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In this paper, a multiple-distribution-function lattice Boltzmann method (MDF-LBM) with a multiple-
relaxation-time model is proposed for incompressible Navier-Stokes equations which are considered as coupled
convection-diffusion equations. Through direct Taylor expansion analysis, we show that the Navier-Stokes
equations can be recovered correctly from the present MDF-LBM, and additionally, it is also found that the
velocity and pressure can be directly computed through the zero and first-order moments of the distribution
function. Then in the framework of the present MDF-LBM, we develop a locally computational scheme for
the velocity gradient in which the first-order moment of the nonequilibrium distribution is used; this scheme is
also extended to calculate the velocity divergence, strain rate tensor, shear stress, and vorticity. Finally, we also
conduct some simulations to test the MDF-LBM and find that the numerical results not only agree with some
available analytical and numerical solutions but also have a second-order convergence rate in space.
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I. INTRODUCTION

In the past three decades, the lattice Boltzmann method
(LBM), as a discrete numerical approach to the Boltzmann
equation, has had great success in the study of complex fluid
flows (for more details, see the review articles in Refs. [1–5]
and monographs in [6–10]), including multicomponent and
multiphase flows [2,5,8–10], thermal flows [7,8], turbulent
flows [1,2,6,7], particle suspensions [3], microfluidics [3,8],
and flows in porous media [2,4,7], to name but a few.

Recently, a vectorial lattice Boltzmann method (VLBM)
based on the vectorial kinetic model, e.g., the general
Bhatnagar-Gross-Krook (BGK) model [11–13] was also
developed for shallow water equations [14] and incom-
pressible Navier-Stokes equations (NSEs) [15–17]. Actually,
for isothermal and incompressible fluid flows in which
the density is assumed to be constant, the NSEs can
be viewed as a convection-diffusion system consisting of
(d + 1) equations in d-dimensional space and are called
convection-diffusion-system-based NSEs here [see the fol-
lowing Eq. (2)]. The main idea of the VLBM is to construct
a single evolution equation of the distribution function for
each convection-diffusion equation (CDE). Like the double-
distribution-function LBM for thermal fluid flows [18–20], the
VLBM can also be considered a special multiple-distribution-
function lattice Boltzmann method (MDF-LBM), which is
used in the present work.

Compared to the popular scalar or single-distribution-
function (SDF) LBM for the NSEs, the MDF-LBM

*hustczh@hust.edu.cn
†Corresponding author: shibc@hust.edu.cn

(or VLBM) for convection-diffusion-system-based NSEs has
some distinct features. The first is that one can use fewer
discrete velocities to construct the MDF-LBM. For instance,
if we consider two-dimensional problems, the LBM with
the D2Q4 or D2Q5 (four or five discrete velocities in two-
dimensional space) lattice model is enough for the CDEs [21],
while in the SDF-LBM for the NSEs, the D2Q9 lattice model
is usually adopted since the high-order isotropy of the discrete
velocities is needed [22]. The second is that in the MDF-
LBM for convection-diffusion-system-based NSEs, it is more
flexible and much easier to construct the equilibrium distribu-
tion function such that the CDEs can be recovered correctly.
The third is that in the MDF-LBM for convection-diffusion-
system-based NSEs, some physical variables, for example,
the velocity gradient, the velocity divergence, the strain rate
tensor, the shear stress, and the vorticity, can be calculated
locally through the first-order moments of the nonequilibrium
distribution function (see Sec. III for details), while in the
commonly used SDF-LBM for NSEs, the second-order mo-
ments of the nonequilibrium distribution function are needed
to compute the strain rate tensor and shear stress [23–26], and
what is more, it seems more difficult to directly develop the
local scheme for the velocity gradient or vorticity [27].

In this work, inspired by the VLBM for the NSEs [15–17],
we develop a MDF-LBM for the convection-diffusion-
system-based incompressible NSEs. However, there are four
main differences from previous works [15–17]: (1) We focus
on the MDF-LBM for incompressible NSEs, and the com-
pressible effect in Refs. [15–17] is neglected. (2) We propose
a special formula with the first-order moment of the distri-
bution function for the pressure, which is not only different
from those considered in the previous works [15–17] but
also stricter theoretically. (3) The formula for the pressure is
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FIG. 1. The schematic of the Poiseuille flow.

consistent with the continuity equation, and thus, the lattice
Boltzmann model for the continuity equation can be omitted.
(4) We develop some local schemes for the velocity gradient,
velocity divergence, stain rate tensor, shear stress, and vortic-
ity, which have not been presented or discussed in the previous
works [15–17].

The rest of this paper is organized as follows. In Sec. II, we
develop a MDF-LBM for convection-diffusion-system-based
incompressible NSEs, and then the direct Taylor expansion of
the present MDF-LBM is carried out in Sec. III. In Sec. IV,
we present some numerical results and discussion, and finally,
some conclusions are given in Sec. V.

II. MULTIPLE-DISTRIBUTION-FUNCTION LATTICE
BOLTZMANN METHOD FOR INCOMPRESSIBLE

NAVIER-STOKES EQUATIONS

In this section, we first write the incompressible NSEs
as a coupled convection-diffusion system and then present
a MDF-LBM for the convection-diffusion-system-based
incompressible NSEs.

A. The convection-diffusion-system-based incompressible
Navier-Stokes equations

For incompressible fluid flows in which the density ρ is
assumed to be a positive constant ρ0, the NSEs can be written
as [28,29]

∇ · u = R, (1a)

∂u
∂t

+ ∇ · (uu) = −∇P + ∇ · (ν∇u) + F, (1b)

where u = (uα )α=1−d is the velocity in d-dimensional space,
R is a source term, P is the pressure, ν is the kinematic
viscosity, and F = (Fα) is the external force. We would like
to point out that the above NSEs can also be reformulated as
a coupled convection-diffusion system,

∂ ūα

∂t
+ ∇ · (ūαu + PEα ) = ∇ · (ν∇ūα ) + F̄α,

α = 0, 1, . . . , d, (2)

where ū = (ūα ), with ū0 = ρ0 and ūα = uα (α = 1 − d );
F̄ = (F̄α ), with F̄0 = R and F̄α = Fα (α = 1 − d ); E0 = 0 and
Eα (α = 1 − d ) is the unit vector in d-dimensional space.

It is clear that Eq. (2) is composed of d + 1 CDEs, and in
the following, it is considered to be the convection-diffusion-
system-based NSEs. We note that although the incompressible
NSEs (1) are equivalent to Eq. (2) mathematically, the latter
is just a convection-diffusion system and can be solved more

FIG. 2. The numerical and analytical solutions of the velocity.
(a) u1 and (b) u2.

efficiently with the LBM. Actually, in the LBM for the CDE,
only the third-order isotropy of the discrete velocity is needed,
which brings more flexibility to the development of the lat-
tice Boltzmann (LB) models; however, in the SDF-LBM for
NSEs, the fifth-order isotropy of discrete velocity is required,
which gives rise to more limitations in the design of the LB
models.

B. The multiple-distribution-function lattice Boltzmann
method for the convection-diffusion-system-based

Navier-Stokes equations

In the LBM, the LB models can be classified into three ba-
sic kinds, i.e., the single-relaxation-time LB (SRT-LB) model
or lattice BGK model [22,30], the two-relaxation-time LB
(TRT-LB) model [31,32], and the multiple-relaxation-time LB
(MRT-LB) model [33,34], and it can also be shown that the
SRT-LB model and TRT-LB model are two special cases of
the MRT-LB model [35]. In this work, we consider the MRT-
LB model for its generality, accuracy, and stability. In terms
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TABLE I. A comparison of Galilean invariance between the present MDF-LBM and SDF-LBM.

u0

0 0.01 0.05 0.085 0.1

MDF-LBM
EL2 (u1) 5.9427×10−4 5.9286×10−4 5.9971×10−4 5.9971×10−4

EL2 (Sxy ) 3.3213×10−17 1.0027×10−6 5.0363×10−6 3.7202×10−6

EL2 (ω) 3.3213×10−17 9.8942×10−7 5.0145×10−6 3.7254×10−6

SDF-LBM
EL2 (u1) 5.4478×10−4 5.4453×10−4 5.4453×10−4 5.4453×10−4 4.922×10−4

EL2 (Sxy ) 1.8386×10−3 1.8386×10−3 1.8386×10−3 1.8386×10−3 1.8386×10−3

EL2 (ω) 1.8385×10−3 1.8385×10−3 1.8385×10−3 1.8385×10−3 1.8385×10−3

of accuracy, Ginzburg and d’Humières [36] performed an
analysis of the bounce-back boundary condition of the LBM
for the Poiseuille flow and found that the numerical slip on
the solid wall can be reduced or eliminated by setting the free
parameter(s) in the MRT-LB or TRT-LB model, which can
also be used to derive the viscosity-independent permeabili-
ties of the porous media [37,38]. We note that this result has
also been extended to the MRT-LB or TRT-LB model coupled
with the anti-bounce-back boundary condition for the CDEs
[21,39–42], and the diffusion-dependent error can be reduced
or removed to give accurate effective diffusivities of porous
media [43,44]. In terms of stability, the MRT-LB model can
be more stable than the SRT-LB model and the TRT-LB model
by adjusting the free parameters properly, as shown in a pre-
vious work [45]. In the past years, some different MRT-LB
models were developed for the isotropic and anisotropic CDEs
[41,46–49]. Recently, Chai and Shi proposed a unified frame-
work for the modeling of the MRT-LB models for the NSEs
and nonlinear CDEs [35]. Following this work and with inspi-
ration from the VLBM [14–17], the evolution equation of the
MDF-LBM for the convection-diffusion-system-based NSEs
(2) can be written as

fi,α (x + ciδt, t + δt )

= fi,α (x, t ) − �ik[ fk,α (x, t ) − f eq
k,α

(x, t )]

+ δt

[
Gi,α (x, t ) + Fi,α (x, t ) + δt

2
D̄iFi,α (x, t )

]
, (3)

where fi,α (x, t ) is the distribution function corresponding to
the variable ūα at position x and time t along the discrete
velocity ci. δt is the time step; D̄i = ∂t + γ ci · ∇, with the
parameter γ ∈ {0, 1}, which can be discretized by some dif-
ferent first-order difference schemes [35]. � = (�ik ) is a q×q
invertible collision matrix, with q representing the number of
discrete velocities. As pointed out in a previous work [35],
to recover Eq. (2) from the MDF-LBM (3), some appropriate
requirements for the collision matrix � are needed:∑

i

ei�ik = s0ek,
∑

i

ci�ik = s1ck, (4)

where e = (1, 1, . . . , 1) ∈ Rq and s0 and s1 are eigenval-
ues of the collision matrix � or the relaxation parameters
corresponding to the zero and first-order moments of the
distribution function. Here it should be noted that a more
general case of Eq. (4) shown in Ref. [35] can also be

considered. f eq
i,α (x, t ) is the equilibrium distribution function,

Gi,α (x, t ) is the auxiliary distribution function, and Fi,α (x, t )
is the distribution function of the source term F̄α; to derive
the correct macroscopic equation (2), they should be defined

FIG. 3. The numerical and analytical solutions of the velocity
gradient. (a) ∂u1/∂x and (b) ∂u1/∂y.
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FIG. 4. The numerical and analytical solutions of the velocity
divergence.

as [35,50]

f eq
i,α = ωi

[
ūα + ci · (ūαu + PEα )

ηc2

]
, (5)

Gi,α =
(

1 − s1

2

)
ωi

ci · ∂t (ūαu + PEα )

ηc2
, (6)

Fi,α = ωiF̄α, (7)

where the simple linear equilibrium distribution function (5)
with respect to the discrete velocity is considered. ωi is the
weight coefficient. η is a scale factor related to viscosity,
and c = δx/δt is the lattice speed, with δx being the lattice
spacing. In the DdQq (q discrete velocities in d-dimensional
space) lattice model, the discrete velocity ci, the weight coef-
ficient ωi, and the scale factor η should satisfy the following
relations: ∑

i

ωi = 1, (8a)

∑
i

ωici = 0, (8b)

∑
i

ωicici = ηc2I, (8c)

where I is the unit matrix. Here we list some special cases that
have been widely used in the LBM.

For the D1Q2 lattice model,

ci = (1,−1)c, (9a)

ω1 = ω2 = 1
2 , (9b)

η = 1. (9c)

For the D1Q3 lattice model,

ci = (0, 1,−1)c, (10a)

ω0 = 2
3 , ω1 = ω2 = 1

6 , (10b)

η = 1/3. (10c)
For the D2Q4 lattice model,

ci =
(

1 0 −1 0
0 1 0 −1

)
c, (11a)

ω1 = ω2 = ω3 = ω4 = 1

4
, (11b)

η = 1/2. (11c)

For the D2Q5 lattice model,

ci =
(

0 1 0 −1 0
0 0 1 0 −1

)
c, (12a)

ω0 = 1

3
, ω1 = ω2 = ω3 = ω4 = 1

6
, (12b)

η = 1/3. (12c)

For the D2Q9 lattice model,

ci =
(

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

)
c,

(13a)

ω0 = 4

9
, ω1−4 = 1

9
, ω5−8 = 1

36
, (13b)

η = 1/3. (13c)

For the D3Q6 lattice model,

ci =
⎛
⎝1 −1 0 0 0 0

0 0 1 −1 0 0
0 0 0 0 1 −1

⎞
⎠c, (14a)

ω1−6 = 1

6
, (14b)

η = 1/3. (14c)

For the D3Q7 lattice model,

ci =
⎛
⎝0 1 −1 0 0 0 0

0 0 0 1 −1 0 0
0 0 0 0 0 1 −1

⎞
⎠c, (15a)

ω0 = 1

4
, ω1−6 = 1

8
, (15b)

η = 1/4. (15c)

For the D3Q15 lattice model,

ci =
(

0 1 −1 0 0 0 0 1 1 1 −1 −1 −1 1 −1
0 0 0 1 −1 0 0 1 1 −1 1 −1 1 −1 −1
0 0 0 0 0 1 −1 1 −1 1 1 1 −1 −1 −1

)
c, (16a)

ω0 = 2

9
, ω1−6 = 1

9
, ω7−14 = 1

72
, (16b)

η = 1/3. (16c)
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FIG. 5. The numerical and analytical solutions of the strain rate
tensor. (a) Sxx and (b) Sxy.

We would like to point out that different lattice models
can be applied for different evolution equations represented
by different α. In the MDF-LBM for the convection-
diffusion-system-based NSEs, the macroscopic variable ūα is
computed by

ūα =
∑

i

fi,α. (17)

III. THE DIRECT TAYLOR EXPANSION
OF THE MULTIPLE-DISTRIBUTION-FUNCTION

LATTICE BOLTZMANN METHOD

Historically, there are some asymptotic analysis meth-
ods that can be used to derive the macroscopic governing

FIG. 6. The numerical and analytical solutions of the vorticity ω.

equation (2) from the MDF-LBM [35], including the
Chapman-Enskog analysis [2,51], the Maxwell iteration
method [52], the direct Taylor expansion method [53,54], and
the recurrence equation method [55]. However, it has been
shown that at the second order of expansion parameters, these
four analysis methods can give the same macroscopic equa-
tions [35]. For this reason, we consider only the direct Taylor
expansion method for its simplicity; additionally, compared to
the commonly used Chapman-Enskog analysis, this method
includes only a single expansion parameter, δt .

A. The direct Taylor expansion

Based on previous works [35,53,54], when the Taylor ex-
pansion is applied to Eq. (3), we have

N∑
j=1

δt j

j!
D j

i fi,α + O(δtN+1)

= −�ik ( fk,α − f eq
k,α

) + δt

[
Gi,α (x, t ) + Fi,α (x, t )

+ δt

2
D̄iFi,α (x, t )

]
, (18)

where Di = ∂t + ci · ∇. Introducing f ne
i,α = fi,α − f eq

i,α and
substituting it into the collision term in Eq. (18), we can derive
the following equations:

f ne
i,α = O(δt ), (19a)

N−1∑
j=1

δt j

j!
D j

i

(
f eq
i,α + f ne

i,α

) + δtN

N!
DN

i f eq
i,α = −�ik f ne

k,α + δt

[
Gi,α (x, t ) + Fi,α (x, t ) + δt

2
D̄iFi,α (x, t )

]
+ O(δtN+1). (19b)
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FIG. 7. The schematic of the two-dimensional four-roll mill
problem.

Then the equations with the first and second orders of δt can
be obtained,

Di f eq
i,α

= − 1

δt
�ik f ne

k,α + (Gi,α + Fi,α ) + O(δt ), (20a)

Di
(

f eq
i,α + f ne

i,α

) + δt

2
D2

i f eq
i,α

= − 1

δt
�ik f ne

k,α +
(

Gi,α + Fi,α + δt

2
D̄iFi,α

)
+ O(δt2).

(20b)

From Eq. (20a), we have

δt

2
D2

i f eq
i,α = −1

2
Di�ik f ne

k,α + δt

2
Di(Gi,α + Fi,α ) + O(δt2).

(21)
Substituting Eq. (21) into Eq. (20b) yields

Di f eq
i,α + Di

(
δik − 1

2
�ik

)
f ne
k,α + δt

2
Di(Gi,α + Fi,α )

= − 1

δt
�ik f ne

k,α + Gi,α + Fi,α + δt

2
D̄iFi,α + O(δt2).

Using Eqs. (5), (6), and (7), we can also determine the
moments of f eq

i,α (x, t ), Gi,α,(x, t ), and Fi,α (x, t ),∑
i

f eq
i,α = ūα,

∑
i

ci f eq
i,α = ūαu + PEα,

∑
i

cici f eq
i,α = ūαηc2I, (22a)

∑
i

Gi,α = 0,
∑

i

ciGi,α =
(

1 − s1

2

)
∂t (ūαu + PEα ),

(22b)∑
i

Fi,α = F̄α,
∑

i

ciFi,α = 0. (22c)

FIG. 8. The numerical and analytical solutions of velocity at
different positions. (a) u1 and (b) u2. Solid lines show the analytical
solution, and symbols show the numerical solution.

From Eqs. (17) and (22a), we can first obtain∑
i

f ne
i,α = 0. (23)

Then with the help of Eq. (4), we can also derive the following
equations: ∑

i

ei�ik f ne
k,α = s0

∑
k

ek f ne
k,α = 0, (24)

∑
i

ci�ik f ne
k,α = s1

∑
k

ck f ne
k,α. (25)

B. Derivation of the convection-diffusion-system-based
Navier-Stokes-equations

We now present some details on how to derive the
convection-diffusion-system-based NSEs (2) from MDF-
LBM (3). To this end, we conduct a summation of Eq. (22)
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TABLE II. The relative errors of the strain rate tensor and
vorticity under different computational schemes.

Local scheme Finite-difference scheme

EL2 (Sxx ) 8.0730×10−4 3.6808×10−3

EL2 (Syy ) 8.0730×10−4 3.6808×10−3

EL2 (ω) 8.0731×10−4 3.6808×10−3

and obtain the following equation:

∂ ūα

∂t
+ ∇ · (ūαu + PEα ) + ∇ ·

[(
1 − s1

2

) ∑
i

ci f ne
i,α

]

+ δt

2
∇ ·

[(
1 − s1

2

)
∂t (ūαu + PEα )

]

= F̄α + O(δt2). (26)

Now let us give an evaluation of the term
∑

i ci f ne
i,α . Actu-

ally, from Eq. (20a) we have∑
i

ci f ne
i,α = −δt

∑
i

ci�
−1
ik

(
Dk f eq

k,α
− Gk,α − Fk,α

) + O(δt2)

= −δt

s1

∑
i

ci
(
Di f eq

i,α − Gi,α − Fi,α
) + O(δt2)

= −δt

2
∂t (ūαu + PEα ) − δt

s1
ηc2∇ūα + O(δt2),

(27)

where Eqs. (4) and (22) have been used. Substituting Eq. (27)
into Eq. (26) yields

∂ ūα

∂t
+ ∇ · (ūαu + PEα ) = ∇ ·

[(
1

s1
− 1

2

)
ηc2δt∇ūα

]

+ F̄α + O(δt2). (28)

If we neglect the truncation error O(δt2), we can obtain
the macroscopic convection-diffusion-system-based NSEs (2)
with the following viscosity:

ν =
(

1

s1
− 1

2

)
ηc2δt . (29)

Here we would also like to have a special discussion on how
to calculate the pressure P. From Eq. (27) we can get∑

i

ci,α f ne
i,α =

∑
i

ci,α fi,α −
∑

i

ci,α f eq
i,α

=
∑

i

ci,α fi,α − (ūαuα + P)

= −δt

s1
ηc2∇α ūα + O(δt2 + δtMa2) (α �= 0),

(30)

where Ma is the Mach number. Neglecting the truncation error
term O(δt2 + δtMa2) and summing Eq. (30) over α,we can

FIG. 9. The numerical and analytical solutions of the velocity
gradient at different positions. (a) ∂u1/∂x and (b) ∂u1/∂y. Solid
lines show the analytical solution, and symbols show the numerical
solution.

derive
d∑

α=1

∑
i

ci,α fi,α − (|u|2 + dP) = −δt

s1
ηc2R, (31)

where Eq. (1a) has been used. From Eq. (31) we can give an
expression to compute the pressure,

P = 1

d

(
d∑

α=1

∑
i

ci,α fi,α + δt

s1
ηc2R − |u|2

)
. (32)

In the above procedure, the continuity equation (1a) recovered
from the MDF-LBM [see Eq. (28) with α = 0] has been used
to derive Eq. (32). On the other hand, if Eq. (32) is ensured,
the continuity equation (1a) must also be satisfied. In other
words, we do not need to consider the continuity equation (1a)
in the present MDF-LBM since Eq. (32) is adopted, and the
evolution equation (3) with α = 0 can be omitted. We also
note that the term related to Gi,α in Eq. (3) can also be
neglected since it is on the order of O(δtMa2). In this case,
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the evolution equation (3) can be simplified to

fi,α (x+ ciδt, t + δt ) = fi,α (x, t )− �ik
[

fk,α (x, t )− f eq
k,α

(x, t )
]

+ δt

[
Fi,α (x, t ) + δt

2
D̄iFi,α (x, t )

]
.

(33)

Then we can derive two special schemes [41] from Eq. (33).
Scheme I. γ = 0. Under this condition, D̄iFi,α (x, t ) =

∂t Fi,α (x, t ). Considering the Euler method for the time deriva-
tive, we have

fi,α (x+ ciδt, t + δt ) = fi,α (x, t )− �ik
[

fk,α (x, t ) − f eq
k,α

(x, t )
]

+ δt

2
[3Fi,α (x, t ) − Fi,α (x, t − δt )].

(34)

Scheme II. γ = 1. With this choice, we have D̄iFi,α (x, t ) =
DiFi,α (x, t ), which can be discretized by the following implicit
finite-difference scheme:

DiFi,α (x, t ) = Fi,α (x + ciδt, t + δt ) − Fi,α (x, t )

δt
. (35)

Substituting the above equation into Eq. (33) and introduc-
ing the new variable f̄i,α (x, t ) = fi,α (x, t ) − δtFi,α (x, t )/2, we
can obtain

f̄i,α (x+ ciδt, t + δt ) = f̄i,α (x, t )− �ik
[

f̄k,α (x, t )− f eq
k,α

(x, t )
]

+ δt

(
δik − 1

2
�ik

)
Fk,α (x, t ). (36)

In this scheme, the macroscopic variable ūα is computed by

ūα =
∑

i

fi,α =
∑

i

f̄i,α + δt

2
F̄α, (37)

while the pressure is still given by Eq. (32), with fi,α replaced
by f̄i,α .

C. The computational schemes for the velocity gradient, velocity
divergence, strain rate tensor, shear stress, and vorticity

Besides the fluid velocity and pressure mentioned above,
usually, we also need to consider some other physical vari-
ables. For instance, the strain rate tensor (or the symmetric
velocity gradient tensor), shear stress, and vorticity (it is re-
lated to the antisymmetric velocity gradient tensor) are also
important in the study of the non-Newtonian fluid flows and
turbulence [56,57], and in the framework of LBM, they have
also received increasing attention in the past years [23–27,58].
Actually, the strain rate tensor or shear stress can be derived
locally from the projection on the second-order polynomial
eigenvectors [38,59,60], which is also employed for the con-
struction of local boundary schemes [61]. In the SRT-LB
model, Artoli et al. [23] developed a local scheme for the shear
stress in which the second-order moment of nonequilibrium
distribution function is adopted and applied the scheme to
study blood flow in a symmetric bifurcation. Then Krüger
et al. [24] conducted a theoretical analysis and found that the
local scheme for the shear stress has a second-order conver-
gence rate. Chai and Zhao [25] further considered the forcing
term effect on the computation of the strain rate tensor and

FIG. 10. The numerical and analytical solutions of the velocity
divergence at different positions. Solid lines show the analytical
solution, and symbols show the numerical solution.

shear stress and proposed two more general local schemes for
the strain rate tensor and shear stress. They also performed
a theoretical analysis and numerical simulations and demon-
strated that the local schemes have second-order accuracy in
space. Yong and Luo [26] carried out an asymptotic analysis
of the SRT-LB model coupled with the simple bounce-back
boundary condition and illustrated that the shear stress com-
puted with the second-order moment of the nonequilibrium
distribution function has second-order accuracy in space. In
addition, the velocity divergence can also be calculated locally
by the second-order moment of the nonequilibrium distribu-
tion function [25].

In the LB method, it seems difficult to construct local
schemes for the velocity gradient and vorticity, and for this
reason, some nonlocal finite-difference schemes are usually
adopted (e.g., Ref. [45]). Recently, through the careful design
of the high-order moments of the equilibrium distribution
function, Peng et al. [27] developed a local scheme for the
vorticity in the MRT-LB model with D3Q27 lattice structure.
However, this scheme cannot be extended to other lattice
models, e.g., the commonly used D2Q9 lattice model in two-
dimensional space. To overcome this limitation, Hajabdollahi
and Premnath [58] proposed another scheme for the compu-
tation of vorticity in the double-distribution-function LBM.
However, in addition to the LB model for NSEs, they would
also need to introduce another LB model for an additional
CDE, which would bring greater computational cost. In this
work, we will develop a local scheme for the velocity gradient
which can be further extended to calculate the velocity diver-
gence, strain rate tensor, shear stress, and vorticity without
introducing any additional requirements. Compared to pre-
vious works [23–27,58] in which second-order moments of
the nonequilibrium distribution function were adopted, the
present local schemes for the velocity gradient, velocity di-
vergence, strain rate tensor, shear stress, and vorticity include
only the first-order moments of the nonequilibrium distribu-
tion function, and what is more, they are not restricted to the
special lattice models.
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Now let us focus on how to calculate the velocity gradient,
velocity divergence, strain rate tensor, shear stress, and vor-
ticity in the MDF-LBM. Actually, from Eq. (27) we can first
obtain the velocity gradient,

∇βuα = − s1

ηc2δt

∑
i

ci,β f ne
i,α (α �= 0), (38)

where the truncation error in Eq. (30) has been neglected.
We note that Eq. (38) is similar to the schemes reported in
previous works [48,62] and can be used to derive the schemes
for the velocity divergence ∇ · u, strain rate tensor S, shear
stress σ , and antisymmetric velocity gradient tensor �,

∇ · u =
d∑

α=1

∇αuα = − s1

ηc2δt

d∑
α=1

∑
i

ci,α f ne
i,α, (39)

Sαβ = 1

2
(∇βuα + ∇αuβ ) = − s1

2ηc2δt

∑
i

(
ci,β f ne

i,α + ci,α f ne
i,β

)
(α �= 0, β �= 0), (40)

σαβ = 2ρ0νSαβ = −ρ0

(
1 − s1

2

)∑
i

(
ci,β f ne

i,α + ci,α f ne
i,β

)
(α �= 0, β �= 0), (41)

�αβ = 1

2
(∇βuα − ∇αuβ ) = − s1

2ηc2δt

∑
i

(
ci,β f ne

i,α − ci,α f ne
i,β

)
(α �= 0, β �= 0). (42)

Then based on the following relation between the antisym-
metric velocity gradient tensor � and the vorticity ω = ∇×u,

�αβ = − 1
2εαβγ ωγ , (43)

we can determine the component of vorticity ωγ ; εαβγ is the
Levi-Civita tensor.

Finally, we also give some remarks on the present
MDF-LBM for the convection-diffusion-system-based in-
compressible NSEs.

Remark 1. In the above analysis, if the diffusive scaling
(δt ∝ δx2) is considered [49,63], the evolution equation (3)
can be simply written as

fi,α (x+ ciδt, t + δt ) = fi,α (x, t )− �ik
[

fk,α (x, t )− f eq
k,α

(x, t )
]

+ δtFi,α (x, t ). (44)

Then we can also derive the macroscopic equation (28) from
Eq. (44), while the truncation error is O(δx2) rather than
O(δt2). On the other hand, for the specified kinematic viscos-
ity ν and the relaxation parameter s1, we can also obtain the
diffusive scaling δt ∝ δx2 from Eq. (29), which means that the
diffusive scaling used in the LBM is reasonable. Additionally,
the computational schemes for the velocity, pressure, velocity
gradient, velocity divergence, strain rate tensor, shear stress,
and vorticity are the same as Eqs. (17), (32), (38), (39), (40),
(41), and (42). In the following, for simplicity we consider the
MDF-LBM (44) for the convection-diffusion-system-based
incompressible NSEs.

Remark 2. In the SDF-LBM for the NSEs [23–26], the
velocity divergence, strain rate tensor, and shear stress can
be computed locally with the second-order moments of the
nonequilibrium distribution function, while in the present
MDF-LBM for the convection-diffusion-system-based in-
compressible NSEs, only the first-order moments of the
nonequilibrium distribution function are needed, as seen from
Eqs. (39), (40), and (41).

Remark 3. In the commonly used LBM for NSEs, it is
difficult to compute the velocity gradient locally. However, in

the present MDF-LBM for the convection-diffusion-system-
based incompressible NSEs, the velocity gradient can be
calculated locally from Eq. (38), which can also be used to de-
termine some other physical variables, including the velocity
divergence ∇ · u, strain rate tensor S, shear stress σ , and vor-
ticity ω. Additionally, we also note that although some local
schemes have been developed for the vorticity, there are still
some limitations in the available works [27,58]. For example,
the local scheme proposed by Peng et al. [27] is suitable only
for the D3Q27 lattice model and cannot be extended to some
other lattice models. Compared to the scheme in Ref. [27],
the scheme developed by Hajabdollahi and Premnath [58] is
more general, while an additional CDE must be introduced
and solved by another LB model, which would make the
computational cost more expensive.

Remark 4. In the SDF-LBM for the NSEs [22], the pressure
is related to density through the relation P = ρηc2, where the
density is calculated with the zeroth order of the distribution
function, while in the LBM for incompressible NSEs [64],
the pressure is determined by the zeroth-order moment of the
distribution function without considering the one in the zeroth
direction. In the present MDF-LBM, the pressure is computed
by the first-order moment of distribution function, but the one
with α = 0 is not included. In addition, it should be noted
that the formula for the pressure [see Eq. (32)] is consistent
with the continuity equation (1a), and thus, we do not need to
consider the evolution equation (3) with α = 0.

IV. NUMERICAL RESULTS AND DISCUSSION

For simplicity, but without loss of generality, we con-
sidered only two-dimensional problems in this section and
adopt some two-dimensional benchmark problems, including
the Poiseuille flow, the simplified four-roll mill problem, and
lid-driven cavity flow, to test the developed MDF-LBM. For
brevity, we consider only the D2Q5 lattice model in which the
collision matrix � is taken to be

� = M−1Sd M. (45)
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FIG. 11. The numerical and analytical solutions of the compo-
nents of the strain rate tensor at different positions. (a) Sxx and
(b) Syy. Solid lines show the analytical solution, and symbols show
the numerical solution.

The transformation matrix M and relaxation matrix Sd appear-
ing in the above equation are defined as [21]

M =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1
0 c 0 −c 0
0 0 c 0 −c
0 c2 −c2 c2 −c2

−4c2 c2 c2 c2 c2

⎞
⎟⎟⎟⎟⎠, (46a)

Sd = diag(s0, s1, s1, s2, s2), (46b)

where si is the relaxation parameter corresponding to the
ith-order moment of the distribution function. In this case,
the evolution equation (3) will be the same as that in the
classical TRT model [31] under the condition s0 = s2, and
the matrix construction in the MRT model can be avoided.
Additionally, according to Eq. (8), the relations among the
weight coefficients and lattice speed in the D2Q5 lattice model

FIG. 12. (a) The numerical and analytical solutions of the vor-
ticity at different positions. Solid lines show the analytical solution,
and symbols show the numerical solution. (b) The contour lines of
vorticity. The black line shows the analytical solution, and colored
lines show the numerical solution.

can be generally expressed as

ωi = 1 − ω0

4
, 2ωi = η, i = 1 − 4, (47)

where ω0 is considered a free parameter within the range
(0, 1). Actually, if ω0 = 1/5, we can obtain ωi = 1/5
(i = 1 − 4) and η = 2/5. However, if ω0 = 1/3, we have
ωi = 1/6 (i = 1 − 4) and η = 1/3, which is the same as
in Eq. (12b) and will be used in the following simulations.
It should be noted that some other lattice models can also
be adopted in the MRT-LBM for CDE, and the details can
be found in some available literature [8]. Unless otherwise
stated, the initialization of the distribution functions is realized
by their equilibrium distribution functions, where the pres-
sure and velocity are given by P = 1 and u1 = u2 = 0. The
halfway anti-bounce-back scheme for the MDF-LBM [17] is
used to treat Dirichlet boundary conditions of velocity.
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FIG. 13. The convergence rates of the MDF-LBM and the local
schemes for the strain rate tensor and vorticity.

In our simulations, to test the accuracies of the MDF-LBM
and the local schemes for the physical variables, the following
L2 norm of the relative error EL2 is adopted:

EL2 (φ) = ‖φa(x, y) − φn(x, y)‖2

‖φa(x, y)‖2
, (48)

where φ denotes the velocity, velocity gradient, velocity di-
vergence, strain rate tensor, or vorticity and the subscripts a
and n represent the analytical and numerical solutions of φ.

A. The two-dimensional Poiseuille flow

The first problem we considered is the simple Poiseuille
flow, which is driven by an external constant force in the
x direction (F1 = 1.0×10−6), as shown in Fig. 1. For this
problem, we can obtain its analytical solutions for the veloc-
ity u = (u1, u2)�, velocity gradient ∇u, velocity divergence
∇ · u, strain rate tensor S, and vorticity ω:

u1 = F1

2ν
H2

[ y

H
−

( y

H

)2]
, u2 = 0, (49a)

∂u1

∂x
= ∂u2

∂x
= ∂u2

∂y
= 0,

∂u1

∂y
= F1

2ν
H

(
1 − 2

y

H

)
, (49b)

∇ · u = ∂u1

∂x
+ ∂u2

∂y
= 0, (49c)

Sxx = Syy = 0, Sxy = Syx = F1

4ν
H

(
1 − 2

y

H

)
, (49d)

ω = ∂u2

∂x
− ∂u1

∂y
= − F1

2ν
H

(
1 − 2

y

H

)
. (49e)

We performed some simulations with the present MDF-
LBM, and a lattice size of 32×32 is adopted for the
computational domain [0, 1]×[0, 1] with the periodic bound-
ary condition in the x direction. We present some numerical
results in Figs. 2–6, where the kinematic viscosity is
ν = 0.001 and the relaxation parameters are set to s0 = 1,
s1 = 1.2, and s2 = 8(2 − s1)/(8 − s1) [21,39,42,65]. As
shown in Figs. 2–6, the numerical results for the velocity u,
the components of the velocity gradient (∂u1/∂x and ∂u1/∂y),

TABLE III. The relative errors of the velocity, strain rate tensor,
and vorticity under different values of relaxation parameter s1.

s1 = 0.7 s1 = 1.2 s1 = 1.7

EL2 (u1) 3.9869×10−3 2.0745×10−3 1.2871×10−3

EL2 (u2) 3.9869×10−3 2.0745×10−3 1.2871×10−3

EL2 (Sxx ) 8.0330×10−4 8.0328×10−4 8.0327×10−4

EL2 (Syy ) 8.0330×10−4 8.0328×10−4 8.0327×10−4

EL2 (ω) 8.0333×10−4 8.0330×10−4 8.0330×10−4

the velocity divergence ∇ · u, the components of the strain
rate tensor (Sxx and Sxy), and the vorticity ω are in good
agreement with analytical solutions. In addition, we also
measured the relative errors of the velocity u1, the compo-
nent of the velocity gradient ∂u1/∂y, the component of the
strain rate tensor Sxy, and the vorticity ω and found that their
values are about EL2 (u1) = 5.9427×10−4, EL2 (∂u1/∂y) =
9.7541×10−17, EL2 (Sxy) = 9.7541×10−17, and EL2 (ω) =
9.7541×10−17. It should be noted that the component of the
velocity gradient ∂u1/∂y, the component of the strain rate
tensor Sxy, and the vorticity ω can achieve machine precision.
This is because the local schemes (38), (40), and (42) have
second-order accuracy, while the distributions of these phys-
ical variables are only linear. In addition, it is also observed
from Fig. 4 that the continuity equation ∇ · u = 0 is preserved
automatically.

Finally, to examine the Galilean invariance of the present
MDF-LBM, we also conducted a numerical test for this prob-
lem and present a comparison between the MDF-LBM and
SDF-LBM with the following finite-difference scheme for the
velocity gradient (strain rate tensor and vorticity) in Table I,

∇βuα (x) =
∑
i �=0

ωici,βuα (x + ci,βδt )

ηc2δt
(α �= 0, β �= 0),

(50)

Sαβ = 1

2
(∇βuα + ∇αuβ ), ω = ∂u2

∂x
− ∂u1

∂y
. (51)

From Table I, we can observe that under different constant
velocities u0 in the x direction, the Galilean invariance errors
of the velocity u1 from these two methods are the same order,
while the MDF-LBM performs better for the strain rate tensor
and vorticity. The comparisons of the errors EL2 (Sxy) and
EL2 (ω) can also indicate the advantage of the local schemes.
Additionally, it is also found that the SDF-LBM is more stable
than the MDF-LBM for large values of u0.

B. The simplified two-dimensional four-roll mill problem

The second example we use to test the present MDF-LBM
is the simplified two-dimensional four-roll mill problem. A
schematic of the problem is given in Fig. 7, where the four
rollers are replaced by a body force to drive fluid flow and the
physical domain of the problem is [0, 2π ]×[0, 2π ] with peri-
odic boundary conditions in both the x and y directions. As a
benchmark problem, it has also been used to test the accuracy
of the LBM [25,66] for the following two reasons. The first
is that the problem has analytical solutions for the velocity,
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FIG. 14. The schematic of the two-dimensional lid-driven cavity
flow.

velocity gradient, velocity divergence, strain rate tensor, and
vorticity. The second is that the boundary condition of the
problem is periodic such that its effect on the numerical results
can be excluded [25]. For the incompressible flow driven by
the force

F1 = U 2
0 sin(x) cos(x) + 2νU0 sin(x) cos(y), (52a)

F2 = U 2
0 sin(y) cos(y) − 2νU0 sin(y) cos(x), (52b)

we can obtain analytical solutions for the velocity, velocity
gradient, velocity divergence, stain rate tensor, and vorticity,

u1 = U0 sin(x) cos(y), u2 = −U0 cos(x) sin(y), (53a)

∂u1

∂x
= U0 cos(x) cos(y) = −∂u2

∂y
,

∂u1

∂y
= −U0 sin(x) sin(y) = −∂u2

∂x
, (53b)

∇ · u = ∂u1

∂x
+ ∂u2

∂y
= 0, (53c)

Sxx = U0 cos(x) cos(y) = −Syy, Sxy = Syx = 0, (53d)

ω = ∂u2

∂x
− ∂u1

∂y
= 2U0 sin(x) sin(y). (53e)

We carried out some numerical experiments with a lattice
size of 64×64, and the results are shown in Figs. 8–12, where
U0 = 0.0001, ν = 0.01, and the relaxation parameters are
the same as those used in the first problem. As seen from
Figs. 8–12 the numerical results for the velocity, velocity
gradient, velocity divergence, strain rate tensor, and vortic-
ity are very close to the corresponding analytical solutions;
especially, from the contour lines of the vorticity shown in
Fig. 12(b), we can clearly observe that four vortices form at
the locations of the rollers.

This problem is also used to test the convergence rates of
the present MDF-LBM for velocity and the local schemes
for the strain rate tensor and vorticity. To this end, we calcu-
lated the relative errors of the velocity, the strain rate tensor,
and the vorticity at different lattice sizes (N×N = 16×16,
32×32, 48×48, and 64×64) and plot them in Fig. 13. From
Fig. 13, we can find that the present MDF-LBM and the local
schemes have second-order accuracy in space. To show the
performance of the local schemes for the strain rate tensor

FIG. 15. The profiles of velocity along vertical and horizontal
lines through the geometric center of the cavity. (a) u1 along the
vertical line and (b) u2 along the horizontal line.

and vorticity more clearly, we also conducted a comparison
between the local schemes and the nonlocal finite-difference
schemes (50) and (51). From the results in Table II, we can
observe that the present local schemes are more accurate.

In addition, it is well known that the eigenvalue (or re-
laxation parameter) s1 of the collision matrix � is a key
parameter in the LBM and may also affect the numerical
results. Thus, we also conducted some simulations to test the
effect of the relaxation parameter s1 and present the relative
errors of the velocity, the strain rate tensor, and the vorticity
for three different values of the relaxation parameter s1 in
Table III, where the viscosity and lattice size are fixed to
ν = 0.01 and 64×64. As shown in Table III, the relaxation
parameter s1 has no apparent influence on the numerical re-
sults, especially on the stain rate tensor and vorticity.

C. The two-dimensional lid-driven cavity flow

The last problem we considered is the two-dimensional
lid-driven cavity flow, and the schematic of the problem is

055305-12



MULTIPLE-DISTRIBUTION-FUNCTION LATTICE … PHYSICAL REVIEW E 106, 055305 (2022)

FIG. 16. The contours of pressure at (a) Re = 100, (b) 400, and
(c) 1000.

shown in Fig. 14, where the length of the square cavity is
L = 1. Compared to the previous problems, it is more compli-
cated since there is no exact solution available. Although the
geometry of the problem is very simple, the lid-driven cavity

FIG. 17. The streamlines of lid-driven cavity flows at (a)
Re = 100, (b) 400, and (c) 1000.

flow is of great scientific interest because it displays rich fluid
mechanical phenomena, especially complex vortex dynamics
[67]. The flow in the square cavity is driven by the top mov-
ing wall with a constant velocity, (U1,U2)� = (1, 0)�, and
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FIG. 18. The contours of the vorticity at (a) Re = 100, (b) 400,
and (c) 1000.

a primary vortex in the center and some secondary vortices
at the corners will form with the increase of the Reynolds
number (Re = LU1/ν). Actually, the lid-driven cavity flow, as
a classic benchmark problem, has also been widely used to
test the capacity of numerical methods [45,68–71].

TABLE IV. The vorticity ω and location (x, y) of the primary
vortex.

Reference Parameter Re = 100 Re = 400 Re = 1000

This study ω 3.1655 2.2797 1.9794
x 0.6167 0.5540 0.5303
y 0.7373 0.6053 0.5651

Ref. [68] ω 3.1665 2.2947 2.0497
x 0.6172 0.5547 0.5313
y 0.7344 0.6055 0.5626

Ref. [69] ω 3.1348 2.2910 2.0760
x 0.6196 0.5608 0.5333
y 0.7373 0.6078 0.5647

Ref. [45] ω 3.1629 2.2950 2.0678
x 0.6150 0.5546 0.5312
y 0.7378 0.6053 0.5663

In this part, we conduct some numerical simulations of
lid-driven cavity flows at different Reynolds numbers, and
to ensure the incompressible condition is valid, the discrete
velocity c = 10 is adopted to give a small Mach number
(Ma = U1/

√
ηc). In our simulations, to obtain accurate re-

sults, the lattice size is set to be 512×512, and relaxation
parameters are s0 = 1 and s2 = 8(2 − s1)/(8 − s1). We first
present the velocity profiles along the vertical and horizontal
lines through the geometric center of the cavity in Fig. 15,
where Re = 100, 400, and 1000. As seen from Fig. 15, the

TABLE V. The vorticity ω and location (x, y) of the secondary
vortex.

Vortex Reference Parameter Re = 100 Re = 400 Re = 1000

Bottom-left
vortex

This study ω −0.0149 −0.0583 −0.3514

x 0.0343 0.0511 0.0833
y 0.0345 0.0472 0.0778

Ref. [68] ω −0.0155 −0.0570 −0.3618
x 0.0313 0.0508 0.0859
y 0.0391 0.0469 0.0781

Ref. [69] ω

x 0.0392 0.0549 0.0902
y 0.0353 0.0510 0.0784

Ref. [45] ω 0.0145 0.0602 0.3557
x 0.0341 0.0517 0.0828
y 0.0341 0.0478 0.0789

Bottom-right
vortex

This study ω −0.0352 −0.4486 −1.0690

x 0.9425 0.8855 0.8650
y 0.0619 0.1222 0.1120

Ref. [68] ω −0.0331 −0.4335 −1.1547
x 0.9453 0.8906 0.8594
y 0.0625 0.1250 0.1094

Ref. [69] ω

x 0.9451 0.8902 0.8667
y 0.0627 0.1255 0.1137

Ref. [45] ω −0.0348 −0.4451 −1.1039
x 0.9425 0.8560 0.8645
y 0.0614 0.1218 0.1121
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TABLE VI. A comparison of efficiencies between the present
MDF-LBM and SDF-LBM.

Method

MDF-LBM SDF-LBM

10 000 steps (s) 552 631

numerical results are in good agreement with the available
data [68]. In addition, we also plot the distributions of the
pressure in Fig. 16 and find that these results qualitatively
agree with those in previous works [45,69]. To show the
complex dynamics of lid-driven cavity flows, we also plot the
streamlines and vorticity contours in Figs. 17 and 18. From
Figs. 17 and 18, we can observe that a primary vortex in the
center of the cavity and two secondary vortices in two bottom
corners form. Simultaneously, it is also found that with the
increase of the Reynolds number, the primary vortex moves
towards the center of the cavity. To quantify these results,
we measured the vorticities and locations of the primary and
secondary vortices and list them in Tables IV and V. As shown
in Tables IV and V, the present results are very close to those
reported in some previous studies [45,68,69].

In addition, to show the efficiency of the present MDF-
LBM, we also present a comparison of the computational
times in the present MDF-LBM and the SDF-LBM [Eqs. (50)
and (51) are used to calculate the strain rate tensor and vor-
ticity] for this problem, and the results are shown in Table VI.
From Table VI, we can find that the present MDF-LBM is
more efficient, which is attributed to the use of the linear
equilibrium distribution function. Actually, most of the com-
putational time in the LBM is used to calculate the equilibrium
distribution function.

V. CONCLUSIONS

In this work, a MDF-LBM coupled with the MRT model
was developed for incompressible NSEs. To do this, the

NSEs were first reformulated into a convection-diffusion
system, and then the MDF-LBM was proposed for the
convection-diffusion system. What is more, in addition to
the macroscopic pressure and velocity, we also proposed some
local schemes for the velocity gradient, velocity divergence,
strain rate tensor, shear stress, and vorticity in the framework
of the MDF-LBM. To test the capacity of the MDF-LBM
and local schemes, three benchmark problems, including the
two-dimensional Poiseuille flow, the simplified four-roll mill
problem, and the lid-driven cavity flow, were considered. The
numerical results show that the present MDF-LBM and local
schemes are efficient and also have a second-order conver-
gence rate in space.

It should be noted that compared to the classic LBM for
two-dimensional incompressible NSEs for which the D2Q9
lattice model should be used, the MDF-LBM is more flex-
ible since the D2Q4, D2Q5, or D2Q9 lattice model can be
adopted to give the correct incompressible NSEs. Addition-
ally, in the MDF-LBM for convection-diffusion-system-based
NSEs, some physical variables (e.g., the velocity gradient, the
velocity divergence, the strain rate tensor, the shear stress, and
the vorticity) can be computed locally through the first-order
moments of the nonequilibrium distribution function, while
in the commonly used SDF-LBM for incompressible NSEs,
usually, only the velocity divergence, the strain rate tensor,
and the shear stress can be determined locally by the second-
order moments of the nonequilibrium distribution function.

Finally, we would also like to point out that the present
MDF-LBM can be extended to study the thermal flows and
multiphase fluid system governed by the incompressible NSEs
and CDE, which will be considered in another work.
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