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Nonreversible Markov chains can outperform reversible chains in the Markov chain Monte Carlo method.
Lifting is a versatile approach to introducing net stochastic flow in state space and constructing a nonreversible
Markov chain. We present here an application of the lifting technique to the directed-worm algorithm. The
transition probability of the worm update is optimized using the geometric allocation approach; the worm
backscattering probability is minimized, and the stochastic flow breaking the detailed balance is maximized.
We demonstrate the performance improvement over the previous worm and cluster algorithms for the four-
dimensional hypercubic lattice Ising model. The sampling efficiency of the present algorithm is approximately
80, 5, and 1.7 times as high as those of the standard worm algorithm, the Wolff cluster algorithm, and the previous
lifted worm algorithm, respectively. We estimate the dynamic critical exponent of the hypercubic lattice Ising
model to be z ≈ 0 in the worm and the Wolff cluster updates. The lifted version of the directed-worm algorithm
can be applied to a variety of quantum systems as well as classical systems.

DOI: 10.1103/PhysRevE.106.055306

I. INTRODUCTION

Many physical models, such as the Ising model, can be
mapped to configurations of bond variables, also called dimers
[1]. The physical bond configurations are restricted by con-
straints on the state space, and it is nontrivial to sample bond
configurations efficiently under the constraint. The worm al-
gorithm has an advantage in sampling configurations under
constraints on state space, and it is one of the most efficient
algorithms for various classical and quantum systems [1–3].
Perhaps surprisingly, the worm algorithm significantly allevi-
ates critical slowing down and reduces the dynamic critical
exponent. For example, the dynamic critical exponent of the
cubic lattice Ising model is z ≈ 0.27 in the worm update [4],
while it is z ≈ 0.46 [5] in the Swendsen-Wang cluster update
[6]. The worm algorithm has been applied to a wide variety of
physical models, such as the |φ|4 model [1], the Potts model
[7], the O(n) loop model [8,9], frustrated Ising models [10],
spin glasses [11], lattice QCD [12], quantum spins [13–15],
bosons [3,16,17], and fermions [18,19]. Thus, it is crucial to
improve the worm algorithm and push the limit of the Monte
Carlo method for physical models.

The heart of the worm algorithm is to enlarge the state
space to those with kinks that break the constraint. A nonlocal
update in the original state space, otherwise hard to perform,
can be achieved as a series of local updates in the enlarged
state space. In the worm update, the Monte Carlo dynamics
can be viewed as a diffusion process of the kinks. Because
the configuration is updated by diffusion of the kink, a higher
diffusivity is expected to yield a higher sampling efficiency.
Here, a bottleneck of the algorithm is the worm backscattering
process, in which the kink traces back the path. Because the
backscattering, a rejection process in the Markov chain Monte
Carlo (MCMC) method, naturally lowers the diffusivity, it is
desirable to minimize the worm backscattering probability for
efficient sampling [20].

As improved versions of the worm algorithm, the directed
loop (or the directed worm) algorithm for quantum systems
[13] and an extended version for classical systems were
proposed [4]. In classical cases, the kinks in the directed-
worm algorithm are located on bonds of a lattice instead
of sites, in contrast to the conventional worm algorithm [1].
The probability of worm scattering can be easily optimized
using the geometric allocation approach [20–22], and the
backscattering probability is reduced to zero in many cases.
The directed-worm algorithm enhances the diffusivity of the
kink and significantly improves sampling efficiency.

In the meantime, it has been actively discussed that non-
reversible Markov chains can outperform reversible chains
[23,24]. It was mathematically proved that adding perturbative
stochastic flows breaking detailed balance, or reversibility,
always leads to faster distribution convergence [25,26]. Lift-
ing is a versatile approach to constructing a nonreversible
Markov chain, and it has been applied to various physical
systems [27]. The idea of lifting is to enlarge the state space
and introduce stochastic flows in the enlarged state space.
The lifted nonreversible Markov chain can achieve up to a
square root improvement in the convergence time to the steady
state [28–30]. Although it is challenging to reach square root
improvement in general cases, lifted nonreversible chains can
achieve a significant variance reduction in many cases. A
variety of efficient Monte Carlo methods have been developed
based on the concept of lifting, such as the event-chain Monte
Carlo method [31,32]. In particular, lifted versions of the
worm algorithm [33] and self-avoiding walks [34,35] were
recently proposed and shown to be much more efficient than
the original reversible algorithm. The improvement factor is
especially large in high dimensions.

In the present paper, we show a lifted version of the
directed-worm algorithm to improve the worm algorithm
further. The transition probability is optimized using the
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geometric allocation approach to minimize backscattering
probability and maximize net stochastic flow. Reviewing the
bond representation of the Ising model and the directed-worm
algorithm in Sec. II, we provide an optimized probabil-
ity set for the Ising model on the d-dimensional torus in
Sec. III. Investigating the statistical errors of the energy and
the magnetic susceptibility at the critical temperature of the
four-dimensional hypercubic lattice Ising model, we demon-
strate a significant variance reduction in Sec. IV: the sampling
efficiency of the present worm algorithm is approximately
80, 5, and 1.7 times those of the standard worm algorithm,
the Wolff algorithm, and the previous lifted worm algorithm,
respectively. The dynamic critical exponent is estimated to
be z ≈ 0 in the worm and the Wolff algorithms. The present
paper is summarized with discussions in Sec. V.

II. MODEL

The worm algorithm for classical models was originally
proposed by Prokof’ev and Svistunov [1], which we call the
PS worm hereafter. We adopt the same representation of the
partition function of the ferromagnetic Ising model on a bipar-
tite lattice. The model is represented by −βH = K

∑
〈i j〉 σiσ j ,

where β = 1/T is the inverse temperature, H is the Hamil-
tonian, σi = ±1 is the Ising spin at site i of a lattice, and
〈i, j〉 runs over all the pairs of nearest-neighbor sites. Using
the identity eKσiσ j = cosh(K )

∑
nb=0,1[σiσ j tanh K]nb , the par-

tition function is represented as follows:

Z =
∑

σi=±1

eK
∑

〈i j〉 σiσ j

=
∑

σi=±1

∏
b=〈i j〉

eKσiσ j

=
∑

σi=±1

∏
b=〈i j〉

cosh(K )
∑

nb=0,1

[σiσ j tanh K]nb

= 2N [cosh K]Nb
∑

{nb}∈loop

[tanh K]�, (1)

where nb denotes the bond variable on bond b, � ≡ ∑
b nb,

and N and Nb are the total numbers of sites and bonds of a
lattice, respectively. The sum in the last line is taken over all
the bond configurations that form loops of the activated bonds
(nb = 1). Integrating out the spin variables first removes all
the bond configurations containing an open string of activated
bonds.

The worm algorithm aims to sample bond configurations
efficiently under the loop constraint. In the worm algorithm,
kinks that break the constraint are inserted into the system,
and the kink random walk updates the configuration. A serious
bottleneck of the algorithm is worm backscattering, in which
the kink traced the path backwards. As the backscattering low-
ers the diffusivity of the kink and the sampling efficiency, it is
desirable to minimize the worm backscattering probability for
efficient simulations [20,36].

A directed version of the worm algorithm [4] was recently
proposed to avoid backscattering. In contrast to the standard
worm algorithm, the kinks are located on bonds and move
from bond to bond stochastically, which we call worm scatter-
ing hereafter. The kink is assumed to be located at the center

of a bond; the bond variable takes 0, 1
2 , or 1 accordingly. The

kink possesses the moving direction and keeps it forward after
each scattering.

III. LIFTED DIRECTED-WORM ALGORITHM

A. Lifting on the energy axis

We apply lifting to the directed-worm algorithm to further
improve the worm algorithm. In the lifting technique, the
state space is enlarged by introducing lifted variables, and net
stochastic flows are induced in the enlarged space [23,24,27].
As relevant applications, lifted versions of the Berretti-Sokal
(BS) algorithm [37] were recently proposed for the Ising
model [33] and self-avoiding walks [34,35]. In the original BS
algorithm, one randomly chooses to increase nb or decrease
nb in each local worm update. When increasing (decreasing)
nb, a state with increased (decreased) nb is randomly chosen
and accepted using the standard Metropolis algorithm. In the
lifted BS algorithm, one keeps the label + corresponding to
the nb increasing mode and − corresponding to the nb de-
creasing mode, and flips it (+ ↔ −) only when the proposed
state is rejected by the Metropolis filter. Thus, the state space
is enlarged by introducing the lifted variable σ = ±. Be-
cause the number of activated bonds � = ∑

b nb corresponds
to the energy of the original spin system, as represented in
Eq. (A1), this approach introduces net stochastic flows on the
energy axis. The lifted BS worm algorithms significantly im-
prove sampling efficiency compared to the original BS worm
algorithm.

We use the same type of lifting in the directed-worm frame-
work, adding the lifted variable to the configuration space.
The worm configuration has the mode (σ = + or −) in ad-
dition to the position of the kinks and the moving direction.
The lifted worm algorithm does not modify the other update
processes and is described by Algorithm 1. Clearly, probabil-
ity optimization is crucial to the effectiveness of the lifting.

Algorithm 1 Lifted directed-worm algorithm.

Require: A bond configuration under the loop constraint
Nw ← the total number of worms
for n ← 1 to Nw do

Choose a bond b0, a moving direction, and a mode (+ or −)
randomly.
b ← b0

do
Choose the next bond c and the next mode with a certain
probability.
if b 	= c then

Update the bond variables nb and nc and keep the
moving direction forward.
b ← c

else
Flip the moving direction.

end if
while c 	= b0

Measure observables.
end for
Calculate the averages of observables.
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FIG. 1. Example of the lifted worm scattering and the geometric allocation in the four-dimensional hypercubic lattice Ising model. In
each state 1, 2, . . . , 8, projected onto the two-dimensional space for illustrative purposes, the solid black lines, the red circles, and the blue
arrows represent activated bonds, the moving kink, and the moving direction, respectively. The weight of each state determined by the partition
function is denoted by πi (i = 1, 2, . . . , 8), and the weight of the lifted configuration is πσ

i = 1
2 πi (σ = ±). L and S denote the sets of the

states with the larger and smaller weights, respectively: L = {i : πi > π j∈LC } and S = LC . The numbers of elements are nL = |L| and nS = |S|,
and nL = 3 and nS = 5 in this case. Defining πL = πi∈L , πS = πi∈S , va = πS

nL
, vb = πL−nSva

nL−1 , we set v++
i j = vb (i, j ∈ L, i 	= j), va (i ∈ L, j ∈ S),

v−−
i j = vb (i, j ∈ L, i 	= j), va (i ∈ S, j ∈ L), v+−

i j = πS
nS−1 (i, j ∈ S, i 	= j), v−+

i j = nSva
nL−1 (i, j ∈ L, i 	= j), and vσσ ′

i j = 0 for the other cases. The
areas enclosed by the red lines represent the total net stochastic flow in each mode, which is maximized in this case and amounts to nSπS . The
transition probability is given by p(i,σ )→( j,σ ′ ) = vσσ ′

i j /πσ
i . The order of the states within L and S does not matter to the transition probability.

B. Probability optimization

In the standard lifting technique, the lifted variable deter-
mines the next proposed state, and the Metropolis filter gives
the acceptance probability [33]. This scheme is simple and
effective, but can we optimize the whole transition probability
without decomposing the transition probability into the pro-
posal and the acceptance probabilities? We show here that we
can easily optimize the whole probability using the geometric
allocation approach [20–22].

To see our idea of probability optimization, let us consider
a directed-worm scattering process for the d-dimensional
hypercubic lattice model. Let πi (i = 1, . . . , n) denote the
weight, or the measure, of each state, with n = 2d . An ex-
ample of the worm scattering for d = 4 is illustrated in Fig. 1.
There are eight possible states (n = 8) after the worm scat-
tering. Let L and S denote the sets of the states with the
larger and smaller weights, respectively, that is, L = {i : πi >

π j∈LC } and S = LC . Accordingly, let us define πL = πi∈L,
πS = πi∈S , nL = |L|, and nS = |S|. In the Ising model (1), the
smaller weight states have a larger number of activated bonds

� = ∑
b nb, and the weight ratio is given by πS/πL = tanh K .

Note that nL and nS take odd numbers in the worm scattering.
We duplicate here the configurations and introduce the

lifted variables. The weight of each lifted configuration is
set to half the original weight: πσ

i = 1
2πi (σ = ±). Our pur-

pose is to optimize the transition probabilities from (i, σ ) to
( j, σ ′), p(i,σ )→( j,σ ′ ) (i, j = 1, . . . , n and σ, σ ′ = +,−), under
the global balance condition:

πσ
i =

∑
j,σ ′

πσ
i p(i,σ )→( j,σ ′ ) =

∑
j,σ ′

πσ ′
j p( j,σ ′ )→(i,σ ) ∀ i, σ. (2)

It is convenient to define the stochastic flow from (i, σ ) to
( j, σ ′): vσσ ′

i j ≡ πσ
i p(i,σ )→( j,σ ′ ). The balance condition (2) is

expressed by

πσ
i =

∑
j,σ ′

vσσ ′
i j =

∑
j,σ ′

vσ ′σ
ji ∀ i, σ. (3)

The guideline of the probability optimization in our ap-
proach is to minimize the worm backscattering flow
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vback = ∑
i,σ,σ ′ vσσ ′

ii and maximize the net stochastic flow in
each mode v+

net = ∑
i∈L, j∈S v++

i j and v−
net = ∑

i∈S, j∈L v−−
i j .

Here, we can view the optimization problem as an allo-
cation problem of the stochastic flow vσσ ′

i j . As illustrated in

Fig. 1, an allocation of vσσ ′
i j satisfies Eq. (3) if each color

area and the entire box shape are unchanged. In our approach,
we maximize the net stochastic flow under the condition that
the backscattering probability is minimized. We geometrically
found the optimal allocation and obtained the analytical form.
For 1 < nL < n − 1, defining va = πS

nL
and vb = πL−nSva

nL−1 , we
set

vσσ ′
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vb (σ = σ ′ = +, i, j ∈ L, i 	= j),
va (σ = σ ′ = +, i ∈ L, j ∈ S),
vb (σ = σ ′ = −, i, j ∈ L, i 	= j),
va (σ = σ ′ = −, i ∈ S, j ∈ L),

πS
nS−1 (σ = +, σ ′ = −, i, j ∈ S, i 	= j),
nSva
nL−1 (σ = −, σ ′ = +, i, j ∈ L, i 	= j),

0 (otherwise).

(4)

This solution for nL = 3 is shown graphically in Fig. 1 and is
possible if vb � 0, that is,

nLπL � nSπS. (5)

We successfully achieve vback = 0 and v+
net = v−

net = nSπS ,
which are maximized in this case. For nL = 1 and n − 1,
we avoid backscattering without net flow. Specifically, for
nL = 1, defining vc = πL

nS
, we set

vσσ ′
i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vc (σ = σ ′, i ∈ L, j ∈ S),

vc (σ = σ ′, i ∈ S, j ∈ L),
πS−vc
nS−1 (σ = σ ′, i, j ∈ S, i 	= j),

0 (otherwise).

(6)

This solution exists if

nSπS � πL. (7)

For nL = n − 1, we set

vσσ ′
i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

va (σ = σ ′, i ∈ L, j ∈ S),

va (σ = σ ′, i ∈ S, j ∈ L),
πL−va
nL−1 (σ = σ ′, i, j ∈ L, i 	= j),

0 (otherwise).

(8)

This solution always exists. Note that for nL = 1 and n − 1,
introducing a net stochastic flow between L and S necessarily
causes worm backscattering. We put backscattering minimiza-
tion before stochastic flow maximization.

As in the other applications of lifting, our solution partially
satisfies the skewed detailed balance [28]: π+

i p(i,+)→( j,+) =
π−

j p( j,−)→(i,−), that is, v++
i j = v−−

ji . However, in contrast
to the standard lifting method, we allow the simultaneous
update of both the original state variables and the lifted
variable to avoid backscattering: vσσ ′

i j = πS
nS−1 (σ = +, σ ′ =

−, i, j ∈ S, i 	= j) and nSva
nL−1 (σ = −, σ ′ = +, i, j ∈ L, i 	= j)

in Eq. (4). Although it is nontrivial to prove the ergodicity of
the present algorithm mathematically because of this diago-
nal update, we have not observed any sign of the ergodicity
breaking in our simulations.

In the Ising model (1), πS/πL = tanh K , and the condition
(5) is satisfied if nL/nS � tanh K . For nL � nS , this is always
satisfied, and for nL < nS , it is satisfied if K � tanh−1 nL

nS
=

1
2 ln n

nS−nL
. The case of nL = 3 requires the tightest condi-

tion. Hence, the solution (4) exists for all the cases if K �
1
2 ln n

n−6 = 1
2 ln d

d−3 ⇐⇒ 2
ln d

d−3
� T . On the other hand, the

condition (7) is satisfied if 1/nS � tanh K . Thus, the solu-
tion (6) exists if K � 1

2 ln n
n−2 = 1

2 ln d
d−1 ⇐⇒ T � 2

ln d
d−1

=
TBethe, which is the transition temperature in the Bethe approx-
imation and always higher than the true transition temperature
in finite dimensions.

In simulation, we calculate all the transition probabilities
before Monte Carlo sampling and store them in memory. We
choose the next bond and the mode for each worm scatter-
ing process using the stored probabilities and Walker’s alias
method [38,39]. The computational cost of generating a ran-
dom event is O(1) and almost independent of the number of
choices n in contrast to the cost of the binary search O(log2 n).
The present worm algorithm has practically no extra com-
putational cost compared to the previous worm algorithms.
We confirmed that in our implementation, the wall clock time
per worm scattering of the present worm algorithm was al-
most the same with the PS worm algorithm, as discussed in
Appendix C.

IV. RESULTS

We investigate the performance of the lifted version of the
directed-worm algorithm, comparing it with the PS worm al-
gorithm [1], the lifted BS worm algorithm [33], and the Wolff
cluster algorithm [40]. We focus on the critical slowing down
of the four-dimensional (d = 4) hypercubic Ising model, and
we calculate the energy and the magnetic susceptibility up
to L = 56, where L is the system length, and the number of
sites is N = L4. See Appendix A for the measurements of
these quantities. The temperature was set to the critical tem-
perature 1/Tc = 0.149 694 7(5) [41], and periodic boundaries
were used in all spatial directions. The solutions presented in
Sec. III B exist because 1.443 � 2

ln d
d−3

� Tc � 2
ln d

d−1
� 6.952,

as mentioned above. In the present simulations, we set the
initial state with nb = 0 ∀ b. We ran 228, 224, 224, and 222

Monte Carlo steps for each Markov chain of the PS worm,
the lifted BS worm, the present worm, and the Wolff cluster
algorithms, respectively. The first half of the samples was
discarded for thermalization (burn-in). The mean squared er-
rors and the asymptotic variances of the observables were
calculated using the binning analysis such that the size of
each bin is much larger than the autocorrelation time [42]. We
confirmed that the mean squared errors converged within the
error bars with respect to the bin size. We also averaged the
quantities over 128 independent Markov chains for each L,
allowing us to estimate the error bars of the present results
reliably. In the Wolff algorithm, we test two susceptibility
estimators: χ̂ = βM2

z /N (dubbed Wolff spin), where Mz is the
total magnetization, and χ̂ = β�cl (Wolff cluster), where �cl

is the cluster size. To compare efficiency fairly, we normalize
the autocorrelation time in units of the number of sites for
each L, using the average worm length and cluster size. See
Appendix B for the normalization of the autocorrelation time
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FIG. 2. (a), (d) Integrated autocorrelation time; (b), (e) variance; and (c), (f) asymptotic variance of the energy estimator [(a)–(c)] and the
susceptibility estimators [(d)–(f)] as a function of the system length L of the four-dimensional hypercubic lattice Ising model at the critical
temperature. The Wolff algorithm (triangles) [40], the Prokof’ev-Svistunov worm (circles) [1], the lifted Berretti-Sokal worm (diamonds) [33],
and the present worm (squares) algorithms are compared. In the Wolff algorithm, we test two susceptibility estimators using the spins dubbed
the Wolff spin (upper triangles) and the cluster size dubbed the Wolff cluster (lower triangles). The data are fitted to a power-law function of
L. The exponents of τint,Ê , vÊ , and vasymp,Ê are estimated to be approximately 0, −3.9, and −3.9, respectively, and likely the same for all four
algorithms. The exponents of τint,χ̂ are estimated to be approximately 0, −1.0, −1.3, −1.3, and −1.2 for the Wolff spin, the Wolff cluster, the
Prokof’ev-Svistunov worm, the lifted Berretti-Sokal worm, and the present worm algorithms, respectively; those of vχ̂ are 0, 1.0, 1.3, 1.3, and
1.2, respectively; that of vasymp,χ̂ is 0 and presumably the same for the four algorithms. The insets of panels (c) and (f) show the ratios of the
asymptotic variances in the Wolff (triangles), the Prokof’ev-Svistunov worm (circles), and the lifted Berretti-Sokal (diamonds) algorithms to
the one in the present worm algorithm, which are, for the largest system sizes, approximately 5.4, 80, and 1.5 for (c) the energy; and 4.5, 77,
and 1.7 for (f) the susceptibility. The error bars are smaller than the symbol sizes.

and the definitions of the integrated autocorrelation time, the
variance, and the asymptotic variance. Note that the inverse
of the asymptotic variance is proportional to the sampling
efficiency of an MCMC sampler.

Figure 2 shows the integrated autocorrelation time τint,Ô,
the variance vÔ, and the asymptotic variance vasymp,Ô of the

energy (Ô = Ê ) and the susceptibility estimators (Ô = χ̂).
Fitting a power law to the data, we estimated the exponents, as
shown in the caption. The exponents of the energy estimator
are likely the same for the four algorithms. Nevertheless, the
sampling efficiency of the present worm algorithm is approx-
imately 5.4, 80, and 1.5 times as high as those of the Wolff
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cluster, the PS worm, and the lifted BS worm algorithms,
respectively, as shown in the inset of Fig. 2(c). Interestingly,
for small system sizes, τint,Ê decreases with L for the lifted BS
worm and the present algorithms while increasing for the PS
worm and the Wolff cluster algorithms. Also, the exponent
of the asymptotic variances of the susceptibility estimators
is almost zero for the four algorithms. Again, the sampling
efficiency of the present worm algorithm is approximately 4.5,
77, and 1.7 times those of the Wolff cluster, the PS worm,
and the lifted BS worm algorithms, respectively, as shown
in the inset of Fig. 2(f). Although the size scalings of the
τint,χ̂ and vχ̂ are quite different for the two estimators in the
Wolff algorithm, the asymptotic variance, that is, the product
of the two quantities, as shown in Eq. (B5), is almost the same.
Noticeably, the exponents for the PS worm and the lifted BS
worm algorithms are almost identical.

The exponent of vÊ should be asymptotically the same for
the specific heat, α/ν − d = −4, where α = 0 and ν = 1/2
are the mean-field critical exponents of the specific heat and
the correlation length, respectively. Note that the variance is
relative to the mean squared, defined by Eq. (B7). The esti-
mate obtained by a simple power law, −3.9, is slightly larger
than the theoretical value and still decreases with L. The slow
convergence of the powers of τint,Ê and vÊ is presumably due
to the logarithmic correction at the upper critical dimension
[43].

V. CONCLUSIONS

We propose a lifted version of the directed-worm algo-
rithm, adding the lifted variable (+ and −) to the original
configuration. The probability optimization in the worm scat-
tering process is essential to efficient computation. Using
the geometric allocation approach, we minimize the worm
backscattering probability and maximize net stochastic flow,
as illustrated in Fig. 1. We provide the optimal probabil-
ity set for the d-dimensional hypercubic lattice Ising model.
The backscattering probability reduces to zero, and the net
stochastic flow is maximized in a wide range of temperatures,
including the critical temperature. The entire procedure of the
lifted directed-worm algorithm is described by Algorithm 1.

We calculate the integrated autocorrelation time, the vari-
ance, and the asymptotic variance of the energy and the
magnetic susceptibility estimators of the four-dimensional
hypercubic lattice Ising model at the critical temperature. Sev-
eral relevant exponents are the same for the Wolff cluster [40],
the PS worm [1], the lifted BS worm [33], and the present
worm algorithms. Nevertheless, the sampling efficiency of the
present algorithm is approximately 5, 80, and 1.7 times those
of the Wolff cluster, the PS worm, and the lifted BS worm
algorithms, respectively, shown in Fig. 2. In our implemen-
tation, the present algorithm achieves the shortest real time
needed for a certain relative error, as discussed in Appendix C.
The improvement factor of the lifted BS worm algorithm over
the PS worm algorithm is slightly different from the value
reported in Ref. [33]. This is likely because, in the previous
report, the number of activated bonds was measured not in
the original physical space but in the enlarged state space,
including the kinks.

We estimate the dynamic critical exponent associated with
the integrated autocorrelation time of the energy to be zint,Ê ≈
0 for all the compared algorithms. For reversible cases, the in-
tegrated autocorrelation time satisfies a Li-Sokal-type bound
([44], Corollary 9.2.3): τint,Ê × Ld � const × var[Ê ]. This
leads to zint,Ê � α/ν = 0 for d = 4. Therefore, interestingly,
the reversible algorithms, that is, the PS worm and the Wolff
algorithms, achieve this bound.

The autocorrelation function of the number of activated
bonds has several exponential terms in d � 4, shown in
Ref. [33]. Nevertheless, the scaling of the exponential autocor-
relation time with respect to the system length is the same as
that of the integrated autocorrelation time in d = 5. Assuming
that this is the case for d � 4, equal to or greater than the
upper critical dimension, we also estimate the dynamic critical
exponent associated with the exponential autocorrelation time
to be zexp ≈ 0 from the scaling of the integrated autocorre-
lation time of the energy estimator, which is consistent with
a previous estimate for the Wolff algorithm [45]. In contrast,
the dynamic critical exponent of the three-dimensional Ising
model in the worm and Wolff cluster updates is greater than
the Li-Sokal-type bound: z ≈ 0.27 > α/ν � 0.174 [4]. Since
the bound is achieved in d = 4, we expect z = 0 in d � 4.

The present approach of the lifted directed-worm algorithm
can be applied to a variety of quantum models as well as
classical models. As long as the lookup table of the transi-
tion probability is prepared, the lookup cost in the simulation
is almost independent of the number of states, thanks to
Walker’s alias method, as demonstrated in Appendix C. Al-
though it is nontrivial to obtain an analytical solution of the
transition probability in general cases, linear programming
can numerically find a reasonable solution. It is noteworthy
that a numerically obtained solution may break ergodicity,
so we need to check the validity of the solution by com-
paring it to other samplers. As demonstrated here, the lifted
directed-worm algorithm is expected to improve the sampling
efficiency of the worm update for various systems. Applica-
tions to other physical models are promising and need to be
investigated in the future.
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APPENDIX A: MEASUREMENTS

From the bond representation of the Ising model (1), the
total energy of the original spin system is given by

E = −∂ ln Z

∂β

= −Nb tanh K −
(

1

tanh K
− tanh K

)
〈�〉, (A1)

where the brackets 〈O〉 denote the Monte Carlo average of
an observable O. The number of Monte Carlo steps in our
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algorithm is identical to the number of worms from insertion
to removal. In the directed-worm algorithm, a susceptibility
estimator is given by

χ̂ = β

4zw

∑
scattering

frew, (A2)

where z is the coordination number (z = 2d for the d-
dimensional hypercubic lattice), w = 1

2 is the extra weight the
worm carries, and frew = (u + 1

u ) fh is the reweighting factor
with u = √

tanh K after the worm scattering. fh takes 2/u if
the head is on an activated bond (nb = 1), 2u on a deactivated
bond (nb = 0), and u + 1

u on a half-activated bond (nb = 1
2 ).

The reweighting factor frew is calculated after each worm
scattering process and summed over the scattering processes
from worm insertion to removal, as denoted by the summa-
tion in Eq. (A2). We refer the reader to Ref. [4] for detailed
discussions of measurement in the enlarged state space.

APPENDIX B: EFFICIENCY QUANTIFICATION

To assess the efficiency of an MCMC sampler, we calcu-
late the integrated autocorrelation time, the variance, and the
asymptotic variance of estimators. For a fair comparison, we
normalize the number of Monte Carlo steps and the autocor-
relation time in units of the number of sites N :

M = M ′ 〈�worm〉
N

, (B1)

τint,Ô = τ ′
int,Ô

〈�worm〉
N

, (B2)

where M ′ and τ ′
int are the original number of Monte Carlo

steps and the original integrated autocorrelation time obtained
from the simulations, respectively. The value of M ′ is equal to
the total number of worms during a simulation, and 〈�worm〉 is
the average number of worm scattering processes from worm
insertion to removal.

The integrated autocorrelation time of an estimator Ô can
be estimated by

τ ′
int,Ô = σ 2

Ô

2σ̄ 2
Ô

, (B3)

where σ 2
Ô

is the mean squared error, that is, the square of
the statistical error, calculated by binning analysis using a
much larger bin size than the autocorrelation time, and σ̄ 2

Ô
is

calculated without binning [42].
According to the central limit theorem, the relative error

squared is asymptotically given by
(

σÔ

μÔ

)2

≈ vasymp,Ô

M
, (B4)

where μÔ = 〈Ô〉 is the mean of an unbiased estimator, and
vasymp,Ô is the asymptotic variance of the estimator. In other
words, the number of Monte Carlo steps needed to achieve a
certain precision ε of an observable O is approximately given
by vasymp,Ô/ε2. Thus, the sampling efficiency of an MCMC
sampler can be quantified by the asymptotic variance and
proportional to v−1

asymp,Ô
.

The asymptotic variance is represented by

vasymp,Ô = 2τint,ÔvÔ, (B5)

where vÔ is the variance of an estimator Ô. While τint,Ô de-
pends on MCMC updates, vÔ does not. Therefore, we need to
consider both an efficient MCMC update and a beneficial es-
timator to reduce asymptotic variance. From Eqs. (B1)–(B5),
the asymptotic variance and the variance of an estimator can
be estimated by

vasymp,Ô = M ′
(

σÔ

μÔ

)2 〈�worm〉
N

, (B6)

vÔ = M ′
(

σ̄Ô

μÔ

)2

, (B7)

respectively. In the Wolff cluster algorithm, �worm is replaced
with the cluster size �cl.

APPENDIX C: WALL CLOCK TIME

We discuss here the elapsed real time, or the wall clock
time, of the present algorithm. To assess the performance of
the algorithms, we focus on the autocorrelation time and the
asymptotic variance in the main text, which are independent
of the implementation of the simulation code. However, the
wall clock time is also important to the actual calculation.

We measured the elapsed real time of the worm scattering
in our implementation of the PS, the lifted BS, and the present
worm algorithms on an Intel Xeon Platinum 9242 Processor
using the GNU C++ compiler. The wall clock times of the
PS and the present worm algorithms were almost the same,
∼100 ns per scattering. In our code, the elapsed real time of
the lifted BS algorithm was longer than that of the PS worm
algorithm, but we expect that this difference can be removed
by further tuning. We do not expect that the wall clock time of
the lifted BS algorithm can be shorter than that of the PS worm
algorithm because the PS worm update is simple and concise.
The three algorithms thus consume almost the same real time
after tuning, which is reasonable from the perspective of the
shared fundamental nature of the local worm update. From
Eq. (B4), the real time needed to achieve a certain relative
error squared is given by the product of the asymptotic vari-
ance and the wall clock time of the worm scattering process.
Therefore, the asymptotic variances shown in Figs. 2(c) and
2(f) are practically proportional to the needed real time of the
compared worm algorithms.

We also measured the wall clock time of the Wolff cluster
update per site consisting of the Wolff cluster in our imple-
mentation; it was approximately three times that of the PS and
the present worm algorithms. This longer time is due to the
fact that the number of bonds checked during the Wolff cluster
update is much larger than the resulting cluster size. Thus,
the needed real time of the Wolff cluster algorithm becomes
larger since we normalize the number of Monte Carlo steps
such that N sites are updated in one Monte Carlo step, as
discussed in Appendix B. Consequently, the present algorithm
also provides the most efficient sampler in real time.

We also discuss the lookup cost of the transition proba-
bility. The number of possible states in worm scattering is
n = 2d in the d-dimensional hypercubic lattice and may be
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FIG. 3. Wall clock time per sample of random event generation
from a discrete probability distribution using the binary search and
Walker’s alias method. While O(log2 n) in the binary search, the
computation time is O(1) and almost independent of n in Walker’s
alias method. It increases more for n larger than corresponding to the
cache size, n ∼ 105 in this benchmark.

quite large for other systems. Once a lookup table of the
probability is prepared, we can easily generate a random event
from any discrete probability distribution. Figure 3 shows the
wall clock time per sample generated using the binary search
and Walker’s alias method [38,39]. We implemented the bi-
nary search using std::upper_bound of the C++ Standard
Library and Walker’s method using the Balance Condition Li-
brary (BCL) [46]. The computation time of the binary search
is proportional to log2 n and increases more for n larger than
corresponding to the L2 cache, n ∼ 105 in this benchmark.
On the other hand, the computation time of Walker’s method
is O(1) and almost independent of n. Therefore, thanks to
Walker’s method, the lookup cost does not depend on the
model as long as the lookup table is prepared. We also note
that the computational cost of building a lookup table is O(n)
and is negligible compared to the Monte Carlo simulation
cost [38]. In many cases, the present algorithm needs almost
no additional computation cost compared to the PS worm
algorithm.
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