polydispersity δ < 10%,
a dynamic freezing is typically seen for a packing fraction
φg ≈ 0.58, while for δ � 10%, the dynamics are more hetero-
geneous with the large particles undergoing a glass transition
at φg while the small particles are still mobile (note that this re-
sult is dependent on the distribution of particle diameters) [8].
An interesting finding regarding the effect of polydispersity on
the dynamics has been reported in a simulation study of a two-
dimensional Lennard-Jones model [10]. Here, Klochko et al.
show that polydispersity is associated with composition fluc-
tuations that, even well above the glass-transition temperature,
lead to a two-step relaxation of the dynamic structure factor at
low wave numbers and a long-time tail in the time-dependent
heat capacity. These examples demonstrate that polydispersity
and the specific distribution of particle diameters may strongly
affect the static and dynamic properties of glassforming
fluids.

In a particle-based computer simulation, one can assign to
each particle i a “diameter” σi. Note that, in the following, the
diameter of a particle does not refer to the geometric diameter
of a hard sphere, but in a more general sense it is a parameter

with the dimension of a length that appears in the interac-
tion potential between soft spheres (see below). To realize a
polydisperse system in the simulation of an N-particle system,
one selects the N particle diameters to approximate a desired
distribution density f (σ ) with the corresponding histogram.
Here, two approaches have been used in previous simulation
studies. In a stochastic method, referred to as model S in the
following, one uses random numbers to independently draw
each diameter σi from the distribution f . As a consequence,
one obtains a “configuration” of particle diameters that differs
from sample to sample. Alternatively, to avoid this disorder,
one can choose the N diameters in a deterministic manner, i.e.,
one defines a map ( f , N ) �→ (σ1, . . . , σN ), which uniquely
determines N diameter values. In the following, we refer to
this approach as model D. The diameters in model D should
be selected such that in the limit N → ∞ the histogram of
diameters converges to f as being the case for model S .
Unlike model S , each sample of size N of model D has exactly
the same realization of particle diameters.

Recent simulation studies on polydisperse glassformers
have either used model S (see, e.g., Refs. [8,10–17]) or model
D schemes (see, e.g., Refs. [18–20]). However, a systematic
study is lacking where both approaches are compared. This
is especially important when one considers states of glass-
forming liquids at very low temperatures (or high packing
fractions) where dynamical heterogeneities are a dominant
feature of structural relaxation. For polydisperse systems,
such deeply supercooled liquid states have only recently be-
come accessible in computer simulations, using the swap
Monte Carlo technique [21,22]. For these states, the additional
sample-to-sample fluctuations in model S are expected to
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strongly affect static and dynamic fluctuations in the system,
as quantified by appropriate susceptibilities.

We emphasize that sample-to-sample fluctuations should
not be confused with ensemble fluctuations [23]. To un-
derstand the conceptual difference, note that the quenched
disorder in model S is imposed via the stochastic selection
of the diameters and is therefore fixed during the simula-
tion of a given sample. On the contrary, the choice of the
physical ensemble determines the dynamics of a sample by
either constraining thermodynamic variables, such as particle
number, volume, etc., or allowing fluctuations of these vari-
ables. However, below we will see that sample-to-sample fluc-
tuations due to the quenched disorder can cause similar effects
as ensemble fluctuations, as reported, e.g., in Refs. [24,25].

Note that the models S and D are only different with
respect to sample-to-sample fluctuations. These fluctuations
are in the focus of this article. However, as we will see below,
both models have the same Hamilton function and the his-
tograms of the diameters of both models converge to the same
target distribution f . In this sense, both models are consistent.
Thus, one expects to measure the same intrinsic observables,
independently of the model, for sufficiently large system
size N .

In this work, we compare a model S to a model D approach
for a polydisperse glassformer, using molecular dynamics
(MD) computer simulations in combination with the swap
Monte Carlo (SWAP) technique. This hybrid scheme allows
us to equilibrate samples at very low temperatures far below
the critical temperature of mode coupling theory. We analyze
static and dynamic susceptibilities and their dependence on
temperature T and system size N , keeping the number density
constant. We show that in the thermodynamic limit, N → ∞,
the sample-to-sample fluctuations of model S lead to a finite
static disorder susceptibility of extensive observables. This
result is numerically shown for the potential energy. More-
over, we analyze fluctuations of a time-dependent overlap
correlation function Q(t ) via a dynamic susceptibility χ (t ). At
low temperatures, χ in model S is strongly enhanced when
compared with the one in model D. This finding indicates
that it is crucial to carefully analyze the disorder due to size
polydispersity when one uses a model S approach. Below, in
the conclusions, we discuss the pros and cons of models S
and D with respect to their use in simulations of polydisperse
systems.

In Sec. II, we introduce the model for a polydisperse soft-
sphere system and define the models S and D. The main
details of the simulations are given in Sec. III. Then, Sec. IV
is devoted to the analysis of static fluctuations of the poten-
tial energy. Here, we discuss in detail thermal fluctuations in
terms of the specific heat CV (T ) and static sample-to-sample
fluctuations by a disorder susceptibility. In Sec. V, dynamic
fluctuations of the overlap function Q(t ) are investigated. Fi-
nally, in Sec. VI, we summarize and draw conclusions.

II. POLYDISPERSE MODEL SYSTEM
AND CHOICE OF DIAMETERS

Particle interactions. As a model glassformer, we consider
a polydisperse nonadditive soft-sphere system of N parti-
cles in three dimensions. This model has been proposed by

Ninarello et al. [14]. The particles are placed in a cubic box of
volume V = L3, where L is the linear dimension of the box.
Periodic boundary conditions are imposed in the three spatial
directions. The particles have identical masses m and their
positions and velocities are denoted by ri and vi, i = 1, . . . , N ,
respectively. The time evolution of the system is given by
Hamilton’s equations of motion with the Hamiltonian H =
K + U . Here, K = ∑N

i=1 p2
i /m is the total kinetic energy and

pi = mvi is the momentum of particle i. Interactions between
the particles are pairwise such that the total potential energy
U can be written as

U =
N−1∑
i=1

N∑
j>i

u(ri j/σi j ). (1)

Here the argument of the interaction potential u is x = ri j/σi j ,
where ri j = |ri − r j | denotes the absolute value of the dis-
tance vector between particles i and j. The parameter σi j is
related to the “diameters” σi and σ j , respectively, as specified
below. The pair potential u is given by

u(x) = u0(x−12 + c0 + c2x2 + c4x4) �(xc − x), (2)

where the Heaviside step function � introduces a dimension-
less cutoff xc = 1.25. The unit of energy is defined by u0.
The constants c0 = −28/x12

c , c2 = 48/x14
c , and c4 = −21/x16

c
ensure continuity of u at xc up to the second derivative.

We consider a polydisperse system, i.e., each particle is al-
lowed to have a different diameter σi. In the following, lengths
are given in units of the mean diameter σ̄ , to be specified
below. A nonadditivity of the particle diameters is imposed
in the sense that

σi j = σi + σ j

2
(1 − 0.2|σi − σ j |). (3)

This nonadditivity has been introduced to suppress crystalliza-
tion [14] which is in fact provided down to temperatures far
below the critical temperature of mode coupling theory.

Choice of particle diameters. The diameters σi of the
particles are chosen according to two different protocols. In
model S , each diameter is drawn independently from the same
probability density f (σ ). In model D, the diameters for a
system of size N are chosen in a deterministic manner such
that their histogram approximates f in the limit N → ∞. As
in Ref. [14], we consider a function f (σ ) ∼ σ−3. In the case
of an additive hard-sphere system, this probability density
ensures that, within each diameter interval of constant width,
the same volume is occupied by the spheres.

Model S . For model S , particle diameters σi are indepen-
dently and identically distributed, each according to the same
distribution density

f (σ ) = Aσ−31[σm,σM](σ ). (4)

Here 1B(σ ) denotes the indicator function, being one if σ ∈ B
and zero otherwise. The normalization

∫
f (σ ) dσ = 1 is pro-

vided by the choice A = 2/(σ−2
m − σ−2

M ). We define the unit
of length as the expectation value of the diameter,

σ̄ =
∫

σ f (σ ) dσ, (5)

which implies σM = σm/(2σm − 1). We set the lower diam-
eter bound to σm = 29/40 = 0.725. Thus, the upper bound
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is given by σM = 29/18 = 1.61 and the amplitude in Eq. (4)
is A = 29/22 = 1.318. Note that the ratio σm/σM = 20/9 =
2.2, chosen in this work, deviates by less than 0.24% from
the values 2.219 and 2.217 reported in Refs. [14] and [26],
respectively. The degree of polydispersity δ can be defined
via the equation δ2 = ∫

(s − σ̄ )2 f (s)ds/σ̄ 2 and has the value
δ ≈ 22.93% in our case.

In practice, random numbers σ following a distribution f
can be generated from a uniform distribution on the interval
[0,1] via the method of inversion of the cumulative distribu-
tion function (CDF). The CDF is defined as

F (σ ) =
∫ σ

−∞
f (s) ds. (6)

Its codomain is the interval [0,1]. Now the idea is to use a
uniform random number Y ∈ [0, 1] to select a point on the
codomain of F . Then, via the inverse of the CDF, F−1 :
[0, 1] → [σm, σM], one can map Y to the number

σ = F−1(Y ) =
(

1

σ 2
− 2

A
Y

)−1/2

, (7)

which follows the distribution f as desired.
The empirical CDF FN associated with a sample of N

diameter values reads

FN (σ ) = N−1
N∑

i=1

1(−∞,σ ](σi ). (8)

Since for model S the diameters σi are independently and
identically distributed according to the CDF F , the following
relation holds for all σ ∈ R:

lim
N→∞

FS
N (σ )

almost surely= F (σ ). (9)

This follows from the strong law of large numbers.
Additive packing fraction. To a hard-sphere sample with

particle diameters σi, i = 1, . . . , N , one can assign the addi-
tive hard-sphere packing fraction

φhs = 1

V

N∑
i=1

π

6
σ 3

i . (10)

For model S , the value of φhs fluctuates among independent
samples of size N around the expectation value

φ∞
hs := ES [φhs] = πn

6
A(σM − σm ) ≈ 0.612. (11)

Here n = N/V is the number density and the expectation
ES [. ] is calculated with respect to the diameter distribution∏N

i=1 f (σi ) on the global diameter space. The variance of φhs

can be written as

VarS (φhs) = N−1

(
πn

6

)2

VarS (σ 3), (12)

where VarS (σ 3) is the variance of σ 3
i for a single particle. The

fluctuations VarS (φhs) ∝ N−1 vanish for N → ∞. Beyond
that, the disorder susceptibility

χS
dis[φhs] = NVarS (φhs) = const. > 0 (13)

is constant and finite for model S . In Sec. IV B, the disorder
fluctuations for model S will be discussed and analyzed in
more depth.

Note that φhs is not an appropriate measure for a nonad-
ditive polydisperse model that we use in our work. Therefore,
later on, we define an effective packing fraction φeff to account
for nonadditive particle interactions.

Model D. For model D, we also use the CDF F to obtain
the particle diameters σi, i = 1, . . . , N , but now we generate
them in a deterministic manner. Our upcoming construction
will satisfy the following three conditions:

(1) The construction is deterministic. The system size N
uniquely defines the diameters,

N �→ σ1, . . . , σN . (14)

(2) Convergence: the empirical CDF FD
N approximates F .

The convergence is uniform,

lim
N→∞

FD
N

uniform= F. (15)

Thus, models S and D are consistent.
(3) Constraint: for a given one-particle property θ (σ ) of

the diameter, the following constraint is fulfilled:

1

N

N∑
i=1

θ (σi ) = ES [ θ ]. (16)

This means that the empirical mean of the function θ (σi )
equals the corresponding expectation ES [ θ (σi) ] in model S .
To ensure this, θ is required to be a strictly monotonic function
in σ .

For our work, we use θ (σ ) = π
6 σ 3, inspired by the additive

hard-sphere packing fraction, cf. Eq. (10). Here, Eq. (16)
ensures that φhs has the same value for any N ,

φD
hs = ES [φhs] ≡ φ∞

hs . (17)

So, how do we define the N diameters σi in the framework
of model D? First, we introduce N + 1 equidistant nodes
along the codomain of F ,

hi = i/N, i = 0, . . . , N. (18)

Their pre-images si are found on the domain of F ,

si = F−1(hi ). (19)

We then define particle diameters σi, i = 1, . . . , N , via

θ (σi) = N
∫ si

si−1

θ (σ ) f (σ ) dσ. (20)

Since θ is assumed to be strictly monotonic, its inverse θ−1 ex-
ists and σi is uniquely defined by Eq. (20). By summing over
i the constraint Eq. (16) is fulfilled. The proof of the uniform
convergence limN→∞ FD

N = F is presented in Appendix A.
Note the analytical nature of the convergence for model D in
contrast to the stochastic one for model S , cf. Eq. (9).

Equation (20) with the choice θ (σ ) = π
6 σ 3 is a sensi-

ble constraint for an additive hard-sphere system. For our
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(a)

(b)

FIG. 1. (a) Histogram of N = 500 particle diameters σi of mod-
els S (blue) and D (red), respectively. For model S a single
realization is shown, where each σi is drawn independently from
the density f (σ ) (green). In both histograms, 70 bins are used. The
vertical arrows indicate the minimum and maximum diameters σm

and σM, respectively. (b) Cumulative distribution function (CDF) F
(green) and empirical CDF FD

N for model D (red) as a function of
diameter σ for the example N = 10. The diameters σi are constructed
from Eqs. (18)–(20), as graphically illustrated for σ6.

nonadditive soft-sphere system it is a minor tweak and not
an essential condition. Another reasonable choice would be
θ (σ ) = σ , which ensures that the empirical mean of the di-
ameters exactly equals the unit of length σ̄ . Alternatively, one
could ignore the constraint Eq. (16) and thus also Eq. (20)
entirely and define σi = si via Eq. (19)—note that one obtains
N + 1 diameters in this case. The latter approach was used in
Ref. [20]. We expect that all these options are equivalent in
the limit N → ∞.

Figure 1(a) illustrates the distribution of diameters for the
models S and D. In each case, we show one histogram for
N = 500 particles, in comparison to the distribution density

f . For a meaningful comparison, we have chosen the same
number of 70 bins for both histograms. Since model S is of
stochastic nature, we show the histogram for a single realiza-
tion of diameters. In contrast, for model D the histogram at
a given N and bin number is uniquely defined (assuming an
equidistant placement of bins on [σm, σM]). The fluctuations
around f for model S appear to be larger than for D. In the
paragraph below, “Order of convergence,” we put this finding
on an analytical basis.

Figure 1(b) illustrates the construction of diameters σi for
model D, based on the CDF F , for a small sample size
N = 10. For the resulting diameters the empirical CDF FD

N
is shown.

Order of convergence. Having established the convergence
limN→∞ FN = F for models S and D, we now compare their
order of convergence. To this end, we calculate 	F , defined
as the square-root of the mean-squared deviation between FN

and F ,

	F = {E[(FN − F )2]}1/2. (21)

Here, E[. ] refers to the expectation with respect to the global
diameter distribution. For model D, the expectation E[. ] is
trivial and we obtain 	FD = |FD

N − F |. As shown in the
Appendixes A and B, the results for model D and S are,
respectively,

	FD � N−1, (22)

	FS = [F (1 − F )]1/2N−1/2. (23)

This means that the order of convergence for model D is at
least 1, in contrast to model S where the order is only 1/2. In
this aspect, model D is superior to model S , since its diameter
distribution approaches the thermodynamic limit faster. Nu-
merically, from the equations above, one has maxσ 	FD �
maxσ 	FS already for N � 4.

III. SIMULATION DETAILS

Depending on the protocols introduced below, different
particle-based simulation techniques are used, among which
are molecular dynamics (MD) simulations, the swap Monte
Carlo (SWAP) method, and the coupling of the system to a
Lowe-Andersen thermostat (LA).

In the MD simulations, Newton’s equations of motion are
numerically integrated via the velocity form of the Verlet
algorithm by using a time step of 	t = 0.01 t0 (with t0 =
σ̄
√

m/u0 setting the unit of time in the following). We employ
the SWAP method in combination with the MD simulation
[27]. To this end, every 25 MD steps, N trial SWAP moves
are performed. In a single SWAP move, a particle pair (i, j)
is randomly selected, followed by the attempt to exchange
their diameters (σi, σ j ) according to a Metropolis criterion.
The probability PSWAP to accept a SWAP trial as a func-
tion of T is shown in Fig. 2. It indicates that even deep in
the glassy state (far below the glass-transition temperature
T SWAP

g ≈ 0.06, which we define later on), the acceptance rate
for a SWAP move is still �4% for T � 0.01. The latter is the
lowest temperature shown here.

During the equilibration protocols, in each step, we couple
the system to a Lowe-Andersen thermostat [28] for identical
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FIG. 2. Acceptance rate PSWAP of diameter exchange trials as a
function of temperature T .

masses m to reach a target temperature T : For each particle
pair (i, j) closer than a cutoff RT and with a probability 
	t
new velocities are generated as

vnew
i/ j = vi/ j ± 1

2

(
ζ

√
2kBT

m
− (vi − v j ) · r̂i j

)
r̂i j, (24)

where r̂i j = ri j/|ri j | and ζ is a normally distributed variable
with expectation value of 0 and variance of 1. This means that
only the component of the relative velocity parallel to r̂i j is
thermalized, preserving the momentum as well as the angular
momentum. We choose RT = xc and 
 = 4.

Both for model S and model D, we consider different
system sizes N = 256, 500, 1000, 2048, 4000, and 8000 par-
ticles at different temperatures T . In each case, we prepare
60 independent configurations as follows: The initial positions
are given by a face-centered-cubic lattice (with cavities in case
that N �= 4k3 for all integers k), while the initial velocities
have a random orientation with a constant absolute value
according to a high temperature T = 5. The total momen-
tum is set to 0 by subtracting

∑
i vi/N from the velocity of

each particle. The initial crystal is melted for a simulation
time tmax = 2000 with 	t = 0.001, applying both the SWAP
Monte Carlo and the LA thermostat. Then we cool the sample
to T = 0.3 for the same duration, followed by a run with
	t = 0.01 over the time tmax = 105 at the target temperature
T . After that we switch off SWAP (to ensure that the mean
energy remains constant in the following) and measure a time
series H (t ) of the total energy over a time span of 0.75tmax,
with tmax = 105. Then we calculate the corresponding mean
Hav and the standard deviation sd(H ), and as soon as the
condition |H (t ) − Hav| < 0.01 sd(H ) is met, we switch off the
LA thermostat and perform a microcanonical NV E simulation
for the remaining time up to t = tmax. This procedure reduces
fluctuations in the final temperature T for subsequent NV E
production runs.

For the analysis that we present in the following, we mostly
compare NV E with SWAP production runs (in both cases
without the LA thermostat). Also, we perform MD produc-
tion runs with the coupling to the LA thermostat but without
applying the SWAP, and accordingly refer to these runs as
the LA protocol. For all of these production runs, the initial
configurations are the final samples obtained from the equi-
libration protocol described above. We emphasize that the
SWAP dynamics are not realistic in the sense that it cannot
be realized experimentally.

For the LA thermostat and the SWAP Monte Carlo, pseu-
dorandom numbers are generated by the Mersenne Twister
algorithm [29]. For each sample, a different seed is chosen to

ensure independent sequences. For an observable we eventu-
ally determine its 95% confidence interval from its empirical
CDF, which is calculated via Bootstrapping [30] with 1000
repetitions.

IV. STATIC FLUCTUATIONS

In the following two sections “Thermal fluctuations” and
“Disorder fluctuations,” we consider two kinds of fluctua-
tions. Thermal fluctuations quantify intrinsic fluctuations of
phase-space variables for a given diameter configuration.
These intrinsic observables are expected to coincide for both
models S and D, provided that N is sufficiently large. As an
example, we study thermal energy fluctuations, as quantified
by the specific heat (here, numerical results are only shown
for model D). Below, we use this quantity to determine the
glass-transition temperatures for the different dynamics.

In model S , the dependence of thermally averaged observ-
ables on the diameter configuration leads to sample-to-sample
fluctuations that are absent in model D. We measure these
fluctuations in terms of a disorder susceptibility, exemplified
via the potential energy.

A. Thermal fluctuations

Let us consider an N-particle sample of our system. An ob-
servable O that characterizes the state of this sample depends
in general on the particle coordinates r = (r1, . . . , rN ), the
momenta p = (p1, . . . , pN ), and the particle diameters σ =
(σ1, . . . , σN ). When we denote the phase-space configuration
by q = (r, p), we can write the observable as O = O(q, σ ). Its
thermal average can be expressed as

〈O〉(σ ) = E(O|σ ) =
∫

O(q, σ )ρ(q|σ ) dq, (25)

where ρ(q|σ ) is a conditional phase-space density. In the case
of the canonical NV T ensemble, it is given by

ρ(q|σ ) = Z−1 exp[−H (q|σ )/(kBT )], (26)

with Z = ∫
exp[−H (q|σ )/(kBT )] dq being the partition func-

tion and H = K + U the Hamiltonian, cf. Sec. II.
In the simulations, we compute 〈O〉(σ ) via the average

of an equidistant time sequence q(ti ) (with #ti = 5000) over
a time window tmax = 105. This approach is valid for an
ergodic system—by definition—in case sufficient sampling
is ensured. Then, the result does not depend on the initial
condition q(0). However, it does depend on the realization of
σ and, of course, the ensemble parameters, e.g., the temper-
ature T .

Thermal fluctuations of the observable O can be quantified
in terms of the thermal susceptibility

χthm[O] = Var(O|σ )/N = 〈O2 − 〈O〉2〉/N. (27)

Here the variance Var(. ) is calculated according to the phase-
space density (26). The normalization for χthm is chosen such
that, for an extensive observable O, we expect finite values for
limN→∞ χthm[O].

An important quantity that is related to the thermal suscep-
tibility of the potential energy U is the excess specific heat at
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FIG. 3. Specific heat CV as a function of temperature T for
model D with N = 2048 particles. The solid lines indicate the glass
transition temperatures, corresponding to the microcanonical MD
simulations (green, T NV E

g = 0.11) and the simulations with SWAP
dynamics (blue and red, T SWAP

g = 0.06). Coupling to the LA thermo-
stat but without SWAP is represented by the orange line. The black
arrow indicates the Dulong-Petit limit, CV = 3/2.

constant volume, defined by

CV = 1

N

∂〈U 〉
∂T

. (28)

In the canonical NV T ensemble, the relation between CV and
the thermal susceptibility χNV T

thm [U ] is

CV = χNV T
thm [U ]/T 2. (29)

This formula can be converted to the microcanonical NV E
ensemble to obtain [23]

CV = χNV E
thm [U ]

T 2 − (2/3)χNV E
thm [U ]

. (30)

Figure 3 shows CV as a function of temperature T for the dif-
ferent dynamics, namely, the microcanonical MD via Eq. (30),
the MD with SWAP using Eqs. (28) and (29), and the MD with
LA thermostat employing again Eq. (29).

At high temperatures, T � 0.11, the specific heat CV from
the different calculations is in perfect agreement. Upon de-
creasing T , one observes relatively sharp drops in CV for the
microcanonical NV E and the SWAP dynamics. The drops
occur at the temperatures T NV E

g = 0.11 and T SWAP
g = 0.06,

respectively, and indicate the glass transition of the different
dynamics. These estimates of the glass-transition tempera-
tures Tg are consistent with those obtained from dynamic
correlation functions presented in Sec. V.

Another conclusion that we can draw from Fig. 3 is that
fluctuations in U , as quantified by the CV from the SWAP dy-
namics simulations, correctly reproduce those in the canonical
NV T ensemble. This can be inferred from the coincidence
of the blue and the red data points at temperatures T >

T SWAP
g . For the NV E dynamics at T < T NV E

g , albeit using
fully equilibrated samples as initial configurations for T >

T SWAP
g , relaxation times become too large to correctly resolve

the fluctuations, as quantified by χNV E
thm [U ]. We underestimate

them within our finite simulation time and effectively mea-
sure a frequency-dependent specific heat [31]. Thus, from the
monotonicity of Eq. (30), CV is underestimated as well. Fur-
thermore, from the coincidence of the green with the orange
data points, corresponding to the NVE and LA dynamics,
respectively, we can conclude that the LA thermostat correctly
reproduces the fluctuations in the canonical NV T ensemble.

For the NV E as well as LA dynamics, we see the Dulong-
Petit law, i.e., for T → 0 the specific heat approaches the
value CV = 3/2. An exception to this finding are the results
calculated from the SWAP dynamics. This can be understood
by the fact that the SWAP dynamics are associated with fluc-
tuating particle diameters even at very low temperatures; thus
the resulting dynamics cannot be described in terms of the
harmonic approximation for a frozen solid.

B. Disorder fluctuations

In model S , the Hamiltonian H (q|σ ) is parametrized by
random variables σ and this imposes a quenched disorder onto
the system. This leads to fluctuations that can be quantified
in terms of a disorder susceptibility that we shall define and
analyze in this section.

To this end, we first introduce the diameter distribution
density for both models,

g(σ ) =
{

�N
i=1 f (σi ) for modelS

�N
i=1δD

(
σi − σD

i

)
for modelD,

(31)

where δD denotes the Dirac delta function.
Let us consider a variable B = B(σ ). This could be a

function such as the additive hard-sphere packing fraction φhs

or the thermal average of a phase-space function at a given
diameter configuration σ , e.g., 〈U 〉. The disorder average of
B, denoted by B, is the expectation value of B with respect to
the distribution density g,

B = E(B) =
∫

B(σ )g(σ ) dσ. (32)

Note that, in our analysis below, disorder averages are calcu-
lated by an average over all samples, i.e., over 60 realizations
of σ .

Fluctuations of an extensive quantity B ∼ N and its cor-
responding “density” b = B/N can be measured by disorder
susceptibilities, defined as

χdis[B] = Var(B)/N = B2 − B
2
/N, (33)

χdis[b] = NVar(b). (34)

These two different definitions have to be applied for a mean-
ingful scaling, i.e., to ensure χdis[B] = χdis[b]. For model D,
we have χD

dis[B] = 0 for any B. In contrast, for model S , the
variable B(σ ) fluctuates from sample to sample as quantified
by χdis[B]. Here, in general, limN→∞ χdis[B] �= 0, as exem-
plified by the fluctuations of the additive packing fraction:
In Sec. II, we showed VarS (φhs) ∝ 1/N , and thus we have
χS

dis[φhs] = const. > 0.
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(a)

(b)

FIG. 4. (a) Mean potential energy 〈U 〉(σ ) as a function of tem-
perature T . For model S, individual curves for each of the 60 samples
are shown for systems with N = 256 (blue lines) and N = 2048
(orange lines) and for model D for the system with N = 256. (b) Dis-
order susceptibility χdis[〈U 〉] for different values of N .

Potential energy. Having introduced the disorder average
and susceptibility, we consider the variable B(σ ) = 〈U 〉(σ ),
corresponding to the thermal average of the potential energy
for a given sample with diameter configuration σ .

In Fig. 4(a) the dependence of 〈U 〉(σ ) on temperature T is
shown. For a given model and system size N , we present 60
curves corresponding to 60 independent samples. For model
S , results for N = 256 and 2048 are shown. Here, the di-
ameter configurations σ vary among the samples and thus,
the potential energy fans out into various curves 〈U 〉(T ). If
we measure the fluctuations of the mean potential energy
per particle, 〈U 〉(σ )/N , with its variance, the fluctuations
decrease with increasing N , as expected. For model D, we
show the curves of 60 independent samples at N = 256; here,
sample-to-sample fluctuations are completely absent and all
data collapse onto a single curve.

Figure 4(b) shows the disorder susceptibility χdis[〈U 〉] of
model S for different system sizes. As can be inferred from
the figure, in a nonmonotonic manner, χdis[〈U 〉] seems to
approach a finite temperature-dependent value in the limit

FIG. 5. Reduced effective packing fraction 〈φeff〉/φ∞
hs as a func-

tion of temperature T . The inset zooms into a region around
〈φeff〉/φ∞

hs = 0.775.

N → ∞,

lim
N→∞

χS
dis[〈U 〉] = constant(T ) > 0. (35)

Effective packing fraction. Now, we show that the disorder
fluctuations in the potential energy 〈U 〉(σ ) and the empirical
limit value for χS

dis[〈U 〉], as given by Eq. (35), can be ex-
plained by fluctuations in a single scalar variable, namely, an
effective packing fraction φeff . The additive packing fraction
φhs, cf. Eq. (10), is not an appropriate measure of a packing
fraction for the nonadditive soft-sphere system that we con-
sider in this study. Therefore, we define an effective packing
fraction φeff to take into account the nonadditivity of our
model system.

The idea is to assign to each particle i an “average” volume
Vi that accounts for the nonadditive interactions. For this pur-
pose, we first identify all |Ni| neighbors of i within a given
cutoff rc,

Ni = { j ∈ {1, . . . , N} | j �= i, ri j < rc}. (36)

Here rc = 1.485 is chosen, which corresponds to the location
of the first minimum of the radial distribution function at
the temperature T = 0.3. Then, the volume Vi of particle i is
defined as

Vi = 1

|Ni|
∑
j∈Ni

π

6
σ 3

i j, (37)

where nonadditive diameters σi j are given by Eq. (3).
Now we define an effective packing fraction φeff as

φeff = V −1
N∑

i=1

Vi. (38)

Note that different from the hard-sphere packing fraction φhs,
the value of the effective packing fraction φeff of a given sam-
ple not only depends on the diameters σi, but it also depends
on the coordinates ri. Thus, in our simulations of glassforming
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liquids, it is a thermally fluctuating variable. Therefore, we
will use its thermal average 〈φeff〉 in our analysis below.

An alternative effective packing fraction can be defined
by assigning an average diameter Si = 1

|Ni|
∑

j∈Ni
σi j instead

of an average volume Vi to each particle. The corresponding
packing fraction is given by

φ̃eff = V −1
N∑

i=1

π

6
S3

i . (39)

Below, we use the effective packing fractions φeff and φ̃eff

to analyze the sample-to-sample fluctuations in model S . Al-
though both definitions lead to similar results, we shall see
that φeff seems to provide a slightly better characterization
of the thermodynamic state of the system than φ̃eff . Figure 5
displays the temperature dependence of 〈φeff〉. It is almost
constant over the whole considered temperature range. This
is a plausible result when one considers the weak temperature
dependence of the structure of glassforming liquids. As we
can infer from the inset of this figure, 〈φeff〉 increases mildly
from about 0.772 at T = 0.3 to about 0.779 at T = 0.01.
Now, we will use the variable 〈φeff〉 to quantify the sample-
to-sample fluctuations of the potential energy per particle
〈U 〉(σ )/N .

In Fig. 6(a), we show 〈U 〉(σ )/N as a function of the mean
packing fraction 〈φeff〉(σ ) at the temperature T = 0.10. Here,
we have used the data for N = 256, 500, and 2048 particles.
The plot suggests that the fluctuations of 〈U 〉 can be explained
by the variation of 〈φeff〉. We elaborate this finding by calcu-
lating the coefficient of determination R2 of a linear-regression
fit with dependent variable 〈U 〉/N and regressor 〈φeff〉.

In Fig. 6(b) we show R2 as a function of T for the sys-
tem size N = 8000. The linear regression analysis shows that
approximately 99.5% of the fluctuations can be explained
by 〈φeff〉. This is a striking but physically plausible result,
as it shows how a reduction from N degrees of freedom
given by σ to one degree of freedom given by a thermo-
dynamically relevant parameter 〈φeff〉 is sufficient to explain
nearly all of the fluctuations. Also included in Fig. 6(b) is
the coefficient of determination R2 using φ = φhs and 〈φ̃eff〉
as a regressor. While we obtain R2 ≈ 0.95 for φ = φhs, i.e.,
clearly below the value for 〈φeff〉, the value of R2 for 〈φ̃eff〉
is only slightly smaller, R2 ≈ 0.99. Thus, among the three
measures of the packing fraction, the variable 〈φeff〉 gives the
best results. Note that the glass transition at T SWAP

g ≈ 0.06 is
associated with a small drop of R2 for the effective packing
fractions.

Figure 6(c) displays the temperature dependence of R2

for 〈φeff〉 for different system sizes N . The plot indicates
a significant decrease of R2 with decreasing N , especially
at low temperatures around the glass-transition temperature
T SWAP

g ≈ 0.06. The reason is that a linear relationship be-
tween 〈U 〉(σ )/N and 〈φeff〉 is expected to only hold in the
vicinity of the disorder-averaged value 〈φeff〉. For small sys-
tem sizes, however, relatively large nonlinear deviations from
this value occur that are reflected in a lower value of the
coefficient of determination, R2. Moreover, for small N , the
discretized nature of the diameter configuration does not any
longer allow a description in terms of a single variable such as
〈φeff〉.

(a)

(b)

(c)

FIG. 6. (a) Scatter plot showing data points
(〈φeff〉(σ ), 〈U 〉(σ )/N ) for model S at T = 0.10 and different
system sizes N . Each tuple belongs to a particular diameter
realization σ . The red line is obtained via a linear-regression model
φ → 〈U 〉 with dependent variable 〈U 〉 and regressor φ = 〈φeff〉
for N = 2048. Its coefficient of determination is R2 ≈ 0.984.
(b) Coefficient of determination R2 of the linear regression model
φ → 〈U 〉 as a function of T for N = 8000, using φ = φhs (red
triangles), 〈φeff〉 (brown circles), and 〈φ̃eff〉 (orange crosses) as
regressors φ. (c) Similar to (b), but here R2 as a function of T is
shown for regressor φ = 〈φeff〉 only, however for different system
sizes N .

Our empirical results justify the idea to replace the depen-
dency of 〈U 〉 on the diameter configuration σ by one on the
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single parameter 〈φeff〉,
〈U 〉(σ ) ≈ U ∗(〈φeff〉(σ ))

≈ U ∗(〈φeff〉) + ∂U ∗

∂φ

∣∣∣∣
φ=〈φeff 〉

(〈φeff〉 − 〈φeff〉). (40)

Here U ∗ is an unknown function in a scalar variable. Ac-
cording to the Taylor expansion above, fluctuations in 〈U 〉 are
inherited from those in 〈φeff〉 as

Var(U ∗) ≈
(

∂U ∗

∂φ

)2∣∣∣∣
φ=〈φeff 〉

Var(〈φeff〉). (41)

Since 〈φeff〉 should scale similarly to the additive hard-sphere
packing fraction φhs, we have Var(〈φeff〉) ∝ 1/N . Then, since
U ∗ is extensive, Eq. (35) is confirmed.

V. STRUCTURAL RELAXATION

In this section, the dynamic properties of the models S and
D are compared. To this end, we analyze a time-dependent
overlap function that measures the structural relaxation of
the particles on a microscopic length scale. The timescale
on which this function decays varies from sample to sample;
these fluctuations around the average dynamics can be quanti-
fied in terms of a dynamic susceptibility. We shall see that the
susceptibility in model S can be split into two terms. While
the first term is due to thermal fluctuations and also present
in model D, the second term is due to the disorder in σ . At
low temperatures, the contribution from the disorder is the
dominant term in the susceptibility.

For our analysis, we consider MD simulations in the micro-
canonical ensemble as well as hybrid simulations, combining
MD with the swap Monte Carlo technique (see Sec. III). In the
following, we refer to these dynamics as “NV E” and “SWAP,”
respectively.

Glassy dynamics. A peculiar feature of the structural
relaxation of glassforming liquids is the cage effect. On inter-
mediate timescales, each particle gets trapped in a cage that
is formed by its neighboring particles. To analyze structural
relaxation from the cages, we therefore have to look at density
fluctuations on a length scale a similar to the size of the
fluctuations of a particle inside such a cage. On a single-
particle level, a simple time-dependent correlation function
that measures the relaxation is the self part of the overlap
function, defined by

Q(t ) = 1

N

N∑
i=1

�(a − |ri(t ) − ri(0)|). (42)

Here, we choose a = 0.3 for the microscopic length scale. The
behavior of Q(t ) is similar to that of the incoherent intermedi-
ate scattering function at a wave-number corresponding to the
location of the first sharp diffraction peak in the static structure
factor. We note that we have not introduced any averaging
in the definition (42). In the following, we display the decay
of Q(t ) for 60 individual samples at different temperatures.
The corresponding initial configurations at t = 0 were fully
equilibrated with the aid of the SWAP dynamics before, as
explained in Sec. III.

Figure 7 shows the overlap function Q(t ) for model S and
model D, in both cases for the NV E and the SWAP dynamics.
In all cases, we can see the typical signatures of glassy dynam-
ics. At a high temperature, T = 0.3, the function Q(t ) exhibits
a monotonic decay to zero on a short microscopic timescale.
Upon decreasing the temperature first a shoulder and then a
plateau-like region emerges on intermediate timescales. This
plateau extends over an increasing timescale with decreasing
temperature and indicates the cage effect. Particles are es-
sentially trapped within the same microstate in which they
were initially at t = 0. At the high temperature T = 0.3 the
decay of Q(t ) is very similar for NV E and SWAP dynamics.
Toward low temperatures, however, the decay is much faster
in the case of the SWAP dynamics, as expected. A striking
result is that, at lower temperatures, the individual curves in
model S show much larger variation than those in model D.
In the following, these sample-to-sample fluctuations shall be
quantified in terms of a dynamic susceptibility.

Relaxation time τ . From the expectation of the overlap
function, E[Q](t ) (black dashed lines in Fig. 7), we extract
an alpha-relaxation time τ , defined by E[Q](τ ) = 1/e. In
Fig. 8, the logarithm of the timescale τ as a function of
inverse temperature 1/T is shown. Also included in this plot
are the times t∗ where the fluctuations of Q(t ) are maximal,
which will be discussed in the following paragraph “Dynamic
susceptibility.” One observes an increase of τ by about five
orders of magnitude upon decreasing T . This increase is much
quicker for the NV E than for the SWAP dynamics, reflecting
the fact that T SWAP

g is much lower than T NV E
g (cf. Fig. 3). The

glass-transition temperatures defined in Sec. IV via the drop
in the specific heat CV (T ) are approximately consistent with
the alternative definition via τ (Tg) = 105.

Dynamic susceptibility χ (t ). A characteristic feature of
glassy dynamics is the presence of dynamical heterogeneities
that are associated with large fluctuations around the “aver-
age” dynamics. These fluctuations can be quantified in terms
of a dynamic (or four-point) susceptibility. For the overlap
function Q(t ), this susceptibility χ (t ) can be defined as

χ (t ) = NVar(Q(t )). (43)

The function χ (t ) measures the fluctuations of Q(t ) around
the average E[Q](t ). In practice, we use the data of Q(t ) from
the ensemble of 60 independent samples.

Figure 9 shows the dynamic susceptibility χ (t ) for the
same cases as for Q(t ) in Fig. 7. As a common feature
of glassy dynamics [32,33], χ (t ) exhibits a peak χ∗ :=
maxt χ (t ) at t = t∗. The timescale t∗ is roughly equal to
the alpha-relaxation time τ , see Fig. 8. At the temperatures
T = 0.1 for the NV E and T = 0.06 for the SWAP dynamics,
χ∗ is more than one order of magnitude larger for model S
than for model D. This indicates that the disorder in σ of
model S strongly affects the sample-to-sample fluctuations. In
the following paragraph “Variance decomposition” we present
how one can distinguish disorder from thermal fluctuations.
Figure 10 shows the maximum of the dynamic susceptibility
χ∗ as a function of inverse temperature, 1/T , for NV E and
SWAP dynamics. In both cases, the results for model S (χ∗

S )
and model D (χ∗

D) are included, considering systems with
N = 8000 particles. In all cases χ∗ increases with decreasing
temperature T , as expected for glassy dynamics. For both
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FIG. 7. Overlap Q(t ) as a function of time t for NV E (left column) and SWAP dynamics (right column) for models S and D. For the
selected temperatures T the initial configurations are in equilibrium. Solid colored lines represent 60 individual simulations, while black
dashed lines indicate their sample average. All results correspond to systems with N = 8000 particles.

types of dynamics the difference 	χ∗ = χ∗
S − χ∗

D increases
with decreasing temperature as well. The lowest temperatures
for which we can calculate 	χ∗ are (i) T = 0.09 with a rela-

FIG. 8. Relaxation time τ as extracted from the expectation of
the overlap function E[Q](t ) and the time t∗ = arg maxt χ (t ), where
the maximum of the dynamic susceptibility χ (t ) occurs, for NV E
and SWAP dynamics. Here, a system with N = 8000 particles is
considered.

tive deviation 	χ∗/χ∗
D ≈ 18 for the NV E and (ii) T = 0.065

with 	χ∗/χ∗
D ≈ 23 for the SWAP dynamics.

Variance decomposition. To understand the difference
	χ∗ between χS and χD, we decompose the dynamic sus-
ceptibility χS of model S into one term that stems from
the thermal fluctuations of the phase-space variables, and a
second term that is caused by the sample-to-sample variation
of the diameters σ .

As a matter of fact, in model S the overlap function Q(t )
and similar correlation functions depend on two random vec-
tors, namely, the initial phase-space point q0 = (r(0), p(0))
and the diameters σ . As a consequence, we define and calcu-
late χ = NVar(Q) on a probability space with respect to the
joint-probability density

ρ(q0, σ ) = ρ(q0|σ )g(σ ). (44)

Here ρ(q0|σ ) is the conditional phase-space density intro-
duced in Eq. (26) and g(σ ) is the diameter distribution defined
by Eq. (31).

Now, since Q depends on two random vectors q0 and σ ,
we can decompose χ = NVar(Q) according to the variance
decomposition formula, also called law of total variance or
Eve’s law [34]:

Var(Q) = E[Var(Q|σ )] + Var(E[Q|σ ]) (45)

≡ 〈Q2 − 〈Q〉2〉 + 〈Q〉2 − 〈Q〉2
. (46)
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(a) (b)

(c) (d)

FIG. 9. Dynamic susceptibility χ as a function of time t for different temperatures T and systems with N = 8000 particles. Results for all
four combinations of NV E and SWAP dynamics with models S and D are shown, as labeled in panels (a)–(d). Maxima of χ (t ) are marked by
arrows. Prior to their calculation we performed a moving average over the raw data.

Here, E[Var(Q|σ )] describes intrinsic thermal fluctuations,
while the term Var(E[Q|σ ]) expresses fluctuations induced by
the disorder in σ .

The first summand in Eq. (45) is expected to coincide for
both models S and D for sufficiently large N , as Var(Q|σ )
describes intrinsic thermal fluctuations for a given realization
of σ , which are calculated via the model-independent condi-
tional phase-space density ρ(q0|σ ). The physical observable
Var(Q|σ ) should not depend on microscopic details of the
diameter configuration σ for sufficiently large N . For the
cumulative distribution functions of the diameters, the con-
sistency equation limN→∞ FS

N (s) = F (s) = limN→∞ FD
N (s)

holds. Thus, we expect that ES [Var(Q|σ )] ≈ ED[Var(Q|σ )].
This equation should be exact in the limit N → ∞. We have
implicitly used this line of argument also in Sec. IV, where
we have only shown numerical results of the specific heat
for model D. Furthermore, for model D we have exactly
ED[Var(Q|σ )] = Var(Q|σD ) = VarD(Q), since here there is
only one diameter configuration σ = σD for a given system
size N .

Summarizing the results above, we can express the dy-
namic susceptibility for model S as follows:

VarS (Q) = VarD(Q) + VarS (E[Q|σ ]). (47)

Now the aim is to estimate the second summand in Eq. (47).
We assume that we can describe the disorder in σ by a single
parameter, namely the thermally averaged effective packing

fraction 〈φeff〉(σ ), defined by Eq. (38). This idea has already
been proven successful in Sec. IV, when we described the
disorder fluctuations of the potential energy. Similarly, we
write

E[Q|σ ] ≡ 〈Q〉(σ ) ≈ Q∗(〈φeff〉(σ )), (48)

assuming that the values of 〈Q〉(σ ), which depend on N
degrees of freedom, can be described by a function Q∗ that
only depends on a scalar argument, the scalar-valued function
〈φeff〉(σ ). The function Q∗ is unknown, but can be estimated
numerically with a linear-regression analysis, predicting 〈Q〉
with the regressor 〈φeff〉. Insertion of Eq. (48) into Eq. (47)
gives

VarS (Q) ≈ VarD(Q) + VarS (Q∗(〈φeff〉)). (49)

We can write this equation in terms of susceptibilities,

χS ≈ χD + χφ, (50)

χφ := NVarS (Q∗(〈φeff〉)). (51)

Along the lines of Eq. (41) in Sec. IV, we can expand the
overlap function Q∗ around 〈φeff〉 to obtain

VarS (Q∗(〈φeff〉)) ≈ VarS (〈φeff〉)

(
∂Q∗(φ)

∂φ

∣∣∣∣
φ=〈φeff 〉

)2

. (52)
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(a)

(b)

FIG. 10. Maximum of the dynamic susceptibility,
χ∗ = maxtχ (t ), as a function of 1/T for (a) the NV E and
(b) the SWAP dynamics. Results are shown for models S (blue
line) and D (red line) with N = 8000 particles. The green solid line
displays χ∗

S − χ∗
φ , i.e., the total susceptibility minus the explained

part caused by the packing-fraction fluctuations.

Since VarS (〈φeff〉) ∼ VarS (φhs) ∝ N−1 and Q∗ ∼ Q ∈ O(1),
this equation implies that the susceptibility χφ , to leading
order, does not depend on N . Moreover, for a given tem-
perature T and time t , it approaches a constant value in the
thermodynamic limit, N → ∞. For small system sizes, how-
ever, higher-order corrections to Eq. (52) cannot be neglected.
Beyond that, the discretized nature of the system at small N
will lead to a failure of the “continuity assumption” (48) itself.
Finite-size effects of χ will be analyzed below.

In Fig. 10, we show for the system with N = 8000 parti-
cles that χ∗

φ , i.e., χφ evaluated at t = t∗, indeed captures the
sample-to-sample fluctuations in model S due to the disorder
in σ . Both for NV E and SWAP dynamics, it quantitatively
describes the gap between χ∗

S and χ∗
D. In Ref. [25], a similar

effect was observed for a binary hard-sphere system. How-

FIG. 11. χ∗
S as a function of 1/T for different system sizes N

using NV E dynamics. The dashed lines denote N/4, which is the
upper bound according to Popoviciou’s inequality on variances, see
Eq. (53).

ever, in that case, fluctuations of the packing fraction, that
occur in the grand canonical ensemble, were identified as the
dominating term contributing to the dynamic susceptibility.
These fluctuations are conceptually different from our sample-
to-sample fluctuations due to the disorder of the diameters.
However, the successful encoding of the diameter fluctuations
in terms of the effective packing fraction 〈φeff〉 suggests that
both fluctuations might have the same physical origin. In
both cases, the dominating term is proportional to the square
of an overlap function response to “the” packing fraction,
(∂Q/∂φ)2, see Eq. (52).

Finite-size effects: Popoviciou’s inequality on variances.
Here, we analyze finite-size effects of the dynamic suscep-
tibility χ . To this end, we again consider the temperature
dependence of the maximum of the dynamic susceptibility,
χ∗, considering only the case of the NV E dynamics. Note
that for model D finite-size effects in the considered temper-
ature range 0.09 � T � 0.3 are negligible; therefore we only
discuss model S in the following.

Figure 11 shows χ∗
S as a function of 1/T for N = 256,

500, and 8000. At high temperatures T , where fluctuations
are small, there is hardly, if any, dependency on the system
size N . However, upon lowering T a saturation occurs at least
for the small systems. This behavior can be understood by a
hard stochastic upper limit on fluctuations, which is given by
Popoviciou’s inequality on variances [35]. This inequality is
valid for any bounded real-valued random variable X : Let c
and C be the lower and upper bound of X , respectively, then
Popoviciou states that Var(X ) � (C2 − c2)/4. Applying this
result to X = Q with sharp boundaries c = 0 and C = 1 yields

χ ≡ NVar(Q) � N/4. (53)

Our data show that this upper bound is quite sharp for N =
256 and N = 500 at low T . This can be understood by the
fact that the equality of the inequality (53) holds precisely
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when Q is a Bernoulli variable, i.e., when there are exactly
two outcomes Q = 0 or Q = 1 each with probability 1/2. In
this sense, the saturation of χ should occur at temperatures T
and system sizes N at a given t when Q(t ) for approximately
half of the samples has decayed close to 0 while for the other
half Q is still close to 1.

The inequality (53) is very useful to estimate how large
a system size N needs to be to avoid this kind of finite-size
effect: All one has to do is to compare the measured χ at a
given N to the number χc := N/4. In the case that χ ≈ χc,
one has to consider larger system sizes N .

VI. SUMMARY AND CONCLUSIONS

In this work, we use molecular dynamics (MD) computer
simulations in combination with the SWAP Monte Carlo tech-
nique to study a polydisperse model glassformer that has
recently been introduced by Ninarello et al. [14]. Two meth-
ods are used to choose the particle diameters σ1, . . . , σN to
obtain samples with N particles. Both of these approximate
the desired distribution density f (σ ) ∼ σ−3 with their his-
togram. In model S the diameters are drawn from f (σ ) in
a stochastic manner. In model D the diameters are obtained
via a deterministic scheme that assigns an appropriate set
of N values to them. We systematically compare the prop-
erties of model S to those of model D and investigate how
the sample-to-sample variation of the diameters in model S
affects various quantities: (i) classical phase-space functions
such as the potential energy U and its fluctuations, and (ii)
dynamic correlation functions such as the overlap function
Q(t ) and its fluctuations as well.

Obviously, model D has the advantage that always “the
most representative sample” [20] is used for any system size
N , while model S may suffer from statistical outliers, espe-
cially in the case of small N . This indicates that the quenched
disorder introduced by the different diameter configurations in
model S may strongly affect fluctuations that we investigate
systematically in this work.

Our main findings can be summarized as follows: The
sample-to-sample fluctuations in model S can be described
in terms of a single scalar parameter, namely the effective
packing fraction 〈φeff〉(σ ), defined by Eq. (38). In terms of
this parameter, one can explain the disorder fluctuations of
the potential energy (cf. Fig. 6) as well as the gap between
the dynamic susceptibilities of models S and D (cf. Fig. 10).
The sample-to-sample fluctuations of the potential energy in
model S can be quantified in terms of the disorder suscepti-
bility χS

dis which is a nontrivial function of temperature (cf.
Fig. 4) and finite in the thermodynamic limit N → ∞. In
model S , at very low temperatures, the dynamic susceptibility
is dominated by the fluctuations due to the diameter disorder.
Thus, if one is aiming at analyzing the “true” dynamic hetero-
geneities of a glassformer, that stem from the intrinsic thermal
fluctuations, one may preferentially use model D. Note that
it is possible to calculate the same thermal susceptibility in
model S as in model D; however, the calculation in S is
more difficult because it demands an additional average over
the disorder, as shown in Sec. V. This implies that model S
requires more sampling in this case.

Our findings are of particular importance regarding recent
simulation studies of polydisperse glassforming systems in
external fields [15,17,26,36,37] where a model S approach
was used to select the particle diameters. However, in these
works sample-to-sample fluctuations due to the diameter dis-
order have been widely ignored. Exceptions are the studies
by Lerner et al. [36,37] where samples whose energy de-
viates from the mean energy by more than 0.5% were just
discarded. Here the use of a model D scheme would be a more
efficient alternative. However, one should still keep in mind
that with regard to a realistic description of experiments on
polydisperse colloidal systems, it might be more appropriate
to choose model S . This, of course, depends on the specific
experimental setup and protocol.

Finally, we mention that it would be interesting to perform
a similar analysis as presented in this work also for other poly-
disperse glassformers. Work in this direction is in progress.

APPENDIX A: CONVERGENCE OF THE CUMULATIVE
DISTRIBUTION FUNCTION FD

N

Here, we prove that the empirical cumulative distribution
function (CDF) FD

N of model D, see Eqs. (8) and (18–20),
converges uniformly to the exact CDF F defined by Eq. (6).
As we shall see below, the order of convergence is at least 1.
For the strictly monotonic function θ , that we have introduced
in Sec. II, we assume that it is strictly increasing, but the proof
is analogous for a strictly decreasing θ .

In the first step, we show that

σi ∈ [si−1, si], i = 1, . . . , N. (A1)

The starting point is Eq. (20), from which we estimate

θ (σi) � N
∫ si

si−1

θ (si) f (σ ) dσ (A2)

= Nθ (si )
∫ si

si−1

f (σ ) dσ (A3)

= Nθ (si )[F (si) − F (si−1)] (A4)

= Nθ (si )

[
i

N
− i − 1

N

]
= θ (si). (A5)

Since θ is strictly increasing, its inverse θ−1 exists and is
strictly increasing, too. Applying θ−1 to the inequality above
yields σi � si. Similarly, we obtain σi � si−1. This confirms
Eq. (A1).

In the second step, we consider an arbitrary ε > 0 and
natural numbers N � N0 with N0 = �ε−1�. Now we select
σ ∈ R. For σ < σm or σ > σM, we trivially have FD

N (σ ) =
F (σ ). In the remaining case σm � σ � σM, an index i exists
such that si−1 � σ � si. The latter statement is true, because
the union of all intervals [si−1, si] yields the total interval
[σm, σM]. From Eq. (A1) it follows that there are exactly i or
i − 1 particles with σi � σ , so that FD

N (σ ) = i/N or FD
N (σ ) =

(i − 1)/N , respectively.
In the third step, we point out that F (σ ) is a monotonically

increasing function so that

i − 1

N
= F (si−1) � F (σ ) � F (si) = i

N
. (A6)
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Subtracting FD
N (σ ) yields∣∣FD
N (σ ) − F (σ )

∣∣ � 1/N � 1/N0 < ε. (A7)

This proves the uniform convergence

lim
N→∞

FD
N = F (A8)

of the order of convergence of at least 1.

APPENDIX B: CONVERGENCE OF THE CUMULATIVE
DISTRIBUTION FUNCTION FS

N

To find the order of convergence for limN→∞ FS
N = F

of model S , we measure deviations by 	F = (ES [(FS
N −

F )2])1/2, see Eq. (21). We first calculate

(
FS

N − F
)2 = 1

N2

N∑
i=1

N∑
j=1

(1i − F )(1 j − F ), (B1)

1i(σ ) := 1(−∞,σ ](σi ). (B2)

Here, we abbreviated the full notation of the indicator function
1. Its expectation is given by

ES [1i(σ )] = 1 P(σi � σ ) + 0 P(σi > σ ) = F (σ ). (B3)

Here, P denotes the appropriate probability for model S .
When calculating the expectation ES of Eq. (B1), only the di-
agonal terms i = j remain due to the stochastic independence
of the diameters σi and σ j for i �= j. We end up with

ES[(
FS

N − F
)2] = F (1 − F )N−1, (B4)

⇒ 	FS = [F (1 − F )]1/2 N−1/2. (B5)

This means the order of convergence for model S is only 1/2.
Concerning the prefactor, we have maxσ F (1 − F ) = 1/4 at
the σ where F (σ ) = 1/2. Thus it is

max
σ

	FS = 1
2 N−1/2. (B6)

Note that no inequality is used in the calculations above and
thus the order of convergence is sharp.

[1] U. Gasser, J. Phys.: Condens. Matter 21, 203101 (2009).
[2] W. van Megen and S. M. Underwood, Phys. Rev. Lett. 70, 2766

(1993).
[3] W. van Megen and S. M. Underwood, Phys. Rev. E 49, 4206

(1994).
[4] H.-J. Schöpe, G. Bryant, and W. van Megen, Phys. Rev. E 74,

060401(R) (2006).
[5] H.-J. Schöpe, G. Bryant, and W. van Megen, J. Chem. Phys.

127, 084505 (2007).
[6] K. N. Pham, A. M. Puertas, J. Bergenholtz, S. U. Egelhaaf, A.

Moussaïd, P. N. Pusey, A. B. Schofield, M. E. Cates, M. Fuchs,
and W. C. K. Poon, Science 296, 104 (2002).

[7] P. N. Pusey, E. Zaccarelli, C. Valeriani, E. Sanz, W. C. K. Poon,
and M. E. Cates, Philos. Trans. R. Soc. A 367, 4993 (2009).

[8] E. Zaccarelli, S. M. Liddle, and W. C. K. Poon, Soft Matter 11,
324 (2015).

[9] G. Brambilla, D. El Masri, M. Pierno, L. Berthier, L. Cipelletti,
G. Petekidis, and A. B. Schofield, Phys. Rev. Lett. 102, 085703
(2009).

[10] L. Klochko, J. Baschnagel, J. P. Wittmer, O. Benzerara, C.
Ruscher, and A. N. Semenov, Phys. Rev. E 102, 042611 (2020).

[11] M. Leocmach, J. Russo, and H. Tanaka, J. Chem. Phys. 138,
12A536 (2013).

[12] T. S. Ingebrigtsen and H. Tanaka, J. Phys. Chem. B 119, 11052
(2015).

[13] T. S. Ingebrigtsen, T. B. Schrøder, and J. C. Dyre, J. Phys.
Chem. B 125, 317 (2021).

[14] A. Ninarello, L. Berthier, and D. Coslovich, Phys. Rev. X 7,
021039 (2017).

[15] B. Guiselin, G. Tarjus, and L. Berthier, J. Chem. Phys. 153,
224502 (2020).

[16] V. Vaibhav, J. Horbach, and P. Chaudhuri, J. Chem. Phys. 156,
244501 (2022).

[17] K. Lamp, N. Küchler, and J. Horbach, J. Chem. Phys. 157,
034501 (2022).

[18] T. Voigtmann and J. Horbach, Phys. Rev. Lett. 103, 205901
(2009).

[19] F. Weysser, A. M. Puertas, M. Fuchs, and T. Voigtmann, Phys.
Rev. E 82, 011504 (2010).

[20] L. Santen and W. Krauth, arXiv:cond-mat/0107459.
[21] N.-H. Tsai, F. F. Abraham, and G. Pound, Surf. Sci. 77, 465

(1978).
[22] T. S. Grigera and G. Parisi, Phys. Rev. E 63, 045102(R) (2001).
[23] J. Lebowitz, J. Percus, and L. Verlet, Phys. Rev. 153, 250

(1967).
[24] L. Berthier, G. Biroli, J.-P. Bouchaud, W. Kob, K. Miyazaki,

and D. R. Reichman, J. Chem. Phys. 126, 184503 (2007).
[25] E. Flenner and G. Szamel, Phys. Rev. Lett. 105, 217801

(2010).
[26] B. Guiselin, L. Berthier, and G. Tarjus, Phys. Rev. E 102,

042129 (2020).
[27] L. Berthier, E. Flenner, C. J. Fullerton, C. Scalliet, and M.

Singh, J. Stat. Mech.: Theory Exp. (2019) 064004.
[28] E. Koopman and C. Lowe, J. Chem. Phys. 124, 204103

(2006).
[29] M. Matsumoto and T. Nishimura, ACM Trans. Model. Comput.

Simul. 8, 3 (1998).
[30] B. Efron, Breakthroughs in Statistics (Springer, New York,

1992), pp. 569–593.
[31] P. Scheidler, W. Kob, A. Latz, J. Horbach, and K. Binder, Phys.

Rev. B 63, 104204 (2001).
[32] D. Chandler, J. P. Garrahan, R. L. Jack, L. Maibaum, and A. C.

Pan, Phys. Rev. E 74, 051501 (2006).
[33] A. Cavagna, Phys. Rep. 476, 51 (2009).
[34] K. L. Chung, A Course in Probability Theory (Academic Press,

New York, 1974).
[35] T. Popoviciu, Mathematica 9, 129 (1935).
[36] E. Lerner, J. Non-Cryst. Solids 522, 119570 (2019).
[37] C. Rainone, E. Bouchbinder, and E. Lerner, Proc. Natl. Acad.

Sci. U.S.A. 117, 5228 (2020).

064103-14

https://doi.org/10.1088/0953-8984/21/20/203101
https://doi.org/10.1103/PhysRevLett.70.2766
https://doi.org/10.1103/PhysRevE.49.4206
https://doi.org/10.1103/PhysRevE.74.060401
https://doi.org/10.1063/1.2760207
https://doi.org/10.1126/science.1068238
https://doi.org/10.1098/rsta.2009.0181
https://doi.org/10.1039/C4SM02321H
https://doi.org/10.1103/PhysRevLett.102.085703
https://doi.org/10.1103/PhysRevE.102.042611
https://doi.org/10.1063/1.4769981
https://doi.org/10.1021/acs.jpcb.5b02329
https://doi.org/10.1021/acs.jpcb.0c09726
https://doi.org/10.1103/PhysRevX.7.021039
https://doi.org/10.1063/5.0022614
https://doi.org/10.1063/5.0090330
https://doi.org/10.1063/5.0086626
https://doi.org/10.1103/PhysRevLett.103.205901
https://doi.org/10.1103/PhysRevE.82.011504
http://arxiv.org/abs/arXiv:cond-mat/0107459
https://doi.org/10.1016/0039-6028(78)90134-6
https://doi.org/10.1103/PhysRevE.63.045102
https://doi.org/10.1103/PhysRev.153.250
https://doi.org/10.1063/1.2721554
https://doi.org/10.1103/PhysRevLett.105.217801
https://doi.org/10.1103/PhysRevE.102.042129
https://doi.org/10.1088/1742-5468/ab1910
https://doi.org/10.1063/1.2198824
https://doi.org/10.1145/272991.272995
https://doi.org/10.1103/PhysRevB.63.104204
https://doi.org/10.1103/PhysRevE.74.051501
https://doi.org/10.1016/j.physrep.2009.03.003
https://doi.org/10.1016/j.jnoncrysol.2019.119570
https://doi.org/10.1073/pnas.1919958117

