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Thermal lattice Boltzmann model for liquid-vapor phase change
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The lattice Boltzmann method is adopted to solve the liquid-vapor phase change problems in this article.
By modifying the collision term for the temperature evolution equation, a thermal lattice Boltzmann model is
constructed. As compared with previous studies, the most striking feature of the present approach is that it could
avoid the calculations of both the Laplacian term of temperature [∇ · (κ∇T )] and the gradient term of heat
capacitance [∇(ρcv )]. In addition, since the present approach adopts a simple linear equilibrium distribution
function, it is possible to use the D2Q5 lattice for the two-dimensional cases considered here. Thus, the present
model is more efficient than previous models in which the lattice is usually limited to the D2Q9. The proposed
model is first validated by the problems of droplet evaporation in open space and droplet evaporation on a heated
surface, and the numerical results show good agreement with the analytical results and the finite difference
method. Then it is used to model the nucleate boiling problem, and the relationship between detachment bubble
diameter and gravitational acceleration obtained with the present approach fits well with previous works.
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I. INTRODUCTION

Liquid-vapor phase change processes play a vital role in
many industrial applications including nuclear reactor cool-
ing system, power plants, and electronic cooling [1,2]. For
decades, many theoretical and experimental studies have been
conducted to reveal the fluid flow and heat transfer during
liquid-vapor phase change [3–5]. However, due to the vari-
ous complex phenomena involved in these processes such as
interface changes, nonequilibrium effects, or other complex
dynamic interaction between the phases, the mechanisms of
liquid-vapor phase change heat transfer are still not fully
comprehended [6–8]. With recent advances in computer tech-
nology, numerical modeling of such problems has attracted
great attention due to its ability to provide the details of flow
dynamics during liquid-vapor phase change [9–11].

The lattice Boltzmann method (LBM), developed about
two decades ago, has gained great success in modeling and
simulating of both single-phase and multiphase flows [12–16].
Different from traditional computational fluid dynamics meth-
ods based on the macroscopic governing equations, the LBM
is actually a mesoscopic numerical approach, and its kinetic
characteristics bring some distinctive features to this method,
such as the simple algorithm structure, easy boundary treat-
ment, and natural parallelism [17,18]. In recent years the
LBM was also adopted by some scholars to simulate liquid-
vapor phase change heat transfer such as boiling [19,20]
and evaporation [21,22]. These existing LB models usually
fall into two main categories: (1) the phase-field method
[20,22–24] and (2) the pseudopotential method [19,21,25–
28]. For the phase field method [20,22–24], the vapor-liquid
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interface is captured by the interface-capturing equation like
the Cahn-Hilliard equation, and the phase-change process is
established by adding a source term to the interface capturing
equation. Also, the energy equation in this approach is used
to define the latent heat. To trigger the liquid-vapor phase
change, the phase-field method usually assumes an initial
vapor profile in the system [20] such that it is not efficient
in modeling bubble nucleation in the boiling heat transfer,
while this assumption is not required for the pseudopotential
method [14]. The key point of the pseudopotential method
is that the interaction between different phases is mimicked
via an attractive or repulsive force among the neighboring
fluid particles [29]. As a consequence, the nonideal gas be-
havior and phase separation can be realized without using any
specific techniques to track or capture interface [13,14,17].
Historically, the pioneering work on simulating liquid-vapor
phase change with the pseudopotential method may be at-
tributed to Zhang and Cheng in 2003 [25]. In their work
the boiling heat transfer is successfully simulated with the
proposed method. Then Hazi and Markus [26] proposed an-
other LB model to simulate the heterogeneous boiling on
a horizontal plate. Different from Zhang and Chen’s work,
the temperature equation in Hazi and Markus’s model is de-
rived from the entropy balance equation, and it is coupled
with the pseudopotential multiphase LB model through an
artificial equation of state (EOS). On the basis of the work
of Hazi and Markus, Gong and Cheng [27] developed an
improved thermal LB model for liquid-vapor phase change
heat transfer by employing the Peng-Robinson EOS. Utilizing
this model, they successfully simulated the bubble growth
and departure in pool boiling. Subsequently, Li et al. [28]
pointed out that the replacement of ∇ · (κ∇T )/(ρcv ) with
∇ · [(κ/ρcv )∇T ] (here κ , ρcv , and T are the thermal con-
ductivity, heat capacitance, and temperature, respectively) in
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the work of Gong and Cheng is an inappropriate treatment,
which will yield considerable errors for the multiphase flows
due to the variable density between different phases, and
they then proposed another improved thermal LB model for
simulation of liquid-vapor phase change. The same authors
also constructed a hybrid LB model for liquid-vapor phase
change [30], in which the velocity field is solved by us-
ing the pseudopotential LB approach, while the temperature
field is solved by the finite-difference method. Thereafter,
a thermal multiple-relaxation-time (MRT) LB model with
a nondiagonal matrix based on the two-dimensional nine-
velocity (D2Q9) lattice was developed for liquid-vapor phase
change by Zhang et al. [31]. Different from the model of Li
et al. [28], the calculation of the Laplacian term of temperature
is avoided in this model, and the latent heat of vaporization
is also decoupled with the EOS, and thus it is more flexi-
ble in simulating liquid-vapor phase change. However, due
to the nondiagonal matrix in this approach relying on the
lattice model, it cannot be extended to the three-dimensional
case directly. More recently, a three-dimensional thermal LB
model was constructed for liquid-vapor phase change by Li
et al. [32]. Different from previous works, this model is pos-
sible to use the D3Q7 lattice due to the convection term in
the corresponding LB equation actually treated as a source
term, while it still needs to calculate the gradient term of heat
capacitance ∇(ρcv ).

In this work we propose a thermal LB model for liquid-
vapor phase change. By modifying the collision term for
the temperature equation, the calculations of the Laplacian
term of temperature [∇ · (κ∇T )] and the gradient term of
heat capacitance [∇(ρcv )] are both avoided, resulting in
the possibility to retain the main advantages of the original
LBM. Moreover, due to the present thermal model’s being
constructed based on a linear equilibrium distribution, it is
possible to use a more simple D2Q5 lattice, and also a D3Q7
lattice when it is extended to 3D space. The rest of the paper
is organized as follows. In Sec. II a pseudopotential model
is briefly introduced. Then a thermal LB model is proposed
in Sec. III. Numerical validation of the proposed model is
presented in Sec. IV. Finally, a brief summary is concluded
in Sec. V.

II. PSEUDOPOTENTIAL LATTICE BOLTZMANN MODEL

The pseudopotential multiphase model, originally pro-
posed by Shan and Chen [29], is a particularly popular
method in the LB community for its simplicity and in-
tuitive connection to classical nonideal gas EOS [33]. To
achieve the thermodynamic consistency, various improved
pseudopotential models have been proposed in the past two
decades [34–36]. In this work, an improved D2Q9 multiple-
relaxation-time (MRT) pseudopotential model developed by
Li et al. [34] is considered, and the evolution equation of the
density distribution fi in this model is written as

fi(x + ci�t, t + �t ) − fi(x, t )

= −(M−1SM)i j
[

f j (x, t ) − f (eq)
j (x, t )

] + �tF ′
i(x, t ),

(1)

in which ci is the discrete velocity at position x and time t .
For the D2Q9 model considered here, the discrete velocities
are defined as [17]

ci =
⎧⎨
⎩

(0, 0), i = 0,

(cos [(i − 1)π/2], sin [(i − 1)π/2])c, i = 1–4,

(cos [(2i − 9)π/4], sin [(2i − 9)π/4])
√

2c, i = 5–8,

(2)

where c = �x/�t is the lattice speed with �x and �t denot-
ing the lattice spacing and time step (both are set to 1 in the
present work). f (eq)

i (x, t ) is the equilibrium distribution given
by [37]

f (eq)
i (x, t ) = ωiρ

[
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− |u|2
2c2

s

]
, (3)

where ωi is the weight coefficient given by ω0 = 4/9, ω1−4 =
1/9, ω5−8 = 1/36, u = (ux, uy) is the velocity, and cs =
c/

√
3 is the sound speed. M is the transformation matrix given

by [38]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 1 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Note that when Eq. (1) is multiplied by the transformation
matrix M, the original collision step implemented in velocity
space will turn to execute in the momentum space,

m∗(x, t ) = m(x, t ) − S[m(x, t ) − meq(x, t )]

+ �t

(
I − S

2

)
F(x, t ), (5)

while the streaming step is still implemented in the velocity
space,

fi(x + ci�t, t + �t ) = f ∗
i (x, t ). (6)

Here m(x, t ) = Mf is the rescaled moment with f (x, t ) =
[ f0(x, t ), . . . , f8(x, t )]T, and f ∗

i (x, t ) = M−1m∗(x, t ) is the
postcollision distribution function, I is the unit matrix, and
S = diag(s0, se, sε, s j, sq, s j, sq, sp, sp) is the diagonal relax-
ation matrix. meq(x, t ) is the equilibrium function in the
moment space given by

meq(x, t ) = ρ
[
1,−2 + 3|u|2, 1 − 3|u|2, ux,−ux, uy,

− uy, u2
x − u2

y, uxuy
]T

. (7)

In addition, F(x, t ) is the forcing term in the moment space
satisfying (I − 0.5S)F(x, t ) = MF′. Following the work of Li
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et al. [34], it can be written as

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

6u · Fn + σ |Fm|2
ψ2�t (se

−1−0.5)

−6u · Fn − σ |Fm|2
ψ2�t (sε

−1−0.5)

Fn,x

−Fn,x

Fn,y

−Fn,y

2(uxFn,x − uyFn,y)
uxFn,y + uyFn,x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

where σ is a tunable parameter used to achieve thermody-
namic consistency and Fn = (Fn,x, Fn,y ) is the total force, and
it is defined as Fn = Fm + Fb, with Fb and Fm representing the
external force and the intermolecular interaction force, respec-
tively. For the D2Q9 lattice considered here, the interaction
force is given by [39]

Fm = −Gψ (x)
8∑

i=1


 (|ci�t |2)ψ (x + ci�t )ci�t, (9)

where 
 (|ci�t |2) are the weights, which are given as

 (�x2) = 1/3,
 (2�x2) = 1/12, G is a parameter that con-
trols the strength of the interparticle force, whose value is
usually set to be −1 in many simulations, and ψ (x) is
the mean-field potential, which is calculated from ψ (x) =√

2(pEOS − ρc2
s )/(G�x2) with pEOS being the nonideal

EOS [33]. In the present work, the Peng-Robinson EOS is
used [13], which is given as

pEOS = ρRT

1 − bρ
− aϕ(T )ρ2

1 + 2bρ − b2ρ2
, (10)

where R is the gas constant, a = 0.45724R2T 2
c /pc, and

b = 0.0778RTc/pc, with Tc and pc representing the critical
temperature and the critical pressure, respectively. ϕ(T ) =
[1 + (0.37464 + 1.54226ω̄ − 0.26992ω̄2)(1 − √

T/Tc)]2, in
which ω̄ = 0.344 is the acentric factor and T is the tem-
perature, and it is calculated from the energy equation in
the real simulations. For the other parameters, we choose
a = 3/49, b = 2/21, and R = 1, which have been widely used
in previous works. Finally, the macroscopic density ρ and
velocity u in the pseudopotential model are calculated by

ρ =
8∑

i=0

fi, ρu =
8∑

i=0

ci fi + �t

2
Fn. (11)

III. NUMERICAL FORMULATIONS

A. Reexamination of previous lattice Boltzmann models

Before proceeding further, the governing equation for
liquid-vapor phase change is first revisited. According to the
work of Anderson et al. [40], by neglecting the effect of
viscous heat dissipation, the energy equation for liquid-vapor
phase change can be expressed as (also called the local bal-
ance law for entropy)

ρT
Ds

Dt
= ∇ · (λ∇T ), (12)

where D(·)/Dt = ∂t (·) + u · ∇(·) is the material derivative, s
is the entropy, and λ is the thermal conductivity. To simplify
the above equation, the following thermodynamic relation is
considered [41]:

ds = cv

T
dT +

(
∂ pEOS

∂T

)
ρ

d

(
1

ρ

)
(13)

in which cv is the specific heat at constant volume. According
to Eq. (13), and note that the continuity equation Dρ/Dt =
−ρ∇ · u, the temperature equation for liquid-vapor phase
change can be written as

ρcv

∂T

∂t
+ ρcvu · ∇T = ∇ · (λ∇T ) − T

(
∂ pEOS

∂T

)
ρ

∇ · u.

(14)
In order to solve the above equation within the framework

of LBM, various models have been proposed in previous
works [27,28,31,32]; however, the evolution equations that
appeared in these existing works are rather heuristic. In fact, to
match the corresponding thermal LB models, these models are
almost constructed based on the following variant temperature
equation [27,28,31,32]:

∂T

∂t
+ ∇ · (uT ) = ∇ · (η∇T ) + R, (15)

where η is the thermal diffusivity or an artificial parameter
depending on the expression of the source term of R. Since
Eq. (15) is a standard convection-diffusion equation with a
source term, many universal models can be adopted for solv-
ing this equation in the LB community [42–44]. Following
this idea, Gong and Cheng [27] proposed an LB model for
liquid-vapor phase change where

η = λ

ρcv

, R = T

[
1 − 1

ρcv

(
∂ pEOS

∂T

)
ρ

]
∇ · u. (16)

Comparing Eq. (16) with Eq. (14), one can find that the term
of ∇ · (λ∇T )/(ρcv ) is replaced by ∇ · {[λ/(ρcv )]∇T } in the
Gong and Cheng model. Although this treatment is acceptable
for the single-phase flow in the incompressible limit, it is
not correct for the multiphase flows, especially for the liquid-
vapor interface, where the density varies significantly. In this
setting, Li et al. [28] proposed an improved LBM, and in their
model,

η = k,

R = 1

ρcv

∇ · (λ∇T ) − ∇ · (k∇T )

+ T

[
1 − 1

ρcv

(
∂ pEOS

∂T

)
ρ

]
∇ · u, (17)

where k is an artificial parameter. For this model, due to the
source term R being related to the Laplacian or gradient term
of temperature, one must calculate it with the help of a finite-
difference scheme, making it unable to hold the advantages
of the LBM very well. In addition, Zhang et al. [31] also
proposed another improved thermal LBM for liquid-vapor
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phase change where

η = λ

ρcv

,

R = λ∇T · ∇(ρcv )

(ρcv )2 +
(

T − ρH

cv

− pEOS

ρcv

)
∇ · u, (18)

in which H is a parameter related to the latent heat of va-
porization. In contrast to the model of Li et al., this model is
not necessary to calculate the Laplacian of temperature, and
the latent heat is decoupled with the EOS. However, it still
needs to calculate the gradient term of ∇(ρcv ) with the finite-
difference scheme, which will bring some numerical errors
into the system. This phenomenon may be more remarkable
around the liquid-vapor interface. On the other hand, since
the calculation of temperature in the model of Zhang et al.
is related to the source term R, causing the corresponding
expression to be implicit, an iteration procedure is needed
theoretically. Apart from the above models, Li et al. [32]
recently also proposed a 3D thermal LBM for phase change
heat transfer in which

η = λ

ρcv

,

R = λ∇T · ∇(ρcv )

(ρcv )2 − u · ∇T

− T

ρcv

(
∂ pEOS

∂T

)
ρ

∇ · u + ∇ · (uT ). (19)

Substituting Eq. (19) into Eq. (15), one can find that the
convection term in the temperature equation (14) is actually
treated as a source term in this model; however, the calculation
of ∇(ρcv ) still exists.

B. Thermal lattice Boltzmann model

In this section we propose a thermal LB model for liquid-
vapor phase change. To this end the temperature equation is
changed to

ρcv

∂T

∂t
= ∇ · (λ∇T ) −

[
ρcvu · ∇T + T

(
∂ pEOS

∂T

)
ρ

∇ · u
]
.

(20)

Apparently, the above equation can be viewed as a pure diffu-
sion equation ρcv∂t T = ∇ · (λ∇T ) + Q with a corresponding
source term Q = −[ρcvu · ∇T + T (∂ pEOS/∂T )ρ∇ · u]. Al-
though it is not difficult to develop an LBM for solving the
pure diffusion equation [45,46], how to incorporate ρcv in
front of ∂T /∂t into the temperature evolution equation is
a problem that must be addressed. Inspired by the work of
Cartalade et al. [47], a thermal LB model is proposed for
simulating liquid-vapor phase change. To have a better un-
derstanding of the proposed LBM, we first present the model
by using the simplest Bhatnagar-Gross-Krook (BGK) opera-
tor, and then extend it to the multiple-relaxation-time (MRT)
model, which is a generalized model and has distinct advan-
tages over the BGK model in terms of stability and accuracy.

1. BGK model for liquid-vapor phase change

The lattice BGK equation for the temperature distribution
function gi is expressed as

ρcvgi(x + ci�t, t + �t ) − gi(x, t )

= (ρcv − 1)gi(x + ci�t, t ) − 1

τg

[
gi(x, t ) − g(eq)

i (x, t )
]

+ �tGi + �tSi, (21)

where τg is the relaxation time, g(eq)
i is the local equilibrium

distribution function defined as

g(eq)
i = ŵiT, (22)

Gi is the source term given by

Gi = −ŵi[ρcvu · ∇T + T (∂T pEOS )ρ∇ · u], (23)

and the correction term Si is chosen as

Si = ŵiρcv

�t

2
∂2

t T . (24)

The temperature T is calculated from

T =
∑

i

gi. (25)

Since the equilibrium distribution function is a linear form,
it is possible to use a simpler D2Q5 lattice model, in which
the discrete velocity set is expressed as

ci =
{

(0, 0), i = 0
(cos [(i − 1)π/2], sin [(i − 1)π/2])c, i = 1–4 ,

(26)

and the corresponding weight coefficient in such a case can
be defined as ŵi=0 = 1 − ẇ, ŵi=1−4 = ẇ/4 [ŵ is a parameter
satisfying ẇ ∈ (0, 1)] with the sound speed given by ĉ2

s =
ẇ/2 [48].

To recover the macroscopic temperature equation from
the lattice BGK equation, in what follows we will perform
a multiscale analysis of the present model. To this end, the
distribution function gi and the time and space derivatives are
first expanded as [18]

gi = g(0)
i + εg(1)

i + ε2g(2)
i , ∂t = ε∂t1 + ε2∂t2 , ∇ = ε∇1,

(27)

where t1 is the fast convective scale, t2 is the slow diffusive
scale, and ε is a small parameter which is proportional to the
Knudsen number in the classical kinetic theory for fluid flows.

By Taylor expansion the lattice BGK equation yields

ρcv

(
gi + �tDigi + �t2

2
D2

i gi

)

− gi + (1 − ρcv )

(
gi + �tdigi + �t2

2
d2

i gi

)

= − 1

τg

(
gi − g(eq)

i

) + �tGi + �tSi, (28)

where Di = ∂t + di with di = ci · ∇. Then substituting
Eq. (27) into Eq. (28), and equating the coefficients of each
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order of ε, we have

O(ε0) : g(0)
i = g(eq)

i , (29)

O(ε1) : ρcv∂t1 g(0)
i + d1ig

(0)
i = − 1

τg�t
g(1)

i + ŵiQ
(1), (30)

O(ε2) : ρcvD1ig
(1)
i + ρcv∂t2 g(0)

i + ρcv

�t

2
D2

1ig
(0)
i

+ (1 − ρcv )d1ig
(1)
i + (1 − ρcv )

�t

2
d2

1ig
(0)
i

= − 1

τg�t
g(2)

i + ŵiρcv

�t

2
(∂t1)2T, (31)

where D1i = ∂t1 + d1i = ∂t1 + ci · ∇1. If we expand D1i and
D2

1i in Eq. (31), then the corresponding equation can be rewrit-
ten as

ρcv∂t1 g(1)
i + d1ig

(1)
i + ρcv∂t2 g(0)

i + ρcv

�t

2
∂2

t1 g(0)
i

+ ρcv

�t

2
(2∂t1 d1i )g

(0)
i + �t

2
d2

1ig
(0)
i

= − 1

τg�t
g(2)

i + ŵiρcv

�t

2
(∂t1)2T . (32)

From Eqs. (22)–(24) and Eq. (29), one can obtain that
∑

i

g(0)
i = T,

∑
i

cig
(0)
i = 0,

∑
i

cicig
(0)
i = ĉ2

s T I,

∑
i

Si = ρcv

�t

2
∂2

t T,
∑

i

ciSi = 0,
∑

i

Gi = Q,

∑
i

ciGi = 0. (33)

Summing Eqs. (30) and (32) over i with the help of Eq. (33),
and noting that d2

1i = ∇1∇1 : I, we obtain

ρcv∂t1 T = Q(1), (34)

∇1 ·
∑

i

cig
(1)
i + ρcv∂t2 T + �t

2
∇1∇1 : ĉ2

s T I = 0. (35)

In order to evaluate
∑

i cig
(1)
i in Eq. (35), we multiply Eq. (30)

by ci and taking summation over i,

− 1

τg�t

∑
i

cig
(1)
i = ρcv∂t1

∑
i

cig
(0)
i +∇1 ·

∑
i

cicig
(0)
i

−
∑

i

ŵiciQ
(1)

= ĉ2
s ∇1T . (36)

Substituting Eq. (36) into Eq. (35) yields

ρcv∂t2 T = ∇1 ·
(

τg − 1

2

)
�t ĉ2

s ∇1T . (37)

Based on Eqs. (34) and (37), we obtain

ρcv∂t T = ∇ ·
(

τg − 1

2

)
ĉ2

s �t∇T + Q. (38)

Comparing Eq. (38) with Eq. (30), the dimensionless relax-
ation time τg is determined by λ = ĉ2

s (τg − 1
2 )�t .

Through the above multiscale analysis, it is clear that
the temperature equation is recovered without any deviation
terms. In addition, although a temperature space derivative
appears in the discrete source term of Gi, it can be computed
locally using Eq. (36) with εg(1)

i ≈ gi − g(eq )
i . More impor-

tantly, the calculations of ∇ · (κ∇T ) or ∇(ρcv ) do not appear
in the present scheme, such that the formulation of the present
LBM is more concise in contrast to previous models, and
therefore, it holds the advantages of the original LBM very
well.

2. MRT model for liquid-vapor phase change

We now turn to extend the above BGK model to the MRT
version, and the evolution equation with a MRT collision
operator M̂ can be expressed as

ρcvgi(x + ci�t, t + �t )

= gi(x, t ) + (ρcv − 1)gi(x + ci�t, t )

− (M̂−1�M̂)i j
[
g j (x, t ) − g(eq)

j (x, t )
] + �tGi + �tSi,

(39)

where � is a nonnegative diagonal relaxation matrix given by
� = (ς0, ς1, . . . , ς4) with ςi ∈ (0, 1). Unlike most previous
MRT models based on the orthogonal transformation matrix,
the present MRT scheme is constructed using a nonorthog-
onal one, which is simpler and more efficient because it
contains more zero elements than the orthogonal transforma-
tion matrix [48]. For the D2Q5 lattice considered here, the
nonorthogonal transformation matrix M̂ is defined as [49,50]

M̂ =

⎡
⎢⎢⎢⎣

1 1 1 1 1
0 1 0 −1 0
0 0 1 0 −1
0 1 1 1 1
0 1 −1 1 −1

⎤
⎥⎥⎥⎦. (40)

The aforementioned multiscale analysis is adopted again to
show that the temperature equation can be recovered correctly
from the present MRT model. Applying the Taylor expansion
to Eq. (39), and noting that Eq. (27), we can obtain the fol-
lowing equations at different orders of ε:

O(ε0) : g(0)
i = g(eq)

i , (41)

O(ε1) : ρcv∂t1 g(0)
i + d1ig

(0)
i

= − 1

�t
(M̂−1�M̂)i jg

(1)
j + ŵiQ

(1), (42)

O(ε2) : ρcvD1ig
(1)
i + ρcv∂t2 g(0)

i + ρcv

�t

2
D2

1ig
(0)
i

+ (1 − ρcv )d1ig
(1)
i + (1 − ρcv )

�t

2
d2

1ig
(0)
i

= − 1

�t
(M̂−1�M̂)i jg

(2)
j + ŵiρcv

�t

2
(∂t1)2T . (43)
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Multiplying M̂ on both sides of the above equations, we
can obtain the following equations in the moment space:

O(ε0) : m̂(0) = m̂(eq), (44)

O(ε1) : ρcvI∂t1 m̂(0) + d1m̂(0) = − 1

�t
�m̂(1) + M̂Ĝ(1),

(45)

O(ε2) : ρcvI∂t1 m̂(1) + d1m̂(1) + ρcvI∂t2 m̂(0)

+ ρcvI
�t

2
∂2

t1 m̂(0) + ρcv

�t

2
(2∂t1 d1)m̂(0)

+ �t

2
d2

1m̂(0)

= − 1

�t
�m̂(2) + MŜ(2), (46)

where d1 = M̂diag[c0 · ∇, . . . , c4 · ∇]M̂−1, Ĝ(1) = [ŵ0Q(1),

. . . , ŵ4Q(1)]T, Ŝ(2) = [0.5ŵ0ρcv∂
2
t1 T, . . . , 0.5ŵ4ρcv∂

2
t1 T ]T. In

addition, m̂ = M̂g is the moment function, and m̂(eq ) is the
equilibrium function in the moment space defined as

m̂(eq ) = M̂g(eq ) = [T, 0, 0, ẇT, 0]T. (47)

According to Eq. (45), we can rewrite the first-order equa-
tions in t1 scale, but here we just present the first, second, and
third ones since only these equations are useful in deducing
the macroscopic equation,

ρcv∂t1 T = Q(1), (48)

c2
s ∂x1T = − 1

�t
ς1m(1)

1 , (49)

c2
s ∂y1T = − 1

�t
ς2m(1)

2 . (50)

Note that d2
1m̂(0) = (E · ∇1)(E · ∇1)m̂(0) where E =

(Ex, Ey), and Ex = M̂diag[c0x, . . . , c4x]M̂−1, Ey =
M̂diag[c0y, . . . , c4y]M̂−1, we can also obtain the following
equation for conservative variable T at t2 scale:

ρcv∂t2 T + ∂x1

(
m̂(1) + �t

2
ĉ2

s ∂x1T

)
+ ∂y1

(
m̂(2) + �t

2
ĉ2

s ∂y1T

)

= 0. (51)

Substituting Eqs. (49) and (50) into Eq. (51), we have

ρcv∂t2 T = ∂x1

[
�t

(
1

ς1
− 1

2

)
ĉ2

s ∂x1T

]

+ ∂y1

[
�t

(
1

ς2
− 1

2

)
ĉ2

s ∂y1T

]
. (52)

Based on Eq. (48) and Eq. (52), we can get

ρcv∂t T = ∇ · (λ∇T ) + Q, (53)

where λ = �t (ς1
−1 − 0.5)ĉ2

s = �t (ς2
−1 − 0.5)ĉ2

s .
The above procedure shows that the temperature equa-

tion can be recovered correctly from the present MRT model,
and since the convection term is actually treated as a source
term, the nondiagonal relaxation time used in [31] is not
needed. In addition, the temperature gradient appeared in the
source term Q can also be calculated locally in the present

MRT model, and Eqs. (49) and (50) give the corresponding
algorithm.

C. Wetting boundary condition

To model fluid-solid interactions, the geometric formu-
lation proposed by Ding and Spelt [51] is adopted in our
following simulations, which can be expressed as

ρx,0 = ρx,2 + tan

(
π

2
− θ eq

)
|ρx+1,1 − ρx−1,1|, (54)

where θ eq is an analytical prescribed equilibrium contact
angle, and ρx,0 denotes the fluid density at the ghost layer
next to the solid boundary. Here the first index in ρx,y rep-
resents the coordinate along the horizontal solid wall, while
the second one denotes the coordinate normal to the solid
wall. In addition, the phase interface position is defined as
ρ = 0.5(ρl + ρg) throughout this work, in which ρl , ρg are
the liquid density and gas density, respectively.

IV. RESULTS AND DISCUSSION

In this section several benchmark liquid-vapor phase
change problems are selected to validate the performance of
our proposed LB model. These typical examples include the
D2 law for droplet evaporation, droplet evaporation on heated
surfaces, and bubble nucleation and departure in nucleate
boiling. In addition, unless otherwise specified, the afore-
mentioned MRT model is adopted in our simulations for its
good numerical accuracy and stability. Moreover, it should be
noted that apart from the relaxation times related to physical
parameters, the other relaxation factors in the velocity field
are the same as those used in the work of Li et al. [34], while
they are all set to 1.0 for the temperature field.

A. Validation of the D2 law

We first validate the present thermal LB model by con-
sidering the droplet evaporation in open space, and it is well
known that the variation of the droplet diameter in this prob-
lem is described by the D2 law, which states that the square
of the evaporating droplet diameter D decreases linearly with
time [52],

( D

D0

)2

= 1 − κt, (55)

where D0 is the droplet initial diameter and κ is the evapora-
tion constant. The computational domain in our simulations is
a square cavity, and the lattice size of it is set to be 200×200.
Initially, a droplet with a diameter of D0 = 60 is located at
the center of the cavity, and the temperature of the droplet
is equal to the saturation temperature Tsat = 0.86Tc, while a
higher temperature of Tg = 1.0Tc is assigned to the surround-
ing vapor phase. In such a case, the droplet is expected to
evaporation as a result of the temperature gradient around
the liquid-vapor interface. In addition, the Dirichlet boundary
(i.e., T = Tg) is adopted for the temperature field, which can
be easily established by employing the halfway bounce-back
scheme [53]. For the velocity field, the periodic scheme is
used to determine the unknown density distribution functions
streaming from the outside of the boundary [17]. The thermal
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FIG. 1. Comparisons of the density contours given by the Gong-Cheng model (a), the proposed model (b), and the WENO scheme (c) at
t∗ = 0.1, t∗ = 0.25, and t∗ = 0.75 (from left to right).

conductivity, the kinematic viscosity, and the specific heat at
constant volume are chosen as 1/3, 5.0, and 0.1 in the whole
domain, which are all the same as previous works [28,31].

Figure 1 presents the density contours at different di-
mensionless time t∗ = t/ttotal. In order to test the numerical
performance of the present LB model, the results obtained
from the Gong-Cheng [27] model and the fifth-order fi-
nite difference weighted essentially nonoscillatory (WENO)
scheme [54] are also included in this figure. It is clear that the
simulation results using the present LBM agree well with the
WENO scheme, which suggests that the present model could
provide acceptable numerical results in simulating liquid-
vapor phase change. However, it is noted that the evaporation
rate predicted by the Gong-Cheng model [27] is much larger
than the present LB and the WENO schemes, which is caused
by the incorrect treatment of the temperature equation (see
Sec. III A for details). To have a better understanding on this

statement, the time evolution of the square of the dimension-
less diameter is also presented in Fig. 2, in which the results
obtained with the work in [28] and [31] are also incorporated.
As seen from this figure, apart from the the Gong-Cheng
model [27], all of the other models follow the D2 law. On the
other hand, although the numerical results obtained from the
present model and [31] agree well with the WENO scheme,
the current model is more concise.

B. Droplet evaporation on a heated surface

Since the solid surface is usually encountered in most
liquid-vapor phase transition problems, in the following we
intend to study the problem of the droplet evaporation on a
heated surface, which is a standard simple test for liquid-vapor
phase change. Apart from the thermal diffusivity is taken as
η = 0.08, the setup of the other physical parameters are the
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Zhang et al. [30]

FIG. 2. Time evolution of the square of the dimensionless diam-
eter for different models.

same as the first example. The physical domain is a rectangu-
lar enclosure which is covered by 100×200 mesh points. The
bottom wall is a solid wall with a contact angle of 90◦, and it is
maintained at a temperature of Th in the simulations, while the
temperature for the top wall is taken as Ts. The open boundary
condition and the periodic boundary condition are imposed at
the top wall and the horizontal direction, respectively. Initially,
the density and velocity are set according to

ρ = ρl + ρg

2
− ρl − ρg

2
tanh

( |x − x0| − R0

0.5wlg

)
, (56)

u(x, 0) = 0, (57)

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1
WENO
Gong & Cheng [26]
Li et al. [27]
Zhang et al. [30]
Present LBM

FIG. 4. Time evolution of the dimensionless droplet mass for
different models.

where x0 = (100�x, 0)T, R0 = 35�x, and wlg is chosen as
5�x. The simulation is first conducted without evaporation
until the contact angle of the droplet equals the prescribed
value.

The comparisons of density contours among the Gong-
Cheng, present, and WENO solutions are shown in Fig. 3,
where the density distributions from our model and WENO
schemes match very very well, but the evaporation pro-
cess predicted by the Gong-Cheng model [27] is a little bit
slower than the other two models, and we note that a similar
phenomenon is also reported by Li et al. [28] and Zhang
et al. [31]. In order to further validate our model, the variations
of the normalized droplet mass for different models are also
depicted in Fig. 4. It is seen that apart from the Gong-Cheng
model [27], the other solutions have excellent agreement.

FIG. 3. Comparisons of the density contours given by the Gong-Cheng model (a), the proposed model (b), and the WENO scheme (c) at
t∗ = 0.1, t∗ = 0.25, and t∗ = 0.75 (from left to right).
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FIG. 5. Distributions of the density contours in nucleate boiling at t = 5000�t (a), t = 10 000�t (b), and t = 16 000�t (c) (g =
3.0×10−5).

C. Bubble nucleation and departure

Last, to show the potential of the present model, we con-
sider a extremely complex liquid-vapor phase change problem
of bubble nucleation and departure in nucleate boiling. In our
simulation, the computational mesh is a 150×300 rectangular
domain with the periodic boundary condition in the horizontal
direction. Initially, the enclosure is filled with the saturated
water, and the temperature within the domain is set to Tsat =
0.86Tc. For the velocity field, the bottom surface is the solid
wall imposed by the no-slip boundary condition, while the
open boundary condition [55] is used for the top plane. Apart
from the central five grids at the bottom wall with a higher
temperature of T = 1.05Tc, the temperatures at the rest of the
bottom and top walls are all fixed at Tsat in the simulations.

1 1.5 2 2.5 3

10-5

50

60

70

80

90

100

FIG. 6. Variation of detachment bubble diameter with gravity
acceleration.

The physical parameters used in the fluid field are the same
as previous cases, while the thermal conductivity here is set
to 2/3, and the contact angle at the solid surface is equal to
75◦. In addition, a buoyant force given by Fb = (ρ − ρave)g
is applied in the vertical direction, in which ρave is the mean
density over the whole domain, and g = (0,−g) is the gravity
acceleration.

Figure 5 presents several typical snapshots of the nucleate
boiling processes. It can be seen from Fig. 5 that owing to the
influence of the high temperature, a small bubble is initially
formed at the center of the solid wall. Then the size of the
bubble gradually increases until it departs from the bottom
wall. After that, the detached bubble moves upward under the
effect of the buoyancy force, and a new bubble appears at the
center of the solid wall, whose behavior is similar to the first
bubble. To give a quantitative analysis, we follow the theoreti-
cal result given by Fritz [56], which states that the relationship
between detachment bubble diameter and gravitational ac-
celeration satisfying Dd ∝ g−0.5. To this end, simulations are
carried out under different gravitational acceleration, and the
corresponding results are shown in Fig. 6. It is clear that the
detachment bubble diameter predicted by the present model is
indeed proportional to g−0.5, which further illustrates that our
model is adequate for liquid-vapor phase change problems.

V. CONCLUSIONS

Liquid-vapor phase change phenomenon often arises in na-
ture and scientific researchers, but numerical modeling of such
problem still remains a challenging task in the LB community.
The present work proposes a thermal lattice Boltzmann model
for liquid-vapor phase change, which can correctly recover the
temperature equation through multiscale analysis. In contrast
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TABLE I. Comparisons of the stability and computational time
per 10 000 steps between the present and previous models, in which
ς̂ denotes the relaxation times related to the “diffusion” coefficient
(i.e., η or λ) and all the other free relaxation factors in � are set as
1.0; the symbols � and × indicate that the corresponding method is
stable and unstable, respectively.

Present model Li et al. [28] Zhang et al. [31]

Stability (ς̂ = 1.0) � � �
Stability (ς̂ = 2.0/3.0) � × �
CPU time (s) 752.3894 1127.6723 984.2197

to previous models, the basic idea of the present model is
that the temperature equation is treated as a pure diffusion
equation with a source term. Additionally, in order to avoid
the calculation of the gradient term of ∇(ρcv ), a collision term
is introduced to the evolution equation of the temperature dis-
tribution function, making it possible to retain the main merits
of the LBM. Several numerical tests show that our approach
could provide comparable results to the WENO scheme, and it
is expected to be an efficient method in modeling liquid-vapor
phase change.
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APPENDIX A: ASSESSMENT OF THE PERFORMANCE
OF THE PRESENT AND PREVIOUS MODELS

As mentioned previously, compared with some previous
LB models for liquid-vapor phase change, the most striking
feature of the present model is that it could avoid the calcu-
lations of some gradient terms [i.e., ∇(k∇T ) and ∇(ρcv )].
In this setting, the present method is expected to be more
efficient than previous approaches. To better understand this
point, in this Appendix, we intend to compare the numerical
performance between the present and previous models. The
problem considered is the droplet evaporation in open space,
and the physical parameters used here are all the same as
that adopted in Sec. IV A. Additionally, the custom C code is
executed on a personal computer with Intel� CoreTM i7-9700
CPU at 3.0 GHz base frequency and 8.0 GB shared memory.
The detailed comparison of the stability at different relaxation
times ς̂ and the computational time per 10 000 steps are

FIG. 7. Time evolutions of the square of the normalized diameter
(D/D0 )2 obtained from different lattices.

summarized in Table I. As shown in this table, due to the
models developed by Li et al. [28] and Zhang et al. [31] are
constructed using the D2Q9 lattice, the computational time of
their models is much larger than our model, which suggests
that the D2Q5 lattice used in our model is more efficient. In
addition, it is noted that when the relaxation time τ̂ equals
2.0/3.0, it becomes unstable for the model of Li et al., while
the present model and that of Zhang et al perform well. Be-
cause of these advantages, the present model could be a good
candidate for simulating liquid-vapor phase change.

APPENDIX B: COMPARISON OF THE D2Q5, D2Q7,
AND D2Q9 LATTICE MODELS

Because the temperature equilibrium distribution equa-
tion used in our model does not involve the second-order
velocity term (also first-order term), it is possible to use the
D2Q5, D2Q7, or D2Q9 lattice to simulate the liquid-vapor
phase change in practical applications. In such a case, one
may wonder if some differences exist when using these lattice
models. To this end, this Appendix intends to conduct a com-
parison study for these lattice models. A series of numerical
simulations for droplet evaporation in open space is perfor-
med again, and the time evolutions of the square of the nor-
malized diameter (D/D0)2 obtained from different lattices are
depicted in Fig. 7, in which the two snapshots of the local
density and isotherms are also presented. From this figure, it
can be seen that the D2 law is well predicted by all lattice
models, and the numerical difference among these models is
so insignificant that it can be neglected. In addition, we note
that the D2Q9 and D2Q7 lattice models require 952.0031 sec
CPU time and 809.2025 sec CPU time, respectively, while the
D2Q5 lattice needs only 752.3894 sec CPU time. Thus, from
the point of view of computational efficiency, the D2Q5 lattice
model is recommended.
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