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From a feedback-controlled demon to an information ratchet in a double quantum dot
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We present a simple strategy for constructing an information ratchet or memory-tape model of Maxwell’s
demon, from a feedback-controlled model. We illustrate our approach by converting the Annby-Andersson
feedback-controlled double quantum dot model [Phys. Rev. B 101, 165404 (2020)] to a memory-tape model.
We use the underlying network structure of the original model to design a set of bit interaction rules for the
information ratchet. The new model is solved analytically in the limit of long interaction times. For finite-time
interactions, semianalytical phase diagrams of operational modes are obtained. Stochastic simulations are used
to verify theoretical results.
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I. INTRODUCTION

In a letter to Peter Tait in 1867, James Maxwell described
a thought experiment in which a hypothetical creature—now
known as Maxwell’s demon—seemingly beats the second
law of thermodynamics by performing measurements and
feedback on the motions of individual gas molecules. This
thought experiment initiated a line of research that exposed
deep connections between thermodynamics and information
processing. Recent years have seen renewed activity in this
field, with theoretical progress as well as experimental studies
adding to our understanding of these connections. See, for
example, Ref. [1] for a review of the history of Maxwell’s de-
mon and the current experimental state of the art and Ref. [2]
for an introduction to the theoretical formalism of information
thermodynamics.

Over the past century and a half, numerous variations
of Maxwell’s demon have been proposed, notably includ-
ing Smoluchowski’s trapdoor [3–5], Szilard’s engine [6], and
Feynman’s ratchet and pawl [7,8] as early examples. These
and other demons can broadly be classified according to
two paradigms: feedback-controlled demons and autonomous
demons. In the feedback-controlled paradigm, exemplified
by both Maxwell’s thought experiment and Szilard’s engine,
the demon is an external agent who performs measurements
and provides feedback based on the outcomes of those mea-
surements. The physical nature of the demon is unspecified
and irrelevant. Recent stochastic-thermodynamic analyses of
feedback-controlled demons have led to the discovery of
inequalities and fluctuation relations that sharpen our under-
standing of information thermodynamics. [9–18]

In the autonomous paradigm, by contrast, the demon
is a physical device that is cleverly designed to achieve,
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through the rectification of thermal noise, the same out-
come that a feedback-controlled demon achieves through
measurements and feedback. Smoluchowski’s trapdoor and
Feynman’s ratchet and pawl are examples of autonomous
demons that at first glance appear to bring about their intended
outcomes, but upon closer inspection are seen to fail. These
examples are often held up as cautionary tales highlighting
the futility of trying to invent a gadget that defies the second
law of thermodynamics. Bennett, however, argued that an
autonomous demon could succeed if it were coupled to a
memory storage device [19–21]. Due to the physical nature
of information, as proposed by Landauer [22,23], these mod-
els of autonomous demons can utilize the memory storage
device as an information reservoir [24] to mimic the same
functionality as feedback-controlled models of Maxwell’s
demon. In these models, the decrease of environmental en-
tropy is compensated by an increase in the randomness of
the informational state of the memory storage device. Often
these models of autonomous Maxwell’s demons or infor-
mation ratchets are visualized by imagining a system that
interacts with a sliding memory tape containing a sequence
of bits (the information reservoir) and are called memory-tape
models.

Mandal and Jarzynski (MJ) introduced an explicit stochas-
tic model of a memory-tape autonomous demon [25] and
similar models have been developed for both classical and
quantum systems [26–40]. Memory-tape models have re-
cently been studied as transducers from the computer science
and information theory perspective and the thermodynamic
implications of correlation among the bits of the memory-tape
have been discussed [41–49]. Repeated interaction models,
commonly used in quantum thermodynamics, have also been
used to discuss the thermodynamics of the memory-tape
models [50]. Autonomous demons can also be driven by tem-
perature differences; see Refs. [51,52] and references therein,
but in the present work we focus on autonomous models
driven by information reservoirs.
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FIG. 1. Two paradigms of Maxwell’s demon. The left figure depicts the AA model—a feedback-controlled model. On the right we show
the corresponding memory-tape model or information ratchet. In both cases, heat from a thermal reservoir is converted to work, either through
measurement and feedback, or through interaction with an information reservoir. We explore a strategy to convert a feedback-controlled model
to a memory-tape model.

A number of authors have explored connections between
feedback-controlled and memory-tape models [30,36,53–55].
Horowitz et al. [53] designed a feedback-controlled in-
formation motor based on the system-bit interactions of
Ref [25]. Barato and Seifert [30,31] discussed a stochas-
tic thermodynamics [16] framework that encompasses both
feedback-controlled and memory-tape models. Shiraishi et al.
[55] showed that the measurement-feedback model intro-
duced in Ref. [53] can be reduced to the simplified MJ model
of Refs. [29–31]. Strasberg et al. [36] described a system with
a spin-valve and a quantum dot that can mimic the thermo-
dynamic behavior of the MJ model and can be mapped to a
Brownian ratchet. They also presented a feedback-controlled
model that captures the effective dynamics of the correspond-
ing memory-tape model and they compared how the second
law of thermodynamics applies to these two paradigms.

In this article we use a recently introduced model [56]
to develop and illustrate a general strategy for converting
a nonautonomous, feedback-controlled model of Maxwell’s
demon into an autonomous, memory-tape model or infor-
mation ratchet as illustrated schematically in Fig. 1. Our
approach uses network based modeling [16,57] of a system
of master equations, originally introduced by Schnakenberg
in Ref. [58], to show how a nonautonomous demon with a
seemingly complicated feedback protocol can systematically
be modified to construct a memory-tape model that mim-
ics its behavior. We illustrate this strategy by applying it
to the recently proposed Annby-Andersson (AA) model [56]
of a double quantum dot (DQD) [59,60]. We then present
a theoretical analysis of the resulting memory-tape model.
Our model has distinct regions in parameter space where it
operates either as an information engine or as a Landauer
eraser. We solve the model exactly in the limit when each
bit interacts with the DQD for an infinite amount of time,

obtaining analytic expressions for thermodynamic quantities
and critical parameter values. We also semianalytically ex-
plore the finite time bit-interaction situation and show the
corresponding phase diagrams. Lastly, we discuss a scheme
for the stochastic simulation of memory-tape models and use
it to simulate our model to verify the semianalytical results.
We limit our discussion to a completely classical stochas-
tic model and leave quantum models as a future avenue for
research.

This article is organized as follows. In Sec. II, we briefly
review the Annby-Andersson model [56], which is the start-
ing point for designing our memory-tape model. Details of
network based stochastic modeling [16,57,58] are presented
in Sec. III. In Sec III A we map the AA model to a nine-state
network by converting its control parameter to a stochastic
variable. In Sec. III B and Sec. III C, we discuss how to
couple the DQD with incoming bits to mimic the behav-
ior of the feedback-controlled demon. A summary of the
general modeling scheme is presented in Sec. III D. The anal-
ysis of memory-tape models is discussed in Sec. IV A. In
Sec. IV B we discuss the thermodynamics of our model and
solve for analytical expressions of thermodynamic quantities
in Sec. IV C. Phase diagrams of operational modes are dis-
cussed in Sec. IV D and the stochastic simulation scheme for
the model is presented in Sec. IV E.

II. BACKGROUND AND SETUP:
ANNBY-ANDERSSON MODEL

A quantum dot (QD) is an artificial nanoscale structure
for confining electrons. Since it is possible to tune the ener-
getic cost of adding an excess electron, QDs act as “artificial
atoms” with tunable energy levels [59–61]. The charge state
of a single-level quantum dot can be labeled as either empty
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or occupied based on the absence or presence of the ex-
cess electron. The system in the AA model consists of two
coupled QDs, each connected to an electron reservoir main-
tained at a fixed chemical potential (μL/R) and temperature
T ; see Ref. [56]. The energy level of each dot can be tuned
to three possible values εl , ε0, and εu, with εl < ε0 < εu.
Coulomb repulsion prevents the DQD from being occupied
by more than a single excess electron. Hence the possi-
ble occupation states are (i) L, the left dot contains the
excess electron, (ii) R, the right dot contains the excess
electron, and (iii) E, both dots are unoccupied. The charge
state of the DQD is monitored continuously and a feedback
scheme is applied. The electron reservoirs coupled to the
left and right dots are maintained at chemical potentials μL

and μR. If μR > μL, transferring an electron from the left
to the right reservoir requires electrical work to be performed
against a voltage bias.

The protocol of the AA model [56] was originally intro-
duced in Ref. [62]. In the ideal mode of operation the DQD
starts in the empty state, with the energy level of the left dot
at ε0 and that of the right dot at εu, where (εu − μL/R) � kBT
and kB is Boltzmann’s constant. When (a) an electron enters
the left dot from the left reservoir, (b) instant feedback is ap-
plied to change the energy levels of both the left and right dots
to εl , where (μL/R − εl ) � kBT . During this first feedback
step, the external agent extracts (ε0 − εl ) work. Next, the sys-
tem is monitored until (c) the electron tunnels from the left to
the right dot, at which point (d) feedback is applied to change
the energy level of the left dot to εu and the right dot to ε0.
The external agent performs (ε0 − εl ) work during this second
feedback step, canceling the work extraction of the previous
step. Finally, (e) when the electron jumps from the right dot to
the right reservoir, (f) feedback is applied again to switch the
energy levels of the DQD back to their initial values. No work
is performed during this step, as the DQD is empty. This three-
step cyclic protocol transfers an electron from the left to the
right reservoir. Since no net work is performed by the external
agent, the energy for this transfer must come from the thermal
reservoirs. Thus the feedback-driven cycle ultimately converts
heat into chemical work, of the amount Wext = (μR − μL ); see
Ref. [56] for more details. The protocol discussed above is
shown in Fig. 2, where electron transition events are indicated
by single arrows and feedback steps by double arrows. The
labels of the arrows in Fig. 2 refer to the steps of the protocol
mentioned above. The states in Fig. 2 that are not included
in the ideal protocol for the AA model are relevant for the
memory tape model, which is discussed later in this article.

III. MEMORY-TAPE MODEL OF MAXWELL’S
DEMON IN DQD SYSTEM

A. Reduced network: Nine states

1. Network structure

We now construct a network representation of the states
of the AA model, as a first step toward designing a corre-
sponding memory-tape model. In the AA model, the DQD
occupation state σ is a dynamic variable with three pos-
sible states, σ ∈ � = {L, E , R}, as described above. The
DQD energy configuration λ acts as a control parameter,

FIG. 2. States of the double quantum dot system x ≡ (λ, σ ) and
the protocol (CAA) for the AA model. Feedback steps [changes in
λ, i.e., steps (b), (d), and (f)] are shown using double arrows and
electron jumps [changes in σ , i.e., steps (a), (c), and(e)] are shown
using a single arrow.

also with three possible states: λ ∈ � = {A, B,C}, where
A ≡ (ε0, εu), B ≡ (εl , εl ), and C ≡ (εu, ε0). Combining the
energy configurations and the occupation states leads to
nine possible states for the DQD state variable: x ∈ Vx =
� × � = {AL, AE , . . . ,CR}. The ideal cyclic protocol CAA,
described above, follows the path AE −→ AL ⇒ BL −→
BR ⇒ CR −→ CE ⇒ AE , where double arrows signify feed-
back steps; see Fig. 2.

We now consider a situation in which the energy config-
uration λ is no longer a control parameter, but instead is a
dynamical variable on the same footing as the occupation state
σ . In our model, the entire system is maintained at a tempera-
ture T using a thermal bath and λ is now a stochastic variable
that evolves under the effect of the thermal noise from the
bath. The system-variable x ≡ (λ, σ ) evolves among the nine
states in Vx as a continuous time Markov jump process. We
justify the Markov assumption by assuming that the system-
bath coupling is weak and that the correlation of the system
with the bath dies in a faster timescale than the timescale of the
jumps. We make the following assumptions about our model.
(i) The elementary transitions in our process involve a change
in either λ, or σ , but not both simultaneously, i.e., the system
is bipartite [57]. (ii) If λ = B, then the excess electron cannot
hop into or out of the electron reservoirs; thus the transitions
BE ↔ BL and BE ↔ BR are not allowed. (iii) Direct transi-
tions between A and C states are forbidden. These assump-
tions are modeling choices, but we note that all of the forbid-
den transitions can be justified physically by assuming suffi-
ciently high energy barriers between corresponding states.

Under these assumptions, we obtain a network Gr =
(Vx, Ex ), where Vx ≡ V (Gr ) is the set of nine vertices and
Ex ≡ E (Gr ) is the set of 11 bidirectional edges (see Fig. 3)
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FIG. 3. Reduced network Gr = (Vx, Ex ). Energies of the states
in Vx are shown to the right of the network. Edges shown in red
correspond to the feedback steps of the original AA model and
involve the flipping of the bit in the memory-tape model. The edges
shown in blue correspond to the transitions where the electron hops
into (out of) the DQD from (to) an electron reservoir and the dotted
arrows show the corresponding energy exchange.

describing the stochastic dynamics [16,57,58] of the variable
x ≡ (λ, σ ). The subscript r in Gr indicates a reduced nine-
state network, in contrast with a full 18-state network G f to
be defined later. As the control parameter λ is now converted
to a stochastic variable which evolves under the thermal noise,
the state x ≡ (λ, σ ) will not in general follow the protocol CAA

and is free to explore all the states in the network Gr .

2. Dynamics in the reduced network

We set the energies of the empty states AE , BE ,CE to zero
and assign energies to all other states based on the energy level
of the dot that contains the electron: states BL and BR have
energy εl , states AL and CR have energy ε0, and states AR and
CL have energy εu, with εl < ε0 < εu as mentioned earlier. We
impose the condition of local detailed balance on the transition
rates for the thermal transitions xi ↔ x j with xi, x j ∈ V (Gr ),
when there is no exchange of electron with the left or the right
reservoir:

Rr
xix j

Rr
x j xi

= e−β

(
Er

i −Er
j

)
, (1)

where β = (kBT )−1 is the inverse temperature and the su-
perscript r again refers to the reduced network. Er

i (Er
j ) is

the energy of the state xi (x j) and Rr
xix j

is the transition rate
for the jump x j → xi. The right-hand side of Eq. (1) is the
ratio of probabilities of the system being in states xi and
x j , when in canonical ensemble. Strictly speaking, the DQD
system is quantum in nature and the tunneling events of the
excess electron between two dots (i.e., σ = L ↔ σ = R) are
coherent transfers, a purely quantum phenomenon. However,
for our model we treat these events as classical thermal jumps

for simplicity in the spirit of Ref. [56] as discussed in Sec. II.
Thus we assume the local detailed balance relation Eq. (1) for
the edges: AL ↔ AR, BL ↔ BR, and CL ↔ CR.

When an electron jumps from the right reservoir, main-
tained at the chemical potential μR, to the energy level ε0 of
the right dot, there is an energy cost of (ε0 − μR) and similarly
if an electron jumps from the level ε0 of the left dot to the left
electron reservoir set at the chemical potential μL the energy
exchange is (μL − ε0). Thus for the transitions AL ↔ AE and
CR ↔ CE (shown in blue in Fig. 3), we can write the local
detailed balance relations as

Rr
AE AL

Rr
AL AE

= e−β(μL−ε0 ),
Rr

CR CE

Rr
CE CR

= e−β(ε0−μR ). (2)

The coupling with the electron reservoir creates thermody-
namic forces [16,58,63,64] in Gr and leads to violation of
global detailed balance when μL �= μR. When Eqs. (1) and
(2) are satisfied and μL �= μR, the dynamics of x in Gr reach
a nonequilibrium steady state (NESS) [16]. In this state, elec-
trons flow in the thermodynamically preferred direction, i.e.,
from the right (left) reservoir to the left (right) reservoir when
μR > μL (μL > μR), resulting in an overall counterclockwise
(clockwise) flow [which we will abbreviate as CCW (CW)
flow throughout the article] of probability current in Gr . This
flow is in contrast with the feedback-controlled model, which
transfers electrons against the thermodynamically preferred
direction. Therefore, we next consider how to couple the DQD
to an information reservoir, in the form of a stream of bits, so
as to make the evolution of the DQD mimic that of the AA
model.

B. Bit coupling strategy

Our information reservoir is a memory tape containing n
classical bits. Each bit (b) can be in one of the two states in
B = {0, 1}. The energies of the two bit states are degenerate
and we set them to zero. As in Ref. [25] the DQD interacts
with a bit for an interval of duration τ , after which the next
bit arrives. We can visualize this process by imagining that
the bits are placed, equally spaced, on a tape that moves
frictionlessly past the DQD, which interacts with the bit that
is nearest to it at any given time.

In our model the coupling between the DQD and the bit
occurs along the four edges of Gr that correspond to instant
feedback steps in the AA model. These edges are shown in
red in Fig. 3. (Note that we have split the CE ⇒ AE feed-
back step of the original AA model into two steps: CE ↔
BE and BE ↔ AE in our model.) Specifically, the DQD tran-
sitions corresponding to these four edges can occur only when
the state of the interacting bit b also flips. We set up the
coupling rules so that the CW flow of probability current along
CAA is favored when b flips from 0 to 1 and CCW flow is
favored when b flips from 1 to 0. For example, the transition
AL → BL must be accompanied by a bit flip 0 → 1 and the
reverse transition BL → AL occurs only if the interacting
bit flips from 1 to 0. Similar comments apply to the edges
BR ↔ CR, CE ↔ BE , and BE ↔ AE . These DQD-bit cou-
pling rules are indicated by curved red arrows in Fig. 3. With
this coupling scheme, an excess of 0’s in the incoming bit
stream biases the flow of probability in the CW direction. This
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FIG. 4. Full network G f = (Vy, Ey ) showing all 18 states of the
combined DQD and bit. The full network G f can be obtained from
Fig. 3 by noticing the bit coupling in Gr . The states in the full network
are given by Vy = Vx × B and the edges follow directly from the
edges of the network Gr ; the mapping of the edges is described
in Sec. III C 1. Equation (6) governs the dynamics of the variable
y ≡ (λ, σ, b) in this network.

bias opposes the thermodynamic direction of the probability
current when μR > μL. Similarly, if μL > μR, then an excess
of 1’s opposes the thermodynamic direction of the probability
current.

C. Full network: 18 states

1. Network structure

The joint evolution of the DQD state (x) and the nearest bit
(b) occurs in the bit-coupled network G f = (Vy, Ey), which
we refer to as the full network; see Fig. 4. Here Vy ≡ V (G f ) =
Vx × B is the set of vertices representing the 18 possible states
of the variable y = (x, b) ≡ (λ, σ, b) and Ey ≡ E (G f ) is the
set of 18 bidirectional edges that reflect on the bit-coupling
rules described in Sec. III B. Each edge of Gr that does not
involve bit coupling is represented by two different edges
of G f , corresponding to the two possible bit states. That is,
an edge xi ↔ x j ∈ E (Gr ) corresponds to the edges (xi, 0) ↔
(x j, 0) and (xi, 1) ↔ (x j, 1) in E (G f ), when xi ↔ x j does
not involve bit coupling. An edge x′

i ↔ x′
j ∈ E (Gr ) that is

coupled to the bit transition 0 ↔ 1 is mapped to only one
edge (x′

i, 0) ↔ (x′
j, 1) ∈ E (G f ). There are four such edges in

G f : BE0 ↔ AE1, AL0 ↔ BL1, BR0 ↔ CR1, and CE0 ↔
BE1; see Figs. 3 and 4.

2. Dynamics in the full network

As the b = 0 and 1 bit states are energetically degenerate,
the transition rates for the edges in E (G f ) obey the same de-
tailed balance conditions as the corresponding edges in E (Gr ).
Edges yi ↔ y j in E (G f ) with no electron reservoir coupling
satisfy

Ryiy j

Ryj yi

= e−β(Ei−Ej ), (3)

where Ei and Ej are the energies of the states yi and y j ,
respectively [compare Eq. (3) with Eq. (1)]. When there is

TABLE I. Transition rates for jumps of the variable y in G f . Ryiy j

denotes the transition rate from y j to yi. Here we have taken r = e−βε

with ε = (εu − ε0 ) = (ε0 − εl ). These rates are used to construct the
matrix R, which is shown in Eq. (B1) in Appendix B.

RCL0 CR0 = r
RCR0 CL0 = 1
RCL1 CR1 = r
RCR1 CL1 = 1
RBL0 CL0 = 1
RCL0 BL0 = r2

RBL1 CL1 = 1
RCL1 BL1 = r2

RBL0 BR0 = 1
RBR0 BL0 = 1
RBL1 BR1 = 1
RBR1 BL1 = 1
RAR0 BR0 = r2

RBR0 AR0 = 1
RAR1 BR1 = r2

RBR1 AR1 = 1
RAL0 AR0 = 1
RAR0 AL0 = r
RAL1 AR1 = 1
RAR1 AL1 = r
RAE0 AL0 = e−β(μL−ε0 )

RAL0 AE0 = 1
RAE1 AL1 = e−β(μL−ε0 )

RAL1 AE1 = 1
RCR0 CE0 = 1
RCE0 CR0 = e−β(μR−ε0 )

RCR1 CE1 = 1
RCE1 CR1 = e−β(μR−ε0 )

RBE0 AE1 = 1
RAE1 BE0 = 1
RCE0 BE1 = 1
RBE1 CE0 = 1
RAL0 BL1 = r
RBL1 AL0 = 1
RBR0 CR1 = 1
RCR1 BR0 = r

a coupling with the electron reservoirs, the local detailed
balance relations are given as

RAE0 AL0

RAL0 AE0
= RAE1 AL1

RAL1 AE1
= e−β(μL−ε0 ),

RCR0 CE0

RCE0 CR0
= RCR1 CE1

RCE1 CR1
= e−β(ε0−μR ) (4)

[compare Eq. (4) with Eq. (2)]. Equations (3) and (4) ensure
the thermodynamic consistency of the model, but do not yet
completely specify the dynamics of y. We assume that the
timescale of the stochastic dynamics of y due to thermal jumps
is on the order of unity and our choice of the transition rates
consistent with Eqs. (3) and (4) is shown in Table I. Please
refer to Appendix A for a detailed discussion on the choice of
the transition rates and corresponding timescales.

During every interaction interval of duration τ , the joint
dynamics of the DQD and bit are described by a Markov
jump process for the state variable y = (x, b) in G f , with
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transition rates shown in Table I. In a continuous time Markov
jump process, the jump times follow a Poisson distribution
as discussed in detail in Appendix C. At the end of each
interaction interval, when a new bit bin arrives, the state of
the DQD x remains unchanged and the state of the interacting
bit b takes on the value of the incoming bit bin. Thus when the
outgoing and incoming bit states differ, there is an effective
virtual jump, due to the fact that the “old” interacting bit is
replaced by the next bit in the memory tape.

D. Summary of the modeling strategy

Here we summarize our approach for creating an au-
tonomous, memory-tape model of Maxwell’s demon from
the nonautonomous, feedback-controlled AA model. We first
create a network representation of the states of the feedback-
controlled model by identifying the dynamical states of the
system (σ ∈ �) and the states of the control parameter (λ ∈
�). We then convert the control parameter λ to a stochastic
dynamic variable that jumps among the states of �. The joint
state of the system and parameter is given by x ≡ (λ, σ ) ∈ Vx.
The next step is to identify a network Gr = (Vx, Ex ) whose
edges correspond to possible transitions. For thermodynamic
consistency, the transition rates must satisfy Eqs. (1) and (2).
There is no unique way to construct the network Gr and
different choices of the allowed transitions lead to differ-
ent memory-tape models. For our DQD system, we focused
on designing a model that mimics the feedback-controlled
model’s behavior and is simple enough for analytical and
semianalytical treatment.

Next, the DQD is connected to a sliding memory tape
(information reservoir). By interacting with only the nearest
bit on the tape, the DQD interacts with each bit for a fixed
time τ . During that time, the coupling between the DQD and
the interacting bit b occurs along those edges in the network Gr

that correspond to the instantaneous feedback steps of the AA
model. The bit coupling rules are chosen so that incoming bits
in the 0 state bias the resulting current in one direction (CW in
our model) and incoming bits in the 1 state bias it in the other
direction. In this way a memory tape with a surplus of 0’s or
1’s generates an effective force, which can be harnessed to
oppose the thermodynamic forces arising from (for example)
reservoirs at different chemical potentials.

The joint state of the DQD and interacting bit is described
by a variable y ≡ (x, b) that evolves by a Markov jump pro-
cess in the network G f = (Vy, Ey). As we assume the bit
states 0 and 1 to be energetically degenerate, the transition
rates in G f follow from those in Gr ; see Eqs. (3) and (4).

While we illustrate our strategy with the AA model and a
specific network structure of its dynamics, this approach can
be implemented with other feedback controlled models where
an underlying network structure can be identified and then
modified in the similar fashion as our approach to obtain a
memory-tape model.

IV. ANALYSIS AND RESULTS

A. Methods

Following Ref. [25], let p(tn) be a column vector with nine
entries that describes the probability distribution of the states

of the DQD state variable x in Gr (in the order AE , BE , CE ,
BL, BR, AL, CR, AR, CL) at time tn ≡ nτ that marks the start
of an interaction interval. Each incoming bit is independently
sampled from the same probability distribution, with p0 (or
p1) denoting the probability of the bit to arrive in state 0 (or
1). It is convenient to specify this distribution by the single
parameter δ = p0 − p1, which measures the excess of 0’s
among the incoming bits. The statistical state of the variable
y ≡ (x, b) in G f at time tn (just after the arrival of the nth bit)
is given by the 18-dimensional vector

pf (tn) = Mp(tn), M =
(

p0I
p1I

)
, (5)

with I being a 9 × 9 identity matrix. The first nine elements
of pf (t ) correspond to the bit state b = 0 and the last nine
elements to the state b = 1. From t = tn to tn+1 the probability
distribution in G f evolves under the master equation

d

dt
pf (t ) = Rpf (t ), (6)

where R is the 18 × 18 rate matrix whose off-diagonal el-
ements are the transition rates listed in Table I and whose
diagonal elements are Ryiyi = −∑

y j �=yi
Ryj yi ; see Eq. (B1) for

an explicit expression for R. At the end of the interaction
interval, just before the next bit arrives, the joint proba-
bility distribution is obtained from the solution of Eq. (6),
namely

pf (tn + τ ) = eRτ Mp(tn). (7)

To obtain the probability distribution of x in Gr at the end of
the interaction interval, we project from the 18-state network
G f to the nine-state network Gr ,

p(tn + τ ) = PDeRτ Mp(tn), PD = (I I). (8)

Equivalently,

p[(n + 1)τ ] = Tp(nτ ), T = PDeRτ M. (9)

This transition matrix T (which depends on the parameter
τ ) evolves the probability distribution of x in Gr over a
single interaction interval. The evolution over n successive
intervals is described by the transition matrix Tn. From the
Perron-Frobenius theorem [65] it follows that any distribution
p in Gr evolves asymptotically to a unique periodic steady
state

qpss = lim
n→∞ Tnp. (10)

The periodic steady state qpss is a function of the interaction
interval τ and can be calculated by solving for the invariant
vector of the matrix T,

T qpss = qpss. (11)

Once the periodic steady state for the DQD has been
reached, the joint state of the DQD and bit at the start of every
interaction interval is given by Mqpss and the joint state at a
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time tn + �t , with 0 � �t < τ , is

pf (tn + �t ) = eR�t Mqpss. (12)

For the remainder of this paper, when analyzing the behavior
of our model, we will assume that the periodic steady state has
been reached.

B. Thermodynamics of the memory-tape model

1. Calculation of work

Let the circulation 	(τ ) denote the average number of
electrons transferred from the left to the right reservoir during
each interaction interval. The average chemical work per-
formed by the DQD system per time interval τ is then

W (τ ) = (μR − μL )	(τ ). (13)

If the sign of μR − μL is the same as that of 	(τ ), then
electrons flow from the lower to higher chemical potential,
that is, against the thermodynamic force.

From Fig. 3 we see that

	(τ ) =
∫ τ

0
dt Jr

CR→CE =
∫ τ

0
dt Jr

CE→BE

=
∫ τ

0
dt Jr

BE→AE =
∫ τ

0
dt Jr

AE→AL, (14)

where Jr
x j→xi

≡ Jr
xix j

is the probability current along x j → xi in
Gr , projected from the corresponding currents in G f . We can
determine 	(τ ) by calculating any one of these integrals.

The probability current along y j → yi of G f is

Jyiy j = Ryiy j py j (t ) − Ryj yi pyi (t ). (15)

When two edges x j0 ↔ xi0 and x j1 ↔ xi1 in G f correspond
to the edge x j ↔ xi in Gr , we have

Jr
xix j

(t ) = Jxi0 x j 0(t ) + Jxi1 x j 1(t ), (16)

but when the transition x j → xi is coupled with a bit flip b′ →
b′′, we have

Jr
xix j

(t ) = Jxib′′ x j b′ (t ). (17)

Since the CE ↔ BE transition is coupled to the bit flit
0 ↔ 1, the edge CE ↔ BE in Gr corresponds to a single edge,
CE0 ↔ BE1 in G f ; hence

	(τ ) =
∫ τ

0
dt Jr

BE CE =
∫ τ

0
dt JBE1 CE0. (18)

Moreover, since BE1 is connected to only one edge, CE0 ↔
BE1, we have ṗBE1 = JBE1 CE0; see Fig. 4. Therefore,

	(τ ) =
∫ τ

0
dt ṗBE1 = [pBE1(τ ) − pBE1(0)]

= [(eRτ − I)Mqpss]y=BE1, (19)

where we have used Eq. (12) to get to the second line. We will
use this result in Sec. IV C 1.

2. Calculation of entropy change of the bit

Let p′
0 and p′

1 denote the probabilities of the outgoing bit
to be in the states 0 and 1. These values are determined by

summing over the appropriate states y = (x, b) in G f at the
end of an interaction interval:

p′
0 =

∑
x∈V (Gr )

(eRτ M qpss)y=(x,0),

p′
1 =

∑
x∈V (Gr )

(eRτ M qpss)y=(x,1). (20)

The parameter

δ′ = p′
0 − p′

1 (21)

specifies the distribution of the outgoing bit. The entropy cor-
responding to this distribution is S′ = −∑

i=0,1 p′
i ln p′

i, while
that of the incoming bit is S = −∑

i=0,1 pi ln pi. Thus, in the
periodic steady state, the change in single-symbol entropy [41]
of the interacting bit is �S = S′ − S. Because �S does not
account for correlations that develop between successive out-
going bits, it provides only an upper bound on the net entropy
change (per bit) of the information reservoir. We discuss this
point in detail in the next section (IV B 3), in the context of
the second law of thermodynamics.

3. First and the second law of thermodynamics

In the periodic steady state, the change in the internal
energy of the DQD over one interaction interval is zero, on
average. If chemical work is performed by the flow of elec-
trons from low to high chemical potential, then the energy
required for this process must be extracted as heat from the
thermal reservoir that maintains the entire system at a fixed
temperature T . We write the first law of thermodynamics at
the periodic steady state for this model as

Q(τ ) = W (τ ) = (μR − μL )	(τ ), (22)

where Q(τ ) is the average heat extracted from the thermal
reservoir, per interaction interval.

In Refs. [41,42], a general form of the second law for
the information ratchets, called the information processing
second law (IPSL), was derived. In the periodic steady state
the IPSL is written as

(ln 2)�hμ � βW, (23)

where �hμ is the change in the Shannon entropy rate, see
Refs. [41,42], and W is the average work extracted in one
interaction interval. The entropy rate �hμ includes the effect
of correlations among the bits in the incoming and outgoing
bit streams. In our model we have assumed that incoming
bits are uncorrelated with each other and have been generated
through a memoryless [42] process. For finite τ , the outgoing
bits become correlated with each other and thus the output is
memoryful [42]. However, in the limit τ → ∞ these correla-
tions become lost and the Shannon entropy rate �hμ reduces
to the change in single-symbol entropy �S/(ln 2); hence for
our model Eq. (23) becomes (in that limit)

�S � βW. (24)

Equation (23) is a general result for any memory-tape
Maxwell demon and Eq. (24) is a limiting case of the IPSL
when correlations are neglected. When correlations are non-
negligible, Eq. (23) can identify functional modes of operation
that are not indicated by Eq. (24); see Refs. [41,44,46].
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However, it is common to use the single symbol entropy
for the analysis of memory-tape models [25,26,29,30,36] and
Eq. (24) has been previously derived in the context of Hamil-
tonian dynamics [24] and stochastic dynamics [31]. In our
model, we ignore the effect of the correlations among the
bits for simplicity and assume the validity of Eq. (24) as an
approximation to Eq. (23) even for finite τ . The analysis of
the effect of correlations among the bits and calculation of
�hμ is outside the scope of this article; see Ref. [46] for the
�hμ calculation in context of the MJ model. Henceforth, by
“entropy” we always refer to single-symbol entropy unless
otherwise specified.

C. Analytical results for τ → ∞
1. Thermodynamic quantities

There are two relevant timescales in our model. We have
taken the timescale associated with the thermal jumps in G f ,
which are governed by Eq. (6), to be of order unity. The other
timescale is the parameter τ that defines how long the DQD
interacts with each bit. From the Perron-Frobenius theorem
[65], we have

lim
τ→∞ eRτ pf = �, ∀ pf , (25)

where R� = 0. The expression for � is given in Eq. (B2) in
Appendix B. If τ is sufficiently large, then Eq. (11) becomes

q∞
pss = lim

τ→∞ PDeRτ Mqpss = PD�. (26)

Using Eqs. (B2) and (26), we get

q∞
pss = N

[
2κL

r

(κL + κR)

r

2κR

r

2

r2

2

r2

2

r

2

r
2 2

]T

,

N = r2

4(1 + r + r2) + 3r(κL + κR)
, (27)

where κL = e−β(μL−ε0 ), κR = e−β(μR−ε0 ), and r = e−βε , with
ε = (εu − ε0) = (ε0 − εl ). Note that here we have taken sym-
metric energy gaps in the dots for simplicity of calculation and
conciseness of results. The method of analysis would be the
same if εu and εl were taken as free parameters.

In the τ → ∞ limit, the circulation (	∞) can be calculated
using Eq. (19). The probabilities pBE1(0) and pBE1(∞) are
given by the BE1 elements of Mq∞

pss and �, respectively.
Using Eqs. (13), (19), (25), and (27) we get

W∞ = N (μR − μL )

r

[(
1 + δ

2

)
κR −

(
1 − δ

2

)
κL

]
. (28)

Using Eqs. (25), (20), and (21), we can describe the distribu-
tion of the outgoing bits as p′

0,1 = (1 ± δ′)/2, where

δ′ = r(κL − κR)

4(1 + r + r2) + 3r(κL + κR)
, (29)

which can be used to calculate the entropy of the outgoing bits
as S′ = −∑

i=0,1 p′
i ln p′

i ∈ [0, ln 2].

2. Operational mode phase diagram

In the limit τ → ∞, bits in the outgoing bit stream are
uncorrelated and thus Eqs. (23) and (24) are equivalent and

both the final distribution δ′ and the entropy of the outgo-
ing bit become independent of δ; see Eq. (29). The entropy
change �S∞ ≡ limτ→∞(S′ − S) is a symmetric concave up-
wards function of δ with a negative value at its minimum
(minδ{�S∞} < 0) at δ = 0 when μL �= μR. Thus, in the re-
gion with |δ| < |δ′| [shaded red in Fig. 5(a)], we have �S∞ <

0 and W∞ < 0 [using Eq. (24)]. By Eq. (29), we see that when

|δ| < |δ′| =
∣∣∣∣ r(κL − κR)

4(1 + r + r2) + 3r(κL + κR)

∣∣∣∣, (30)

information is erased from the incoming memory tape and
the system consumes work, i.e., it acts as a Landauer eraser.
Therefore, for a given value of �μ = μR − μL, the Lan-
dauer eraser region in the operational mode phase diagram is
bounded by ±δ′, as indicated by the red regions in Fig. 6.

By Eq. (24), W∞ > 0 implies �S∞ > 0. Let δ∗ denote the
value of δ at which 	∞ = W∞/�μ changes its sign, for fixed
μR and μL. Using Eq. (28) we obtain

δ∗ = κL − κR

κL + κR
. (31)

Thus W∞ > 0 when δ > δ∗ and μR > μL or when δ < δ∗
and μR < μL. In these regions of parameter space, shown
in green in Fig. 6, the system produces work at the cost of
writing information to the memory tape and the DQD acts as
an information engine.

In the regions of parameter space where �S∞ > 0 > W∞,
information is written to the memory tape and the system
consumes work; hence the model is a dud [25].

D. Semianalytical results for finite τ

For finite interaction time τ , we can numerically diago-
nalize the transition rate matrix as R = UDRV, where DR is
diagonal and UV = VU = I . We then have

T = PDUeDRτ VM (32)

and the evaluation of eDRτ is straightforward. Once T is
obtained in this manner, the periodic steady state qpss is
calculated using Eq. (11) and thermodynamic quantities are
determined as described in Sec. IV B. Following this semi-
analytical approach, we have obtained phase diagrams for
different values of τ , using the second law inequality Eq. (24),
which is now the single symbol approximation to the IPSL
in Eq. (23). Figure 7 shows these phase diagrams. The
competition between the effects of bit coupling (δ) and the
thermodynamic bias (�μ) determines the direction of prob-
ability current, i.e., the sign of 	, in the network. With
increasing values of τ , the system has more time to relax to
the equilibrium state � before a new bit arrives and the phase
diagram approaches the one shown in Fig. 6.

In our model, the information engine region (W > 0)
appears only in the first and third quadrants of the phase
diagrams. In these regions an increase in |�μ| increases the
effective thermodynamic forces and suppresses the informa-
tion engine region for a fixed value of δ, as seen in Figs. 6 and
7.

For small values of τ , the frequency of the virtual jumps
in G f (see Sec. III C 2) increases, as bits get replaced more
frequently. These virtual jumps drive the probability current

064101-8



FROM A FEEDBACK-CONTROLLED DEMON TO AN … PHYSICAL REVIEW E 106, 064101 (2022)

1×10
−5

FIG. 5. Plots of �S/β and W when (a) δ is varied at fixed μR = 1.5 and μL = 0 and (b) β�μ is varied by changing μR at fixed μL = 0 and
δ = 0.002. In both cases we set β = 1, r = e−1, ε0 = 0, and we take the limit τ → ∞. In both plots we see that �S � βW is satisfied. The
regions corresponding to the information engine (�S > 0,W > 0), Landauer eraser (�S < 0,W < 0), and dud (�S > 0,W < 0) are shaded
green, red, and white, respectively. (a) δ variation. (b) �μ variation.

against the thermodynamic force in Gr . Hence when τ is
increased the information engine region decreases; see Fig. 7.

The entropy S(δ) = −∑
i pi ln pi, with p0,1(δ) = (1 ±

δ)/2, is a concave downward function with a maximum at
δ = 0. As a result, when δ = 0 and δ′ �= 0 we have �S =
S(δ′) − S(δ) < 0. This explains why the Landauer eraser re-
gion (�S < 0) contains the entire δ = 0 axis in the phase
diagram (except for the origin δ = β�μ = 0, where �S = 0).

FIG. 6. Analytically obtained phase diagram when τ → ∞. In
the green region the system operates as an information engine (�S >

0,W > 0) and in the red region it acts as a Landauer eraser. The
critical parameter values δ∗, δ′, and −δ′ are shown as functions of
β�μ with �μ = μR − μL and with μL = 0. We have taken ε0 = 0,
β = 1, and r = e−1 here.

E. Stochastic simulation

We have also performed stochastic simulations of the sys-
tem. The variable y = (λ, σ, b) was initialized by sampling
x = (λ, σ ) from the distribution qpss and b from the distribu-
tion δ. During each bit interaction interval, y evolves under
a Markov jump process, with the rates listed in Table I. At
the end of each interval, the value of b is replaced by the
(randomly sampled) state of the incoming bit. See Appendix C
for further simulation details.

Figures 8(a) and 8(b) show work and entropy production
when the system acts as a Landauer eraser and as an in-
formation engine, respectively. The total change in entropy
(
∑

n �Sn) of the memory tape was calculated by summing
the change in single symbol entropy over each bit (�Sn) in
the memory tape. Similarly, total work (

∑
n Wn) was obtained

by summing over the work done over each interval (Wn).
In these figures, the semianalytical results obtained by the
approach described in Sec. IV D are represented by straight
lines with slopes �S/τ and W/τ . N = 105 trajectories were
generated and statistical errors in �Sn and Wn were calculated
using the bootstrap method, by resampling B = 105 times
with replacements [66]. The increasing errors in

∑
n �Sn and∑

n Wn reflect the accumulation of statistical errors with each
additional interaction interval.

V. CONCLUSION

We have presented a strategy for constructing a memory-
tape model of Maxwell’s demon, from a feedback-controlled
model. We have illustrated this strategy using the Annby-
Andersson model [56], a feedback-controlled Maxwell’s
demon in a double quantum dot (DQD). In our approach,
we replace the feedback controller with a stochastic variable
evolving under the same thermal environment as the DQD.
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FIG. 7. Numerically obtained phase diagrams for different values of the interaction time, τ = 0.2, 2, 20, and 200. For finite τ , the final
distribution of the memory-tape (δ′) depends on the initial distribution (δ), but this dependence vanishes in the limit τ → ∞. With increasing
τ , the phase diagram approaches the one shown in Fig. 6. We have fixed r = e−1, β = 1, and ε0 = 0. (a) Phase diagram (τ = 0.2). (b) Phase
diagram (τ = 2.0). (c) Phase diagram (τ = 20.0). (d) Phase diagram (τ = 200.0).

We then couple our system to an information reservoir and
design suitable bit interaction rules to mimic the effects of the
feedback controller. In analyzing our model, we obtained an
exact solution in the limit of infinitely long interaction time
τ and used a semianalytical approach involving numerical
matrix diagonalization for finite τ . As illustrated by these
results as well as stochastic simulations, our model can act
both as an information engine and as a Landauer eraser, for
suitable parameter values.

Our research strengthens the connection between two
paradigms of information thermodynamics: Maxwell’s orig-
inal, nonautonomous paradigm of a “nimble-fingered” demon
performing feedback control at the level of thermal fluctua-
tions and the autonomous paradigm, due to Bennett [20], in
which the demon is replaced by a physical gadget, thermody-

namically driven by the continual randomization of a stream
of bits (the memory tape). In effect, given a demon, we show
how to design a gadget that mimics it.

Our approach makes use of the underlying network
structure of a feedback-controlled system and it relates to
recent stochastic thermodynamic studies of bipartite systems
[57,67,68]. Specifically, the dynamics of y = (λ, σ, b) in G f

can be described as bipartite system dynamics by splitting y
in two random variables σ and x̄ ≡ (λ, b) that do not change
simultaneously. This is in contrast with the original MJ model
[25], which lacks the bipartite structure; see [57].

Double quantum dot systems are promising candidates for
the experimental implementation of information engines [69].
We note that while there have been a number of realizations of
feedback-controlled demons [1,2], experimental realizations
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FIG. 8. Work and entropy production in (a) the Landauer eraser mode and (b) the information engine mode. Semianalytical results
and stochastic simulation results are compared. �Sn and Wn represent the change in single symbol entropy of the nth bit and average
extracted work in the nth interval. For all the simulations, we have taken β = 1, r = e−1, and ε0 = 0. Errors are calculated with the bootstrap
method.

of memory-tape models are yet to be explored. By showing
how to design a memory-tape model that mimics a feedback
controlled system, our approach may be useful in the de-
sign of physical implementations of autonomous information
engines.

Although our analysis has been entirely at the level of
classical stochastic dynamics, it would be worth studying
analogous quantum models (see, e.g., Ref. [38]). A future
research direction might explore design principles for quan-
tum analogs of the memory-tape model. Lastly, we limited
our discussion of the information-theoretic aspects of this
model to the single symbol entropy. The study of the effects
of correlations among the bits offers another avenue for future
research.
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APPENDIX A: TRANSITION RATES AND THE DETAILED
BALANCE RELATIONS

Equations (3) and (4) together give ratios of the transition
rates which guarantee the thermodynamic consistency of the
model but do not completely define the transition rates for
the dynamics of y in the network G f . Thus there is a free-
dom in the choice of transition rates along the edges of G f

as long as the rations in Eqs. (3) and (4) are maintained.
When there is no coupling with an electron reservoir, we have

taken

Ryiy j = � e−β(Ei−Ej ), Ryj yi = �, (A1)

for Ei > Ej , which satisfies Eq. (3). The prefactor � is the
inverse timescale of the thermal jumps of the system and we
have taken � = 1. For example, the transition rates along the
CL0 − CR0 edge are given as RCL0 CR0 = e−β(εu−ε0 ) = e−βε =
r and RCR0 CL0 = 1, where we have taken (εu − ε0) = (ε0 −
εl ) = ε and r = e−βε . We have assigned the rest of the rates
in Table I in a similar fashion when there is no coupling with
an electron reservoir.

When there is an exchange of electron with the dot and
the electron reservoir (σ = L/R ↔ σ = E ), Eq. (4) ensures
the thermodynamic consistency of the transition rates. Here
we use the convention that when the electron enters the dot
from the electron reservoir (σ = E → σ = L/R) the tran-
sition rate is �res and when the electron leaves the dot to the
electron reservoir (σ = L/R → σ = E ) the transition rates
are given as �rese−β(μL/R−ε0 ), which is consistent with Eq. (4).
For simplicity we have also taken �res = 1. Thus, for example,
RAE0 AL0 = e−β(μL−ε0 ) and RAL0 AE0 = 1. The other transitions
involving the electron reservoirs are similarly set, as seen in
Table I.

Note that the shortest timescale of the dynamics of the
thermal jumps is given as 1/ max{�,�res}, which we have
taken as 1 in our model. It should be noted that the timescale
of the thermal jump is in general different from the duration
of the bit interaction interval τ , which is another temporal
parameter of our model.

APPENDIX B: RATE MATRIX AND UNIQUE STATIONARY
STATE FOR G f

The rate matrix R and stationary distribution � are
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R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 κL 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 κR 0 0 0 1 0 0 0 0 0 0 0
0 0 0 K1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 K2 0 0 1 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 K3 0 1 0 0 0 0 r 0 0 0 0 0
0 0 1 0 0 0 K4 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 r2 r 0 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 r2 0 0 r 0 −2 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 −2 0 0 0 0 κL 0 0 0
0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 κR 0 0
0 0 0 0 0 1 0 0 0 0 0 0 K2 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 K1 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 K5 0 1 0
0 0 0 0 r 0 0 0 0 0 0 1 0 0 0 K6 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 r2 r 0 −2 0
0 0 0 0 0 0 0 0 0 0 0 0 r2 0 0 r 0 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B1)

� = r2

4(1 + r + r2) + 3r(κL + κR)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

κLr−1

κLr−1

κRr−1

r−2

r−2

r−1

r−1

1
1

κLr−1

κRr−1

κRr−1

r−2

r−2

r−1

r−1

1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B2)

where κL = e−β(μL−ε0 ), κR = e−β(μR−ε0 ), K1 = −r2 − 1,
K2 = −r2 − r − 1, K3 = −κL − r − 1, K4 = −κR − r,
K5 = −κL − r, and K6 = −κR − r − 1. Here the states in
V (G f ) are ordered as follows: (AE0, BE0, CE0, BL0, BR0,
AL0, CR0, AR0, CL0, AE1, BE1, CE1, BL1, BR1, AL1, CR1,
AR1, CL1).

APPENDIX C: DETAILS OF STOCHASTIC
SIMULATION SCHEME

a. Poisson jumps

We implement the Gillespie Algorithm [70–72] to simulate
the continuous time Markov jump process for y in G f , when
the DQD system is interacting with a bit. If a system is in state
y j at time t , then the time interval for the next jump event is
generated from the Poisson distribution as follows:

�t = 1∑
y �=y j

Ryy j

ln
1

ξ1
, (C1)

where ξ1 is sampled uniformly in the interval (0,1]. After
remaining in the state y j over the time interval [t, t + �t ), the
system jumps to a new state (say y j′ ). To find y j′ , all states in
V (G f ) are arranged in order [say, (0, 1, 2, . . . , 16, 17)]; then
j′ is chosen as the smallest integer label of the ordered states
that satisfies

∑ j′
i=0,yi �=y j

Ryiy j∑
y �=y j

Ryy j

> ξ2, (C2)

where ξ2 is sampled uniformly in the interval (0,1].

b. Virtual jumps

Virtual jumps occur when a new bit arrives. Specifically, if
y = (x j, bn) at time t ∈ [nτ, (n + 1)τ ] and if t + �t > (n +
1)τ , then, instead of generating a jump using Eq. (C2), a new
bit state is generated at time (n + 1)τ .

The new incoming bit is sampled with probability p0 (p1)
to be in state bn+1 = 0 (bn+1 = 1), the state y is updated
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to y j′ ≡ (x j, bn+1), and the time is set to t = (n + 1)τ . We
express this update rule as

b n+1 =
{

0, with probability p0,

1, with probability p1,
(C3)

y [(n + 1)τ ] = (x j, bn+1), (C4)

when t + �t > (n + 1)τ . If bn+1 �= bn, then this update
constitutes a virtual jump; otherwise, the state of y is
unchanged.
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