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Essentially entropic lattice Boltzmann model: Theory and simulations
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We present a detailed description of the essentially entropic lattice Boltzmann model. The entropic lattice
Boltzmann model guarantees unconditional numerical stability by iteratively solving the nonlinear entropy
evolution equation. In this paper we explain the construction of closed-form analytic solutions to this equation.
We demonstrate that near equilibrium this analytic solution reduces to the standard lattice Boltzmann model. We
consider a few test cases to show that the analytic solution does not exhibit any significant deviation from the
iterative solution. We also extend the analytical solution for the Ellipsoidal Statistical (ES)–Bhatnagar-Gross-
Krook model to remove the limitation on the Prandtl number for heat transfer problems. The simplicity of the
analytic solution removes the computational overhead and algorithmic complexity associated with the entropic
lattice Boltzmann models.
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The lattice Boltzmann model (LBM) is an efficient kinetic
formulation of the nonlinear hydrodynamic phenomena on a
lattice designed to capture the physics of macroscopic flow
[1–7]. The Navier-Stokes dynamics emerges as the hydro-
dynamic limit of this kinetic model which performs simple
microscale operations on the populations of fictitious particles
[8–10]. The discrete equilibrium in LBM is chosen such that
the macroscopic constraints are satisfied [9–11]. Historically,
the top-down approach of choosing the discrete equilibrium
distribution from the macroscopic dynamics emerged as a
computationally attractive alternative to the Boolean particle
dynamics of the lattice gas model [1,8,11]. However, this top-
down approach lost a few desirable features of the lattice gas
such as the unconditional numerical stability, the H theorem,
and consequently the faithful representation of microscopic
Boltzmann dynamics [12,13]. It was soon realized that the
lack of a discrete time H theorem results in the growth of
numerical instabilities [12–14].

The entropic lattice Boltzmann model (ELBM) emerged as
an alternate methodology to restore the H theorem for discrete
space-time evolution [3,12–18]. It was considered a paradigm
shift for computational fluid dynamics because the numerical
stability of a hydrodynamic solver was ensured by compliance
with the thermodynamics at the discrete time level [13]. Cur-
rently, the ELBM is accepted as a viable tool for simulation
of turbulence, multiphase flows, as well as microflows due to
its unconditional numerical stability, and has shown remark-
able improvement over the traditional LBM [6,19–22]. The
additional step in ELBM, known as the entropic involution
step, involves a numerical search for the discrete path length
corresponding to jump to a mirror state on the isentropic
surface. Considerable efforts have been made to ensure the
correctness and efficient implementation of this step [23–28].

*ansumali@jncasr.ac.in

However, there is scope for a better theoretical understanding
of the ELBM if one is able to obtain a closed-form expression
for the discrete path length. For example, note the following:

(i) The variable discrete path length could be understood
as an adaptive implicit modeling of the unresolved scales of
the flow via the thermodynamic route, and may provide a new
insight into the subgrid modeling of turbulence.

(ii) It should enhance the efficiency of the ELBM by
avoiding a numerical search for the path length.

(iii) It will resolve the ambiguities in the implementation
of ELBM. It should be noted that for some rare events, the de-
tails of which are discussed in Sec. II, the entropic involution
step has no solution, and hence there is no unique definition
of the path length [28].

The collision step for the entropic lattice Boltzmann is
written as

f � = f + αβ( f eq − f ), (1)

with α = 2 for Lattice Bhatnagar-Gross-Krook (LBGK). For
the standard ELBM α is the solution of

H[ f + α( f Eq − f )] = H[ f ]. (2)

This requires solving a nonlinear equation at every grid point.
In Ref. [22], the authors reformulated the ELBM and ob-
tained a closed-form analytical solution for the discrete path
length α. This was achieved by relaxing the entropy equality
condition used in ELBM and replacing it with the constraint
that entropy must increase within a discrete time step. We
demonstrated that one can have a family of models which are
explicit but still entropic, i.e.,

H[ f + αβ( f Eq − f )] � H[ f ]. (3)
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The goal is to find largest solution which satisfies this condi-
tion. For example,

α =
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∑

�− fix3
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∑
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1+xi/2

2
∑

�− fix3
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(4)

is a valid solution and a good approximate answer to largest α

satisfying Eq. (3). The analytical form of α was found as the
root of a quadratic equation −aα2 + bα − c, where the coeffi-
cients a, b, c are given in Eq. (46). The near-equilibrium limit
of this analytic solution is the standard LBGK value of α = 2.
This model retains the fundamental idea behind the original
entropic LBM, thus models its “essence” without the iterative
solution methodology. Its simplicity removes the computa-
tional overhead and algorithmic complexity associated with
ELBM. In this paper, we discuss the theory of the entropic
lattice Boltzmann model and explain the construction of the
closed-form analytic solution for the discrete path length in
detail. We also demonstrate that the analytic solution exhibits
no significant deviation from the iterative ELBM solution by
considering a few canonical setups. This paper is organized
as follows: In Sec. I, we briefly review the entropic lattice
Boltzmann model. In Sec. II, we describe the entropic involu-
tion step in its traditional form and derive its near-equilibrium
limit. In Sec. III, we explain the methodology to construct
analytic solutions for the path length. In Sec. IV, we perform
a detailed comparison of the our solution with ELBM and
BGK values of path length. In Sec. V we derive the analytical
solution to the path length for the Ellipsoidal Statistical (ES)–
BGK model. Finally, in Sec. VI we derive the expression for
turbulent viscosity corresponding to the analytic solution of
the path length.

I. ENTROPIC LATTICE BOLTZMANN MODEL

In this section, we introduce the LBM and its entropic
formulation in D dimensions. In LBM one defines a set of dis-
crete velocities ci, i = 1, . . . , N , such that they form links of a
space-filling lattice [29], and at every lattice node x and time
t a set of discrete populations f (ci, x, t ) ≡ fi. Here, the set of
populations fi is understood as a vector f = { f1, f2, . . . , fN }
in the N dimensional vector space, where N is the number
of discrete populations. We define the bilinear action between
two functions of discrete velocities φ and ψ as

〈φ,ψ〉 =
N∑

i=1

φiψi. (5)

Analogous to continuous kinetic theory, the hydrodynamic
variables such as the mass density ρ, velocity u, and the scaled
temperature θ are defined as

ρ = 〈 f , 1〉, ρu = 〈 f , c〉, ρu2 + Dρθ = 〈 f , c2〉. (6)

Similarly, the H function for hydrodynamics is taken in
Boltzmann form as [3,12,30]

H[ f ] =
〈

f , ln
f

w
− 1

〉
, (7)

with weights wi > 0. The population f (x + ci
t, t + 
t ) af-
ter a time step 
t starting from f (x, t ) is written as a two-step
process:

(1) The discrete free flight as

f (x + ci
t, t + 
t ) = f ∗(x, t ), (8)

which shifts the populations from one lattice node to an-
other. Similar to the free flight of molecules, this step
preserves the entropy globally, i.e.,

∑
x H[ f (x + ci
t, t +


t )] = ∑
x H[ f ] (see Ref. [16] for a detailed proof).

(2) The collisional relaxation towards the discrete equilib-
rium as

f ∗(x, t ) = f (x, t ) + αβ[ f eq(Mslow(x, t )) − f (x, t )], (9)

typically modeled by a single relaxation model of Bhatnagar-
Gross-Krook (BGK) [31] with mean free time τ . Here,
Mslow(x, t ) = {ρ(x, t ), u(x, t ), θ (x, t )} are the collisional in-
variants [θ (x, t ) /∈ Mslow(x, t ) for isothermal LBM]. For the
standard LBGK, α = 2, and the dimensionless discrete relax-
ation parameter β = 
t/(2τ + 
t ) is bounded in the interval
0 < β < 1. Notice that β = 1 implies τ = 0, and as the
kinematic viscosity ν = τθ , β = 1 implies that there is no
dissipation in the system. For a typical LBM simulation, the
operating range is an over-relaxation regime of 
t/τ � 1
where β → 1. In the standard LBM, this regime of β → 1 en-
counters numerical instability, which is resolved in the ELBM
by treating α as a variable which is evaluated at each point
and time step such that the H theorem is satisfied. This is
discussed in detail in Secs. II and III.

To recapitulate, the discrete free flight that represents the
convection process leads to no dissipation, hence, no en-
tropy production [16]. The collisional relaxation, however, has
nonzero entropy production due to relaxation of the popula-
tions towards the equilibrium but is entirely local in position
space.

Historically, the discrete isothermal equilibrium at a refer-
ence temperature θ0 was chosen as [9]

f eq
i = wiρ

[
1 + uαcα

θ0
+ uαuβ

2θ2
0

(cαcβ − θ0δαβ )

]
, (10)

which was sufficient to recover the Navier-Stokes dynamics
up to O(u2), provided that the moments of the weights wi

satisfy

〈w, 1〉 = 1, 〈w, cαcβ〉 = θ0δαβ, 〈w, cαcβcγ cκ〉 = θ2
0 
αβγκ,

(11)
where 
αβγκ = δαβδγ κ + δαγ δβκ + δακδβγ . However, this
polynomial form of discrete equilibrium permits the popula-
tions to attain negative values, thus making the simulations
numerically unstable [12,13]. A method that resolves the issue
of nonpositive form of equilibrium distribution is to construct
the discrete equilibrium f eq as the minimizer of the con-
vex H function under the constraint that the mass density,
the momentum density, and the energy density (ignored for
isothermal scenarios) are conserved [12,14,32,33]. The dis-
crete entropic equilibrium thus obtained is of the form

f eq
i = wiρ exp

(−μ − ζαciα − γ c2
i

)
, (12)

where μ, ζα, γ are the Lagrange multipliers. For the D1Q3
model, the discrete entropic isothermal equilibrium in the
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explicit form is

f eq
±1 = ρ

6
ϒ

[
2uα + √

1 + 3u2
α

1 − uα

]±1

, f eq
0 = 4ρ

6
ϒ, (13)

where ϒ = 2 − √
1 + 3u2. For the higher-dimensional

extensions of D1Q3, i.e., D2Q9, D3Q27, the gener-
alized expression of the discrete entropic isothermal
equilibrium is [3]

f eq
i = wiρ

D∏
α=1

ϒ

[
2uα + √

1 + 3u2
α

1 − uα

]ciα/
√

3θ0

. (14)

The above entropic equilibrium can be compared with
Eq. (10) by performing a series expansion around u = 0. The
expansion up to O(u3) is

f eq
i = wiρ

[
1 + uαcα

θ0
+ uαuβ

2θ2
0

(cαcβ − θ0δαβ )

+ 1

6θ3
0

(
uαuβuγ cαcβcγ − θ0u2uαcα

)]
, (15)

which matches the historically employed equilibrium from
Eq. (10) until O(u2). The errors in the higher moments such
as viscous stress and heat flux are of O(u4) and O(u3), respec-
tively [34]. As for most higher-order models, the Lagrange
multipliers cannot be evaluated in explicit form and need to
be found numerically. The series form can be used as an
alternative for simulations at low Mach numbers (Ma) defined
as Ma = u/cs, where cs is the sound speed.

II. ENTROPIC INVOLUTION

The existence of the entropy function H accompanied
with the entropic equilibrium derived in a variational fashion
provides an opportunity for creating a nonlinearly stable nu-
merical method [12–14]. As the advection process [Eq. (8)]
does not lead to entropy production [17], a nonlinearly stable
LBM can be achieved by making the collisional relaxation
to equilibrium [Eq. (9)] adhere to the H theorem or, in other
words, by ensuring that there is nonpositive entropy produc-
tion during the collision [12].

The physical domain is discretized into grid points, at
each of which we define a set of N populations f =
{ f0, f1, . . . fN−1}. Each point has an entropy level H as-
sociated with it. For example, at a grid point with set of
populations f + = { f +

0 , f +
1 , . . . f +

N−1}, from Eq. (7), H[ f +] is
a scalar. The equilibrium f eq is the point with the least value
of H , as, by construction, it is the minimizer of the convex
entropy function H under the relevant constraints.

The collision step given by Eq. (9) is understood in ge-
ometric terms as follows: in an N dimensional phase space,
starting from the precollisional state f , one covers a distance
(path length) αβ in the direction of f eq − f to reach the
postcollisional state f ∗, i.e.,

f ∗ = f + αβ[ f eq − f ]. (16)

Here, for convenience we have dropped the position and time
coordinates x, t as the collision step is local in position space
and instantaneous. We consider the D1Q3 lattice to visualize
the phase space and which will be used later for illustrating the

FIG. 1. Top: The polytope of positivity for the D1Q3 lattice is a
triangular section of the plane inside which all the populations are
positive, and outside of which one or more populations become neg-
ative. Bottom: Representation of a precollisional state f for which
the mirror state is not defined.

concepts of entropic involution. For the D1Q3 lattice, the pop-
ulations are { f−1, f0, f1} with discrete velocities {−1, 0,+1},
respectively. The mass conservation constraint requires that
f−1 + f0 + f1 = ρ, a plane on which the entire discrete
dynamics is constrained (see Fig. 1). The equilibrium for
the D1Q3 lattice is given by Eq. (13). The conserved mo-
ments are the mass density ρ = f−1 + f0 + f1 and momentum
density ρu = f1 − f−1, whereas the nonconserved moment
is the stress σxx = f1 + f−1 − f eq

1 − f eq
−1. These three con-

straints can be inverted to obtain the relations

f̃−1 ≡ f−1

ρ
= f̃ eq

1 + f̃ eq
−1 + σ̃xx − u

2
,

f̃0 ≡ f0

ρ
= 1 − σ̃xx − f̃ eq

1 − f̃ eq
−1,

f̃1 ≡ f1

ρ
= f̃ eq

1 + f̃ eq
−1 + σ̃xx + u

2
,

(17)

where σ̃xx = σxx/ρ, f̃ eq
i = f eq

i /ρ.
We now define a mirror state

f mirror = f + α( f eq − f ), (18)

which is essentially f ∗ from Eq. (16) with β = 1. Here, we
remind that β = 1 is a zero dissipation state, therefore, the
mirror state f mirror lies at the same entropy as the initial state
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f , i.e.,

H[ f mirror] = H[ f ]. (19)

The aim of the entropic involution step is to find the α

corresponding to the mirror state. Note that all the states
f , f ∗, f mirror are at a higher entropy level than f eq. Hence,
starting from f and moving in the direction of f eq − f ,
the value of H decreases until the equilibrium state, after
which it begins to rise. The maximum allowable path length
that could be covered is α, after which H increases beyond
its precollisional state, and the H theorem is violated. In
Appendix A, we explain the entropic involution using an even
simpler lattice with only two populations where the moment
space and entropy contours can be plotted exactly.

There exists an important structure in the distribution func-
tions space, the polytope of positivity [28]. It is the region
inside which all the populations are positive but outside of
which one or more populations become negative. The shaded
triangular region in Fig. 1 (top) is the polytope of positivity
for the D1Q3 lattice. The entropic involution does not yield
a solution when the isoentropic surfaces are partially outside
the polytope of positivity. This is due to the presence of the
logarithm in the entropy function which is undefined when
one of the populations is negative. Figure 1 (bottom) shows
a precollisional state f for which the mirror state lies outside
the triangle, hence cannot be defined.

In LBGK, the path length is fixed to a constant value of
αLBGK = 2. The ELBM introduces the concept of the state
dependent α [12], evaluated numerically by solving the non-
linear equation [Eq. (19)] [24–26]. Once the path length α and
therefore the mirror state are known, the postcollisional state
is found by the linear contraction

f ∗ = f mirror − α(1 − β )[ f eq − f ] = f + αβ[ f eq − f ].

(20)

Since 0 < β < 1, it is guaranteed that H[ f ∗] < H[ f mirror]. To
summarize, the ELBM ensures adherence to the H theorem
in the collision by first “over-relaxing” the populations to
an equal entropy (zero dissipation) mirror state followed by
adding dissipation, thus ensuring a nonpositive entropy pro-
duction [12].

Next, we discuss the near-equilibrium limit of the entropic
involution. In a well resolved simulation, the departure of
populations from the equilibrium is small and the entropic
involution step yields the solution α = αLBGK = 2. To demon-
strate this, we define the dimensionless departure from the
equilibrium as

xi = f eq
i

fi
− 1. (21)

As the populations fi, f eq
i are positive, xi ∈ (−1,∞). Here,

the lower limit is due to the extreme case of f eq
i → 0, whereas

the upper limit is due to fi → 0. Further, we introduce a
decomposition of distributions fi in terms of the departure
from equilibrium as [35]

�+ = { fi : xi � 0}, �− = { fi : −1 < xi < 0}. (22)

This asymmetry in the range of x is crucial in the subsequent
derivation of the analytic solution. With this decomposition,

we also partition the bilinear action into two partial contribu-
tions

〈 f , ψ〉�± =
∑
fi∈�±

fiψi. (23)

The path length α is the root of the equation


H ≡ H[ f mirror] − H[ f ] = 0, (24)

which is simplified to obtain (see Appendix B for a detailed
derivation)

H[ f mirror] − H[ f ] = 〈 f , (1 + αx) ln (1 + αx)〉
− α〈 f , x ln(1 + x)〉. (25)

In a well resolved simulation, the dimensionless departure
of populations from the equilibrium is small, i.e., |xi| � 1.
Therefore, expanding the above equation about xi = 0 via
Taylor series one obtains

H[ f mirror] − H[ f ] = α
(α

2
− 1

)
〈 f , x2〉 + O(x3). (26)

Thus, for small departure from the equilibrium, the nontrivial
root of H[ f mirror] − H[ f ] = 0 is α = 2. Hence, in the limit
xi → 0, the ELBM reduces to the LBGK.

Next, we derive the expanded form of Eq. (25) for the
D1Q3 lattice. We define x̃i as the xi for the D1Q3 model which
are calculated by substituting the equilibrium from Eq. (17)
into Eq. (21) as

x̃−1 = 2 f̃ eq
−1

f̃ eq
1 + f̃ eq

−1 + σ̃xx − u
− 1,

x̃0 = f̃ eq
0

1 − σ̃xx − f̃ eq
1 − f̃ eq

−1

− 1,

x̃1 = 2 f̃ eq
1

f̃ eq
1 + f̃ eq

−1 + σ̃xx + u
− 1. (27)

The above x̃i are substituted in Eq. (25) to obtain the entropy
evolution for D1Q3 as


H

ρ
= f̃1[(1 + αx̃1) ln(1 + αx̃1) − αx̃1 ln(1 + x̃1)]

+ f̃−1[(1 + αx̃−1) ln(1 + αx̃−1) − αx̃−1 ln(1 + x̃−1)]

+ f̃0[(1 + αx̃0) ln(1 + αx̃0) − αx̃0 ln(1 + x̃0)],
(28)

which is then solved using Newton-Raphson scheme for the
path length α. This path length is dependent on σ̃xx and u of
the initial state f . Figure 2 plots the values of α for various
u, σ̃xx. It can be seen that the region corresponding to the
LBGK value of 2 becomes thinner as |u| increases, and that
the deviation of α from the LBGK value becomes larger as
|σ̃xx| increases. Figure 2 (bottom) plots the path length as a
function of σ̃xx for various values of the velocity |u|. The
shaded portion of Fig. 2 (top) represents the regions (typically
with large moments) where the initial state is well defined (lies
within the polytope of positivity), whereas the mirror state lies
outside the polytope of positivity, thus, for such cases, the
entropic involution shows indeterminacy. It should be noted
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FIG. 2. The heat map of α corresponding to 
H = 0 at various
values of u, σ̃xx for the D1Q3 lattice. The shaded region represents
the part of moment space where the mirror state lies outside the
polytope of positivity.

that these events are rare and, even if one encounters such
cases, it is known how to construct the path length [24,36].

We now discuss the significance of over-relaxation in the
entropic involution step over the under-relaxation. A numer-
ical scheme via the first order Euler discretization of the
Boltzmann BGK equation is possible. It reads as

f (x + c
t, t + 
t ) = f (x, t ) + 
t

τ
[ f eq − f (x, t )]

=
(

1 − 
t

τ

)
f (x, t ) + 
t

τ
f eq, (29)

and exhibits unconditional numerical stability if 
t � τ . The
H theorem for this scheme is trivially satisfied as the postcolli-
sional state is a convex combination of the precollisional state
and the equilibrium state. This is called an under-relaxing
scheme as the discrete dynamics never crosses over the equi-
librium state and corresponds to α < 1. However, for many
practical applications the relevant timescales are multiple
orders of magnitude greater than 
t . Therefore, for faster
convergence it is required to have numerical scheme which
permits large time steps, i.e., 
t � τ is desirable (which
correspond to α > 1). The over-relaxation of the populations
to a mirror state is thus an important feature of the discrete
dynamics as it allows one to achieve large time steps.

III. ANALYTIC SOLUTION TO THE PATH LENGTH:
ESSENTIALLY ENTROPIC LATTICE BOLTZMANN

MODEL

As discussed in the previous section, the discrete path
length α is available as the nontrivial root of Eq. (25). This
equation is highly nonlinear and is typically solved by a com-
bination of bisection and Newton-Raphson method [23,37].
Considerable efforts have been put in to ensure that the correct
solution is obtained in an efficient manner [24–27]. In this
section, we present an alternate construction of ELBM where
the discrete path length α is known in explicit form without
any indeterminacy. The key idea is to obtain α by directly
considering the natural criterion of monotonic decrease of H
with time [22]. This implies solving an inequality


H ≡ H[ f ∗] − H[ f ] < 0. (30)

The above inequality, by construction, accepts multiple so-
lutions. For example, when α � 1 the inequality is trivially
satisfied as the new state is a convex combination of the old
state and the equilibrium [16]. However, one is interested in
an over-relaxed collision, where the new state is no longer
a convex combination of the old state and equilibrium. This
corresponds to the real solutions of Eq. (30) in the range 1 <

α < αmax, where αmax = −1/(βxmin
i ) is maximum possible

pass length corresponding to an edge of the polytope of pos-
itivity beyond which the populations become negative [12].
Among the multiple solutions of the inequality, we are looking
for the maximal path length α such that 
H → 0. As is the
case with ELBM, the solution should reduce to standard LBM
close to equilibrium (α = 2). Indeed, the present methodology
is valid for both discrete velocity models of LBM as well as
the continuous in velocity Boltzmann-BGK equations, where
the summation in the inner products needs to be replaced by
appropriate integrals.

The general idea behind obtaining an analytical expression
for the path length α is as follows: we intend to split 
H into
two parts,


H = H (α) + H (B), (31)

where H (B) is chosen such that it is nonpositive, and H (α) = 0
is an easily solvable polynomial whose root is the path length
α. The discrete-time H theorem is satisfied as H (B) is nonpos-
itive and contributes to the entropy production, i.e.,


H = H (B) � 0. (32)

A word of caution is in order here. As stated earlier, the in-
equality 
H � 0 by construction accepts multiple solutions.
These solutions are not identical but differ in two ways:

(1) Not all the solutions reduce to LBGK (αLBGK = 2) in
the limit of xi → 0. Our interest is only in the solutions that
reduce to the standard LBM for xi → 0.

(2) The entropy production corresponding to each solution
dictates its dissipative nature, i.e., as the magnitude of H (B)

increases the dynamics becomes more and more dissipative.
This is the reason why we are interested in the solution such
that 
H → 0. This point will be elucidated in the forthcom-
ing section, where we derive two expressions for α, one of
which is more dissipative than the other.
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Following the procedure detailed in Appendix B, Eq. (30)
is rewritten as


H =〈 f , (1 + x̂) ln (1 + x̂)〉 − αβ〈 f , x ln(1 + x)〉, (33)

where x̂ = αβx. Under the decomposition given by Eq. (22),
the above equation becomes


H = 〈 f , (1 + x̂) ln (1 + x̂)〉�− + 〈 f , (1 + x̂) ln (1 + x̂)〉�+

− αβ〈 f , x ln(1 + x)〉�− − αβ〈 f , x ln(1 + x)〉�+ .

(34)

We now derive two solutions to 
H � 0 by splitting Eq. (34)
into a polynomial and an entropy production term as in
Eq. (31). As mentioned previously, the inequality 
H � 0
accepts multiple solutions of α. While splitting 
H into H (α)
and H (B) one has to carefully design the split such that the
latter term remains small. The splitting is done by constructing
approximations for the logarithm which by construction can
have arbitrarily small errors. The sign and magnitude of this
error decides whether an approximation provides a loose or a
sharp bound on the logarithm. We choose two such approxi-
mations: one with large error and loose bound on logarithm,
and the other with smaller error and sharper bounds on log-
arithm. The lower order solution is constructed by exploiting
the loose bounds, whereas the higher order solution is derived
by exploiting the sharper bounds (see Appendix C for details
on the bounds of logarithm). Both the solutions are shown to
reduce to the LBGK value of 2 for xi → 0.

A. Lower order solution

In this section, we find the path length by exploiting the
loose bounds on the logarithms [Eqs. (C1), (C4), and (C6)].
Upon adding and subtracting the term 〈 f ,A1 + A2 − A3〉
from Eq. (34), it is written as


H = 〈 f , (1 + x̂) ln (1 + x̂) − A1〉�− + 〈 f ,A1〉�−

+ 〈 f , (1 + x̂) ln (1 + x̂) − A2〉�+ + 〈 f ,A2〉�+

− αβ〈 f , x ln(1 + x) − A3〉 − αβ〈 f ,A3〉, (35)

where

A1 = x̂ + x̂2

2
− x̂3

2
, A2 = x̂ + x̂2

2
, A3 = 2x2

2 + x
. (36)

Now, identifying that 〈 f , x〉�+ + 〈 f , x〉�− = 〈 f , x〉 = 0 due to
conservation laws, Eq. (35) is written in a compact form as


H = αβH1(α) + H (B)
1 , (37)

where

H (B)
1 = −〈 f , G1(x̂)〉�− − 〈 f , G2(x̂)〉�+ − αβ〈 f , G3(x)〉

+α2β(β − 1)

〈
f ,

x2

2

〉
− α3β(β2 − 1)

〈
f ,

x3

2

〉
�−

(38)

and

H1(α) = −α2a1 + αb1 − c1, (39)

with

a1 =
〈

f ,
x3

2

〉
�−

, b1 =
〈

f ,
x2

2

〉
, c1 =

〈
f ,

2x2

2 + x

〉
. (40)

It can be seen that H1(0) < 0 < H1(2), therefore, a positive
root of Eq. (39) bounded in (0,2) exists. As Eq. (39) is con-
structed by employing lower order bounds on the logarithm,
this root is called αLower,

αLower =
−b1 +

√
b2

1 − 4a1c1

−2a1
= 2c1

b1 +
√

b2
1 − 4a1c1

. (41)

To avoid numerical issues related to the precision loss while
dealing with small numbers, in the above expression we have
multiplied the root with its conjugate [38].

Due to the non-negative nature of the functions G1, G2, G3

in their respective domains [Eqs. (C1), (C4), and (C6)], and
β < 1, each term in Eq. (38) is nonpositive, hence, H (B)

1 � 0.
Therefore, from Eq. (37) we see that the H theorem is satisfied
because H1(αLower ) = 0, hence,


H = H (B)
1 � 0. (42)

Upon expanding αLower and ignoring higher order terms one
obtains

lim
xi→0

αLower = 2 − 〈 f , x3〉�+

〈 f , x2〉 + 3
〈 f , x3〉�−

〈 f , x2〉 , (43)

which has the limiting value of 2. Thus, for small departures
from equilibrium where xi → 0, the scheme reduces to the
standard LBM. It is also evident from Eq. (43) that αLower < 2.
This is important as it is known that for ELBM the path length
fluctuates around the standard LBGK value of α = 2 [39], a
feature of ELBM not mimicked by αLower. In the next section,
we construct another path length αHigher that fluctuates about
the standard LBGK value of α = 2.

B. Higher order solution

In this section, we derive the path length α by exploiting the
sharper bounds on the logarithms [Eqs. (C2), (C5), and (C7)].
Following the same methodology as the previous section, we
add and subtract terms from Eq. (B3) to obtain


H = H (B) + αβH (α), (44)

where H (B) < 0 and

H (α) = −α2a + αb − c. (45)

The coefficients a, b, c are

a = β2

〈
f ,

x3

6
− hβx4

12
+ h2β2x5

20
− h3β3x6

5

〉
�−

, c =
〈

f ,
60x2 + 60x3 + 11x4

60 + 90x + 36x2 + 3x3

〉
,

b =
〈

f ,
x2

2

〉
−

〈
f ,

2αLowerβ
2x3

15

(
2

4 + αLowerx
+ 1

4 + 2αLowerx
+ 2

4 + 3αLowerx

)〉
�+

. (46)
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FIG. 3. Density (left), velocity (middle), and entropy (right) plots from αLBGK, αLower, αHigher, and αELBM at time t = 500 for viscosity
ν = 1.0 × 10−5.

The parameter h in the above equation serves as an upper
bound on the path length and is found as the positive root of
the quadratic equation

H2(α) = −α2a2 + αb − c, (47)

where

a2 = β2

〈
f ,

x3

6

〉
�−

. (48)

Equation (45) has a positive root αHigher [as H (0) < 0 <

H (∞)] which is the desired path length. It has the limit

lim
xi→0

αHigher = 2 +
(

4β2

3
− 1

) 〈 f , x3〉
〈 f , x2〉 . (49)

Unlike αLower, which was always less than 2, no such comment
can be made about αHigher. Thus, αHigher mimics an impor-
tant feature of the ELBM where the path length fluctuates
about the BGK value of 2. A detailed derivation of αHigher is
provided in Appendix D. The details regarding the implemen-
tation of this analytic solution for the path length are given in
Appendix E.

IV. COMPARISON WITH ELBM AND BGK

In this section, we compare the analytical solutions for
the path length (αLower, αHigher) with the BGK (αLBGK =
2) and the iterative ELBM solution (αELBM). To this end,
we consider three canonical setups: the one-dimensional
Sod shock tube, the doubly periodic shear layer, and the
lid-driven cavity. It is illustrated from these examples that
αLower is more dissipative than αHigher and hence is not
the ideal choice for hydrodynamics. Nevertheless, it is use-
ful for the construction of αHigher as demonstrated in the
previous section. It is also demonstrated that there is an

insignificant difference between the path lengths αHigher

and αELBM.

A. Sod shock tube

To compare the behavior of αLower, αHigher with αELBM
and αLBGK, we first simulate the one-dimensional shock tube
using the D1Q3 lattice. In this setup, a domain with 800
grid points is initialized with a step function for density as
ρ (x � 400) = 1.5 and ρ (x > 400) = 0.75. The presence of
a sharp discontinuity in the initial condition at the center of
the domain generates a moving compressive shock front in
the low-density region and a rarefaction front in the high-
density region. These two fronts give rise to a contact region
of uniform pressure and velocity in the center of the tube [40].
The density, velocity, and entropy profiles shown in Fig. 3
illustrate that the numerical oscillations are sharply reduced
in the case of αLower, thus pointing to its dissipative nature. It
can also be seen that the oscillations are prominent for αLBGK
and that both αHigher and αELBM restore the H theorem without
altering the fields.

Figure 4 (top) compares αLower and αELBM. It is evident
that the path lengths show departure from α = 2 (BGK
value) only in the narrow regions of the compressive and the
rarefaction fronts. It can also be seen that the value of αLower
is always smaller than 2, while that of αELBM fluctuates about
2. Figure 4 (bottom) plots the ratio of turbulent viscosity
correction to kinematic viscosity νT /ν0 (more details in
Sec. VI). From the figure, it is evident that at the location of
the shock front the αLower is more than twice the kinematic
viscosity, while αELBM is only ∼47%. Similarly, Fig. 5 (top)
compares the path length from αHigher and it is seen that
for this setup αHigher exhibits smaller fluctuations than the
αELBM. Figure 5 (bottom) shows that the turbulent viscosity
correction for αELBM is ∼47%, whereas for αHigher it is ∼42%.
Hence, it can be concluded that αHigher imposes the H theorem
(thus guaranteeing unconditional numerical stability) with the
least turbulent viscosity correction.
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FIG. 4. Comparison between αLower and αELBM for the Sod shock
tube. Top: Snapshot of the path length. Bottom: Ratio of the turbulent
viscosity correction to the kinematic viscosity.

FIG. 5. Comparison between αHigher and αELBM for the Sod shock
tube. Top: Snapshot of the path length. Bottom: Ratio of the turbulent
viscosity correction to the kinematic viscosity.

B. Doubly periodic shear layer

In this section, we compare the behavior of αLower, αHigher

with αLBGK by considering the setup of doubly periodic shear
layer [41]. The initial velocity field comprises of two shear
layers given by

ux(y) =
{

U0 tanh[(4y − 1)/w], y � 1/2
U0 tanh[(3 − 4y)/w], y > 1/2 (50)

uy(x) = U0δ sin[2π (x + 1/4)], (51)

where w = δ = 0.05, U0 = 0.04 and x, y are nondimen-
sionalized coordinates. The viscosity is calculated from the
Reynolds number which for the present case is fixed at 3 ×
104. It is known that at poor grid resolutions for this setup,
the numerical disturbances may lead to formation of spurious
vortices in the braids [41,42].

Figure 6 depicts the isovorticity contours for αLower, αHigher

on a 256 × 256 grid and for αLBGK on 1024 × 1024 grid
obtained after one convection time. A qualitative compar-
ison of the three plots reveal that the vortex structure is
smudged for αLower, while the vortex structure of αHigher on a
256 × 256 grid is the same as that of BGK at 1024 × 1024
grid. In Fig. 7 we show the magnitude of the path lengths
αLower, αHigher, from where it evident that while αLower always
remains smaller than 2, αHigher fluctuates about 2, thus corrob-
orating the dissipative nature of αLower. Finally, a quantitative
analysis of the flow is performed by measuring the change
in global enstrophy (
� = �̄t/�̄0 × 100), where �̄t is the
enstrophy at time t , and �̄0 is the initial global enstrophy
(defined as the square of the vorticity). Figure 8 plots the time
evolution of 
�. It is evident that αHigher on a 128 × 128 grid
behaves the same as the BGK on a much larger 1024 × 1024
grid, whereas αLower exhibits dissipation that manifests in the
form of reduced enstrophy.

C. Lid-driven cavity

In this section, we consider the lid-driven cavity at a
Reynolds number (Re) of 5000 where the motion of the top
wall drives the flow in a two-dimensional (2D) cavity. We
use the standard D2Q9 lattice and diffuse boundary condition
[43]. For this setup, the LBGK (α = 2) is numerically unsta-
ble at smaller grid sizes of 64 × 64, 96 × 96, and 128 × 128,
however, it is stable at a larger grid of size 256 × 256. The
entropic formulations αLower, αHigher, αELBM are stable at all
grid sizes.

Figure 9 depicts the isovorticity contours for various grid
sizes obtained using αHigher. It is seen that even extremely
under-resolved grids remain numerically stable. However, at
coarse resolutions like 64 × 64 and 96 × 96 the finer struc-
tures are distorted, which take the expected form at a slightly
higher grid size of 128 × 128. It should be repeated here that
at grid size of 128 × 128 the LBGK (α = 2) is numerically
unstable. In Fig. 10, we plot the velocities along vertical and
horizontal centerlines and observe a good match with [44].

Next, we establish that there is no appreciable difference
between the path lengths αHigher and αELBM. To this effect, we
compare the instantaneous value of αHigher and αELBM for three
different grid resolutions. First, the simulation is performed
using αHigher for 100 convection times. On the populations
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FIG. 6. Nondimensional isovorticity contours for αLower (top),
αHigher (center) at grid size 256 × 256 and for BGK at 1024 × 1024
(bottom) after one convection time.

thus obtained, we evaluate αHigher and αELBM for the entire
grid. The L1, L2, L∞ error norms of ||αHigher − αELBM|| are
tabulated in Table I, whereas the distribution of path lengths
are given in Fig. 11. It is evident that αHigher and αELBM show

TABLE I. Error norms for ||αHigher − αELBM||.

64 × 64 96 × 96 128 × 128

L1 2.55 × 10−5 1.37 × 10−5 8.26 × 10−6

L2 1.67 × 10−4 9.89 × 10−5 5.17 × 10−5

L∞ 6.07 × 10−3 5.24 × 10−3 3.71 × 10−3

insignificant deviation at all grid sizes. From Fig. 11 and
Table II, it can also be seen that as the grid size increases
the distribution of the path lengths becomes narrower as the
region around the LBGK value of α = 2 where 90% of the
points lie (inside solid vertical lines) becomes smaller.

We also briefly investigate the idea that the path length
αLower could be utilized as a good initial guess value for
the iterative ELBM solver. Typically, the iterative root solver
converges in 4–5 iterations, however, it is stipulated that the
converged result should be obtained in a single iteration when
using αLower as the initial guess value. We call this first iterate
αiterate 1 and compare it with αELBM. The L1, L2, L∞ error
norms of ||αiterate 1 − αELBM|| are tabulated in Table III from
where it can be concluded that the difference is insignificant
for all three grid sizes.

V. ANALYTIC SOLUTION TO THE ENTROPIC LATTICE
ES–BGK MODEL

The ES–BGK model proposed by Holway Jr [45] over-
comes the restriction on the Prandtl number (Pr) in BGK
collision models without compromising the conceptual sim-
plicity. This model employs a quasiequilibrium state f QE

instead Maxwellian in the collision term. The quasiequilib-
rium state is an anisotropic Gaussian distribution that reduces
to a Maxwellian at the equilibrium. The continuous H the-
orem for this model was proved by Andries et al. [46]. In
this section, we extend the discrete H theorem to the lattice
ES–BGK model and derive the analytic solution for the path
length.

A. Lattice ES–BGK model

The collision term for the lattice ES–BGK collision model
reads as [47]

f ∗(x, t ) = f (x, t ) + αβ[ f̃
QE − f (x, t )], (52)

where β = 
t/(2τ1 + 
t ), and the viscosity ν is related to
the relaxation time τ1 by ν = τ1θ Pr [48]. In Eq. (52), α is
the path length which is equal to 2 in the standard case,
and is found by solving Eq. (30) for the entropic lattice ES–
BGK model. The discrete quasiequilibrium distribution f̃ QE

TABLE II. Region around the LBGK value of α = 2 where 90%
of the points lie. It is seen that as the grid size increases the region
becomes narrower.

64 × 64 96 × 96 128 × 128

αHigher 2 ± 1.79 × 10−3 2 ± 8.0 × 10−4 2 ± 3.9 × 10−4

αELBM 2 ± 1.77 × 10−3 2 ± 7.3 × 10−4 2 ± 2.9 × 10−4
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FIG. 7. Path length from αLower (left) and αHigher (right) after one convection time on a grid of size 256 × 256.

is found as the minimizer of the the discrete H function under
the constraints of mass and momentum being conserved with
the pressure tensor given by

Pαβ

(
f̃

QE
)

= ρuαuβ + ρθδαβ + 1 − 1/Pr

1 + 
t/(2τ1Pr)
σαβ ( f ).

(53)

Solving the minimization problem, one obtains

f̃ QE
i = ρ exp (−μ − ζκciκ − γαβσαβ ), (54)

where μ, ζκ, γαβ are the Lagrange multipliers associated with
the mass, momentum, and pressure tensor, respectively. The
Lagrange multipliers are calculated by performing a perturba-
tion expansion around the equilibrium state as in Ref. [49].

FIG. 8. Change in the global enstrophy 
� vs time for various
square grids. Here, t∗ is the nondimensional convection time.

B. Analytic solution for the path length

Following the procedure as detailed in Appendix B,
Eq. (30) for the lattice ES–BGK model is rewritten as


H = 〈 f , (1 + ẑ) ln(1 + ẑ)〉 − αβ〈 f , z ln(1 + z)〉

+ αβ

Pr

1 + δt/(2τ1)

1 + δt/(2τ1Pr)
γαβσαβ ( f ), (55)

where ẑ = αβz, z = f̃ QE/ f − 1. The Lagrange multipliers are
evaluated numerically, however, using a series expansion it
can be shown that the last term in the above equation can be
approximated as

γαβ = −m
σαβ

ρθ2
, m = 1

2
for α = β, m = 1 otherwise.

(56)
It is seen that the last term is negative definite, hence, it
contributes only to the entropy production. Thus, the ana-
lytical expression for the path length remains the same with
equivalent features as Sec. III.

C. Rayleigh-Bénard convection

Rayleigh-Bénard convection is a well-studied model of
natural convection and is considered a classical benchmark
for thermal models [50]. The domain consists of viscous
fluid confined between two thermally well-conducting parallel
plates. The plates are kept at a distance L with the bottom plate
maintained at higher temperature θbottom and the top plate is
kept at a lower temperature θtop. The flow is induced by the
unstable density gradients in the presence of a gravitational

TABLE III. Error norms for ||αiterate 1 − αELBM||.

64 × 64 96 × 96 128 × 128

L1 2.27 × 10−7 7.48 × 10−8 2.56 × 10−8

L2 3.02 × 10−6 1.37 × 10−6 8.26 × 10−7

L∞ 1.10 × 10−4 9.00 × 10−5 7.00 × 10−5
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FIG. 9. Isovorticity contours for the lid-driven cavity at Reynolds number of 5000 for various grid sizes: 64 × 64 (left), 96 × 96 (center),
128 × 128 (right).

field [32]. The dynamics of the Rayleigh-Bènard convection is
characterized by two nondimensional numbers: the Rayleigh
number and the Prandtl number. The Prandtl number is a prop-
erty of the fluid (Pr = ν/αT ) whereas the Rayleigh number

FIG. 10. Velocity profiles for the lid-driven cavity at Reynolds
number of 5000 and Mach number 0.05 for various grid sizes. Top:
nondimensionalized x velocity along the vertical center line. Bottom:
nondimensionalized y velocity along the horizontal center line.

(Ra) is defined as

Ra = gβ̂
θL3

ναT
, (57)

where g is the gravity, β̂ = −1/ρ(∂ρ/∂T )P is the thermal
expansion coefficient, 
θ = θbottom − θtop is the temperature
difference between the two walls, ν is the kinematic viscosity,
and αT is the thermal diffusivity.

In this section, we simulate the turbulent Rayleigh-Bénard
convection at Ra = 1.0 × 107 and Pr = 0.71 on a grid of size
2N × 2N × N with N = 112 and 224. The analytic solution
for the path length as derived in the preceding section is
used with Eq. (52) as the collision model. The numerical
simulations are performed using the 67 velocity crystallo-
graphic lattice [32] with θbottom = 1.02θ0 and θtop = 0.98θ0.
Constant temperature boundary conditions at the top and the
bottom walls were imposed and periodic boundary condi-
tions were applied in the horizontal directions. We calculate
the Nusselt number and time-averaged horizontal mean of
nondimensional temperature T = (θ − θtop)/
θ . The calcu-
lated Nusselt number is 13.4 with N = 112 and 15.3 with
N = 224, whereas that reported by the direct numerical simu-
lation (DNS) of Ref. [51] is 15.59. In Fig. 12 we visualize the
temperature field via isocontours and horizontal slices close
to the walls. In Fig. 13 we compare the time-averaged mean
horizontal temperature with the DNS data and observe a good
match. It can be seen that as expected the temperature rises
rapidly close to the wall and obtains a uniform profile in the
bulk. Hence, it can be concluded that the analytic solution to
the path length extends the unconditional numerical stability
to nonunity Prandtl number heat transfer simulations too.

Finally, we compare the computational cost of αHigher with
αELBM. We find that the time spent within the entropic routine
for N = 112 grid simulated on AMD Ryzen Threadripper
averages at 52.44 s per iteration for αELBM, whereas for αHigher

it is 7.04 s. It can be seen that the computational cost of
calculating αHigher is ∼1

7 of that of αELBM. For this setup, the
time spent for the LBGK collision (αLBGK = 2) averages at
7.2 s, therefore, the aggregate time for collision with αHigher

is 7.2 + 7.04 = 14.24 s, whereas it is 7.2 + 52.44 = 59.64 s
for αELBM. The difference is due to presence of logarithm
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FIG. 11. Distribution of αHigher and αELBM for lid-driven cavity
at Reynolds number 5000 and Mach number 0.05. Grid sizes are
64 × 64 (top), 96 × 96 (middle), 128 × 128 (bottom). The difference
between the distribution of αHigher and αELBM is seen to be insignifi-
cant. The solid black lines denote the region inside which 90% of the
points lie. The locations of the solid lines are tabulated in Table II.

terms for each discrete direction. It should be noted that these
timings depend on the implementation which we have written
so as to minimize the total floating point operations and math
library function calls.

VI. ENTROPIC ROUTE TO MODELING THE
SUBGRID VISCOSITY

The entropic LBM has been interpreted as an implicit sub-
grid model of turbulence [52]. The modification to the path
length α due to the compliance with the H theorem can be un-
derstood as a turbulent viscosity correction at the macroscopic
scale. Several studies have analyzed the form of the viscosity
correction and found similarities to the Smagorinsky’s model
for viscosity correction [53,54]. In this section, we derive the
subgrid model corresponding to the path length. From the

FIG. 12. Isotemperature contours (top) for Rayleigh-Bènard con-
vection at nondimensional temperatures 0.3 and 0.7. The mid and
bottom figures visualize the temperature field at horizontal slices
close to the two walls.

Chapman-Enskog expansion the effective kinematic viscosity
ν due to the entropic collision term is found as

ν = θτ = θ
t

(
1

αβ
− 1

2

)
. (58)

The viscosity correction νT is defined as νT = ν − ν0, where
ν0 is the viscosity corresponding to the BGK path length α =
2, and is obtained as

νT = θ
t

2αβ
(2 − α). (59)

It is seen from the above expression that the path length α

dictates whether the viscosity correction is positive or neg-
ative. A path length smaller than 2 implies an increment in
the viscosity which in turn smoothens the gradients, whereas
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FIG. 13. Time-averaged mean horizontal temperatures for
Rayleigh-Bènard convection at Ra = 1 × 107 and Pr = 0.71 com-
pared with the DNS profile from Ref. [51]. Here, the nondimensional
vertical coordinate z∗ is z Nu/L.

a path length larger than 2 corresponds to reduction in the
viscosity which sharpens the gradients [39]. Thus, the entropic
LBM permits backscatter of energy from the subgrid scales to
the resolved scales too.

We now evaluate the viscosity correction in terms of the
macroscopic moments. For this purpose we consider the
path length from Eq. (49) in assuming small departure from
equilibrium, i.e., xi → 0, 
t � τ , and interpret 〈·〉 as a con-
tinuous integral. Substituting Eq. (49) in (59), the turbulent
viscosity correction νT is found as

νT = θ
t

2

�

6 + �
, where � = 〈 f , x3〉

〈 f , x2〉 . (60)

From Grad’s 13 moment representation one can write the
approximation f = f MB(1 + �), where

� = σi jξiξ j

2pθ
− qkξk

pθ

(
1 − ξ 2

5θ

)
, (61)

f MB is the Maxwell-Boltzmann distribution, ξi is the peculiar
velocity, p is the pressure, θ is the temperature, σi j is the
traceless part of symmetric stress tensor, and qk is the heat
flux. Thereafter, the leading terms of the two terms appearing
in � are evaluated as

〈 f , x2〉 = 1

2pθ
σklσlk + O(σ 3),

(62)

〈 f , x3〉 = − 3

p2θ
σklσlmσmk + O(σ 4),

where assuming a small change in temperature O(q2) terms
have been ignored. Substituting σi j = ρτθSi j , S being the
strain rate tensor we find the viscosity correction as

νT = −τθ

t

2

Si jS jkSki

SmnSnm − τSabSbcSca
. (63)

It should be noted that for very fine grid resolutions (
t → 0)
the viscosity correction vanishes. Similar expressions for the
turbulent viscosity have also been derived in Refs. [53,54].
The above expression for turbulent viscosity is similar to

FIG. 14. Discrete velocities in a D1Q2 model. This one-
dimensional lattice has only two populations f1, f−1 with discrete
velocities +1, −1, respectively, and cannot model hydrodynamics
due to the lack of enough degrees of freedom.

Smagorinsky’s model where the turbulent viscosity νT is

νT = (CS
)2
√

Si jS ji, (64)

where CS is Smagorinsky’s constant, in that both scale like
the strain rate tensor and is also distinct from it because of
emergence of the third invariant of the symmetrized strain rate
tensor [55,56].

VII. CONCLUSION

In this paper, we present in detail the methodology to
construct analytic solutions to the path length in the entropic
lattice Boltzmann method. This methodology can be extended
to derive more accurate expressions, however, we find that
αHigher is sufficient for hydrodynamic applications. The more
dissipative solution αLower could also be employed to model
viscous flows in the vicinity of walls and can also be used as
a good guess for the iterative solution. We have demonstrated
that αHigher shows no appreciable difference from the itera-
tive solution by studying the macroscopic behavior of a few
canonical setups. We have also extended the analytic solution
to lattice ES–BGK model for nonlinear numerical stability in
nonunitary Prandtl heat transfer scenarios.

APPENDIX A: ILLUSTRATING ENTROPIC INVOLUTION
USING D1Q2

We consider the D1Q2 lattice as an example to visualize
the phase space and discuss the entropic collisional dynamics.
This one-dimensional lattice has only two populations f1, f−1

with discrete velocities +1,−1, respectively (see Fig. 14).
Due to the lack of enough degrees of freedom, the D1Q2
lattice does not conserve momentum and hence cannot model
hydrodynamics. The mass density (ρ = f1 + f−1) is a con-
served moment, and the momentum density (ρu = f1 − f−1)
becomes a nonconserved moment. These two constraints can
be inverted to obtain the relations

f1 = ρ + ρu

2
, f−1 = ρ − ρu

2
. (A1)

Figure 15 represents the isoentropic contours in the vector
space for the D1Q2 lattice. The criterion of mass conservation
f1 + f−1 = ρ dictates that the collisional dynamics for ρ = 1
is restricted on the straight line in the figure. The equilibrium
is given by

f eq ≡ {
f eq
1 , f eq

−1

} = {ρ/2, ρ/2}. (A2)

It can be seen from Fig. 15 (bottom) that near the equilibrium
the isoentropy contours are almost circular. This property of
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FIG. 15. Isoentropy contours for a D1Q2 lattice. It can be seen
from zoomed figure (bottom) that near the equilibrium the isoentropy
contours become almost circular.

the H function (H = f1 ln f1 + f2 ln f2 − ρ − ρ ln 2) is valid
for the higher-dimensional lattices as well. The maximum
allowable path length that could be covered is α, after which
H increases beyond its precollisional state, and the H theorem
is violated. This is depicted in Fig. 16 for the D1Q2 lattice.

We now derive the expanded form of Eq. (25) for the D1Q2
lattice. As stated earlier, the D1Q2 lattice lacks the degrees
of freedom to model hydrodynamics, however, it is simple

FIG. 16. Entropic collisional dynamics for D1Q2 lattice. Note
that the precollisional state f and the mirror state f mirror are at the
same entropy level.

FIG. 17. The solution for 
H = 0 remains α = 2 at all values of
u for the D1Q2 lattice (this is not the case for D1Q3 and other higher
lattices).

enough to show the analytical form of H[ f mirror] − H[ f ].
Equation (25) for the D1Q2 lattice can be expanded to obtain


H ≡ H[ f mirror] − H[ f ]

= f1(1 + αx1) ln(1 + αx1) − α f1x1 ln(1 + x1)

+ f−1(1 + αx−1) ln(1 + αx−1)−α f−1x−1 ln(1 + x−1).

(A3)

For this lattice, f eq
1 = f eq

−1 = ρ/2, therefore, x1 = ρ/(2 f1) −
1, x−1 = ρ/(2 f−1) − 1, substituting which in the above
equation along with Eq. (A1) yields


H

ρ
=

[
1 + u − αu

2

]
ln

[
1 + u − αu

1 + u

]

+
[

1 − u+αu

2

]
ln

[
1 − u+αu

1 − u

]
+ αu

2
ln

[
1 − u

1 + u

]
.

(A4)

It is seen from the above equation that the solution of 
H = 0
is independent of ρ. It can also be verified that α = 2 is a non-
trivial solution (this is due to the symmetric nature of D1Q2
and is not the case for D1Q3 and other higher-dimensional lat-
tices). Figure 17 shows that the solution for 
H = 0 remains
α = 2 at all values of u.

APPENDIX B: DERIVATION OF �H

In this section, we derive the expression for 
H =
H[ f mirror] − H[ f ]. We begin by using the form of H [Eq. (7)]
to obtain

H[ f mirror] − H[ f ] =
〈

f mirror, ln
f mirror

w

〉
−

〈
f , ln

f

w

〉
. (B1)

Substituting f mirror from Eq. (18) in the above equation yields

H[ f mirror] − H[ f ]

=
〈

f + α( f eq − f ), ln
f + α( f eq − f )

w

〉
−

〈
f , ln

f

w

〉
.

(B2)
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Substituting x from Eq. (21) in the above equation one obtains

H[ f mirror] − H[ f ]

=
〈

f (1 + αx), ln
f (1 + αx)

w

〉
−

〈
f , ln

f

w

〉

= 〈 f (1 + αx), ln (1 + αx)〉 − α

〈
f x, ln

w

f

〉
. (B3)

Now substituting wi from Eq. (12) one obtains

H[ f mirror] − H[ f ]

= 〈 f (1 + αx), ln (1 + αx)〉

− α

〈
f x, ln

f eq exp
(
μ + ζκciκ + γ c2

i

)
f

〉

= 〈 f (1 + αx), ln (1 + αx)〉 − α〈 f x, ln(1 + x)〉
− αλ〈 f , x〉 − αζκ〈 f , xcκ〉 − αγ 〈 f , xc2〉, (B4)

where we have substituted f eq
i / fi = 1 + xi and the underlined

terms are zero due to moments invariance, i.e.,

〈 f , x〉 =
∑

i

(
f eq
i − fi

) = ρ − ρ = 0,

〈 f , xcκ〉 =
∑

i

(
f eq
i ciκ − ficiκ

) = ρuκ − ρuκ = 0,

〈 f , xc2〉 =
∑

i

(
f eq
i c2

i − fic
2
i

) = ρe − ρe = 0. (B5)

Thus, we obtain

H[ f mirror] − H[ f ]

= 〈 f (1 + αx), ln (1 + αx)〉 − α〈 f x, ln(1 + x)〉
= 〈 f , (1 + αx) ln (1 + αx)〉 − α〈 f , x ln(1 + x)〉. (B6)

APPENDIX C: BOUNDS ON THE LOGARITHM

In this section, we list a few positive definite functions
along with their domain of validity. In the interval y ∈ (−1, 0),
using using the Taylor series expansion of the logarithm we
define

G1(y) = (1 + y)

[
− ln(1 + y) + y − y2

2

]
> 0, (C1)

G4(y) = (1 + y)

[
− ln(1 + y)+y−y2

2
+y3

3
−y4

4
+y5

5

]
> 0.

(C2)

Next, we exploit the integral definition of ln(1 + y), i.e.,

ln(1 + y) =
∫ y

0

1

1 + z
dz, (C3)

and evaluate it using Gauss-Legendre and Newton-Cotes
quadrature rules. As the integrand is an 2n-convex function,
i.e., its even (2n) derivatives are positive, the error due to the
approximations are sign definite, hence, these approximations
can be used to construct upper and lower bounds on ln(1 + y).

Evaluating the integral in Eq. (C3) via Gauss-Legendre
quadratures, one obtains

I (1)
GL(y) = 2y

(2 + y)
,

I (2)
GL(y) = 6y + 3y2

6 + 6y + y2
,

I (3)
GL(y) = 60y + 60y2 + 11y3

60 + 90y + 36y2 + 3y3
,

where I (n
GL is the integral evaluated using nth-order Gauss-

Legendre quadrature. Similarly, evaluating the integral in
Eq. (C3) via Newton-Cotes quadratures, one obtains [57]

I (1)
NC(y) = y

2

[
1 + 1

1 + y

]
,

I (2)
NC(y) = y

6

[
1 + 8

2 + y
+ 1

1 + y

]
,

I (4)
NC(y) = y

90

[
7 + 128

4 + y
+ 48

4 + 2y
+ 128

4 + 3y
+ 7

1 + y

]
,

where I (n
GL is the integral evaluated using nth-order Newton-

Cotes quadrature.
In the interval y ∈ [0,∞), exploiting the sign definiteness

of the errors we define

G2(y) = (1 + y)
[− ln(1 + y) + I (1)

NC

]
� 0, (C4)

G5(y) = (1 + y)
[− ln(1 + y) + I (3)

NC

]
� 0, (C5)

and in the interval y ∈ (−1,∞) we define

G3(y) = y
[
ln(1 + y) − I (1)

GL

]
� 0, (C6)

G6(y) = y
[
ln(1 + y) − I (3)

GL

]
� 0. (C7)

The functions G1(y), G2(y), G3(y) form loose bounds on the
logarithm, whereas G4(y), G5(y), G6(y) provide sharp bounds
on it.

APPENDIX D: DERIVATION OF THE HIGHER-ORDER
SOLUTION

Following the same methodology as Sec. III A, we add and
subtract the same terms from Eq. (B3) to obtain


H = H (B) + αβĤ (α), (D1)

where

H (B) = −〈 f , G6(αβx)〉�− − 〈 f , G7(αβx)〉�+−αβG8(x) � 0
(D2)

is nonpositive and contributes to the entropy production, and

Ĥ (α) = −
〈

f ,
α2β2x3

6
− α3β3x4

12
+ α4β4x5

20
− α5β5x6

5

〉
�−

+
〈

f ,
αβx2

2

〉
−

〈
f ,

2α2β2x3

15

(
2

4 + αβx
+ 1

4 + 2αβx

+ 2

4 + 3αβx

)〉
�+

−
〈

f ,
60x2 + 60x3 + 11x4

60 + 90x + 36x2 + 3x3

〉
.

(D3)
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FIG. 18. Behavior of Eqs. (39), (D3), (D5), (45), and (47) near
the positive root.

The above equation has at least one positive root as Ĥ (0) <

0 < Ĥ (∞) which can be found using any numerical method.
In order to preserve the computational efficiency of the
method we solve the above equation by converting it into a
quadratic in α.

Solving the higher degree polynomial

In this section, we solve Eq. (D3) by converting it to a
quadratic. This conversion to quadratic is performed by ex-
tracting negative terms from Eq. (D3). The extracted terms
then contribute to the entropy production H (B). As stated
earlier, Eq. (D3) has a positive root since Ĥ (0) < 0 < Ĥ (∞).
We assume that upper and lower bounds on the root α exist. A
suitable choice for the lower bound is αLower, while the upper
bound h will be later evaluated. Therefore, αLower < α < h.
Converting Ĥ (α) to a quadratic is a two-step procedure and is
explained in the following.

Exploiting the lower bound

Using the lower bound αLower, in Eq. (D3) we split the term

−
〈

f ,
2α2β2x3

15

(
2

4 + αβx
+ 1

4 + 2αβx
+ 2

4 + 3αβx

)〉
�+

≡ −
〈

f ,
2αβ2x3

15

(
2

4
αLower

+ βx
+ 1

4
αLower

+ 2βx
+ 2

4
αLower

+ 3βx

)〉
�+

−
〈

f ,
2αβ2x3

15

({
2

4
α

+ βx
− 2

4
αLower

+ βx

}
+

{
1

4
α

+ 2βx
− 1

4
αLower

+ 2βx

}
+

{
2

4
α

+ 3βx
− 2

4
αLower

+ 3βx

})〉
�+

, (D4)

where each term in curly braces is positive (as αLower < α) thereby making the second term negative. Here, recognizing that the
negative term contributes to the entropy production H (B), we obtain the quintic polynomial H̃ (α):

H̃ (α) = − α2β2

〈
f ,

x3

6
− αβx4

12
+ α2β2x5

20
− α3β3x6

5

〉
�−

+ α

[〈
f ,

x2

2

〉
−

〈
f ,

2αLowerβ
2x3

15

(
2

4 + αLowerx

+ 1

4 + 2αLowerx
+ 2

4 + 3αLowerx

)〉
�+

]
−

〈
f ,

60x2 + 60x3 + 11x4

60 + 90x + 36x2 + 3x3

〉
. (D5)

Essentially, while converting Ĥ (α) to H̃ (α), we have shifted the negative definite terms in Eq. (D4) to the entropy production,
hence, the curve for H̃ (α) lies above Ĥ (α) (see Fig. 18). It follows that an upper bound on the root of Ĥ (α) will also serve as
the upper bound for the root of H̃ (α).

Exploiting the upper bound

Using the upper bound h, in Eq. (D5) we split the term

−
〈

f ,
α2β2x3

6
− α3β3x4

12
+ α4β4x5

20
− α5β5x6

5

〉
�−

≡ −α2β2

〈
f ,

x3

6
− hβx4

12
+ h2β2x5

20
− h3β3x6

5

〉
�−

− α2β2

〈
f ,− (α − h)βx4

12
+ (α2 − h2)β2x5

20
− (α3 − h3)β3x6

5

〉
�−

, (D6)

where the second term is negative, due to xi < 0, xi ∈ �− and α < h. Now, substituting Eq. (D6) into (D5) and again recognizing
that the negative terms contribute to the entropy production H (B), we obtain the quadratic H (α).

It remains to specify the upper bound h. For this we consider the quadratic equation H2(α) = H (α)|h=0,

H2(α) = −α2a2 + αb − c, (D7)

a2 = β2

〈
f ,

x3

6

〉
�−

, (D8)
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whose positive root is α2. Therefore, H2(α2) = 0 and

H (α2) = α2
2β

2

〈
f ,

hβx4

12
− h2β2x5

20
+ h3β3x6

5

〉
�−

+ H2(α2) > 0. (D9)

As H (0) < 0 < H (α2), a root of H (α) lies in the interval
(0, α2) (see Fig. 18). Hence, a suitable choice for the upper
bound is h = α2.

APPENDIX E: IMPLEMENTING THE ANALYTICAL
SOLUTION

The postcollisional populations are found via the routine

f ∗
i = fi + αβ

[
f eq
i − fi

]
, (E1)

where the path length α needs to be evaluated at each grid
point. We begin by calculating

xi = f eq
i

fi
− 1, (E2)

where i = 1 → N for a lattice with N discrete velocities. To
evaluate a summation on one of the subdivisions �− or �+
we sum over the populations in the concerned subdivision.
For instance, to calculate

a1 =
〈

f ,
x3

2

〉
�−

, b1 =
〈

f ,
x2

2

〉
,

the pseudocode is as follows:

1: a1 = 0, b1 = 0
2: for each integer i in 1 to N do
3: if xi < 0 then
4: a1 = a1 + fi ∗ x3

i /2
5: end if
6: b1 = b1 + fi ∗ x2

i /2
7: end for
8: Return a1

To find the path length α we execute the following steps:

1: Find |xi|max, the xi with maximum magnitude.
2: if |xi|max < 10−3 then
3: α = 2
4: else
5: Calculate a1, b1, c1 from Eq. (40)
6: Calculate αLower from Eq. (41)
7: Calculate a2 from Eq. (D8) and b, c from Eq. (46)
8: Calculate h, the positive root of the Eq. (47)
9: Calculate a, b, c from Eq. (46)
10: Find αHigher, the positive root of Eq. (45)
11: α = αHigher

12: end if

Although the analytic solution to the path length is always
found, we need to ensure that the postcollisional populations
remain positive due to the boundary conditions or in the case
of extremely under-resolved situations. To this effect, an extra
step might be required. We again stress that these situations
are extremely rare. The maximum permitted value of the path
length such that all the postcollisional populations remain
positive is αmax. Therefore,

1: Find xmin
i , the smallest xi

2: Calculate αmax = −1/(βxmin
i )

3: if α > αmax then
4: α = (1 + αmax)/2
5: end if
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