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Pore-network extraction using discrete Morse theory: Preserving the topology of the pore space
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Pore-scale modeling based on the 3D structural information of porous materials has enormous potential in
assessing physical properties beyond the capabilities of laboratory methods. Such capabilities are pricey in terms
of computational expenses, and this limits the applicability of the direct simulations to a small volume and
requires high-performance computational resources, especially for multiphase flow simulations. The only pore-
scale technique capable of dealing with large representative volumes of porous samples is pore-network (PNM)
based modeling. The problem of the PNM approach is that 3D pore geometry first needs to be simplified into
a graph of pores and throats that conserve topological and geometrical properties of the original 3D image.
While significant progress has been achieved in terms of geometry representation, no methodology provides full
conservation of the topological features of the pore structure. In this paper we present a pore-network extraction
algorithm for binary 3D images based on discrete Morse theory and persistent homology that by design targets
topology preservation. In addition to methodological developments, we also clarify the relationship between
topological characteristics of constructed Morse chain complex and pore-network elements. We show that the
Euler numbers calculated for PNMs based on our methodology coincide with those obtained using the direct
topological analysis. The characteristics of the extracted pore network are calculated for several 3D porous
binary images and compared with the results of maximum inscribed balls-based and watershed-based approaches
as well as a hybrid approach to support our methodology.
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I. INTRODUCTION

The physical properties of porous and other composite
materials are governed by their structure and the spatial dis-
tribution of constituting phases, and can be assessed based
on structural information using statistical relationships or
pore-scale simulations [1–3]. During last two decades such
assessment approaches received significant attention due to
the progress in the imaging of the material samples. X-ray
computed tomography (XCT) is among the most convenient
3D image acquisition techniques [4] but may require scanning
electron microscopy (SEM) combined with focused ion beam
milling (FIB-SEM) [5,6] to improve imaging resolution vs
sample size imaging trade-off [7]. Direct imaging methods
can be combined with stochastic reconstructions [8–12] to
produce 3D information from limited amount of data or peri-
odize pore structure to compute tensorial properties [13,14],
that can be further incorporated into a multiscale structure
acquisition framework [7,15–17].

The data from even single-scale imaging are usually vast,
and the size of resulting 3D digital image can easily exceed
20003 voxels, not to mention the results of the multiscale
image fusion. Direct flow simulations, both single and mul-
tiphase cases, require enormous amount of computational
power, up to days of execution on 102–103 CPUs in par-
allel. Such expenses make routine simulations with direct
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methods impractical and hamper the development of digi-
tal core technologies. The so-called pore-network approach
(PNM) is much more computationally cheap due to simpler
description of flow phenomena with the help of semiempir-
ical models for single-phase flow and multiphase fluid-solid
interactions. For example, the Poiseuille flow approximation
combined with harmonic averaging of hydraulic conductances
allows for efficient flow velocity assessment: the single-phase
flow problem can be attacked by solving a linear system
of equations [18], as opposed by a need to perform thou-
sands of iterations in direct (explicit scheme) Stokes solvers
based on a light-weight finite-difference method [19] or lat-
tice Boltzmann method [20]. For two-phase flow simulations,
PNMs utilize such models as piston displacement [18,21,22],
pore-body filling [18,21–23] and snap-off [18,21,22,24], and
wettability alteration and aging influence [18,25,26]; these
semiempirical models are usually the results of experimental
observations [27]. Miao et al. [28] proposed a novel frame-
work that uses machine learning based on direct pore-scale
simulations to parametrize the flow processes; this framework
was applied in different PNM models [29–31]. The way mul-
tiphase flow processes are described depends on the type of
the PNM that can be divided into two classes: quasistatic
[18,21,22,26] and dynamic [32]. The former assume that
capillary forces are dominant and are extremely fast in their
computations, but lack time resolution. The latter type tracks
menisci positions and evolution with time, but solves a much
more evolved system of nonlinear equations that slows down
all computations [33].
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To utilize semiempirical models or machine learning to
describe different displacement mechanisms or properties,
PNM first requires partition of the pore space into separate
elements. In other words, the PNM approach needs to simplify
the geometry of the real 3D pore network by representing it
with the help of pore and throat elements while conserving
the geometry and topology. This process that requires 3D
pore geometry image as an input data is called pore-network
extraction. At this moment, the dominant state-of-the-art ex-
traction approaches include watershed-based [34,35], median
axis-based [36], maximal inscribed balls [37,38] algorithms,
and their hybrids [39,40]. All these methods differ in the way
they define pores and throats and segment them out of the 3D
pore space. The classical approach to represent pore geome-
tries is the circle-triangle-square or CTS approach [18,41] was
critiqued for its inability to represent nonconvex shapes [42].
The machine learning based framework showed that one can
remove the simplification of the shapes completely with the
help of direct simulations [28].

Combined with single- and multiphase flow simulation
physics, PNM approach can be effectively applied to solve
numerous other important problems in porous media. Some
notable examples include, but are not limited to, the anal-
ysis of chemical reactions, transport of mass and energy,
phase change, combustion, drying, and dispersion modeling
[43–51].

From the geometrical point of view all extraction methods
are relatively the same. But the major difference in the re-
sults they produce is the topological features of the extracted
PNMs. It was recently argued that current extraction methods
do not preserve topology [52] and it was shown that major
popular approaches indeed fail in preserving the pore net-
work’s Euler numbers [40].

In addition to technological aspects of the pore-network
extraction procedure, it also adds computational burden to the
overall pore-scale modeling pipeline. In other words, while
flow modeling with PNMs is orders of magnitude faster com-
pared to direct methods, extraction is still costly, especially
for large and complex 3D pore geometries. The latter prob-
lem can be effectively solved with the domain decomposition
approach [53]. Pore networks can be stochastically generated
[54] or reconstructed [55]; these methods still need some
initial PNM statistics to rely on, which usually is the result
of the extraction procedure. This all means that pore-network
extraction procedure should be fast and computationally
efficient.

To preserve the topological structure of the initial 3D image
we base our pore-network extraction algorithm on discrete
Morse theory. This theory was introduced by Forman [56]
and then further developed and applied to the image analysis
by other researchers. For example, Lewiner et al. [57] pro-
posed the algorithms for building of an optimal discrete Morse
function and Morse gradient vector field without initial scalar
function, while King et al. [58] developed the method for
building a scalar function defined at the vertices of simplicial
complex. These developments facilitated methods based on
weighted graph representation of Morse function [59], divide-
and-conquer algorithm [60], and the heuristic algorithm [61]
that were proposed to construct gradient vector field for arbi-
trary Morse function defined on the initial complex. Robins

et al. [62] created the ProcessLowerStar algorithm, the first
for which the correctness of constructed gradient vector field
in 3D case was strictly proved. The effective methods for
Morse chain complex extraction are considered in works
[60,63,64]. One can also mention a series of papers [65–67]
in which Morse-Smale complex is constructed for piecewise
linear functions; the algorithms used are based on Banchoff’s
extension of continuous Morse theory [68]. Building such
complexes is the starting point of the pore-network extraction
based on discrete Morse theory.

The persistent homology is a very effective tool in topo-
logical data analysis closely related to the image analysis with
discrete Morse approach. In this paper we apply the technique
of simplification [69] developed within persistent homology
theory. Another widely used related method is the analysis of
persistent diagrams for revealing their correlations with differ-
ent geometrical, topological and physical properties of porous
media [70–74]. Edelsbrunner et al. [65] were the first to ex-
plore the connections between Morse theory and persistent
homology, and the persistence homology algorithms found
their way into practically all the latest works on image analysis
in the framework of discrete Morse theory. Bauer et al. [75]
proposed to take into account persistent pairs during gradient
field construction. Persistence diagrams describing birth and
death of persistent pairs obtained from Morse chain com-
plex were analyzed to extract morphological and hydraulic
characteristics of a variety of porous media samples [73,74].
Discrete Morse theory was also recently successfully applied
for the image analysis in astronomy [76,77], topography [78],
and medical biology [79]. The results of image analysis using
discrete Morse theory and persistent homology are becoming
a trend in the machine learning or deep learning algorithms
where they are converted into training features [72,73,78,79].

Our study was inspired by the stimulating work of
Delgado-Friedrichs et al. [64], who have shown how to make
the partition of pore space into the basins corresponding to
the different pores and also to extract 1- and 2-skeletons,
and the recent results of Gerke et al. [40] that indicated
topological problems within all major extraction algorithms.
The objective of this paper is to establish a robust and effi-
cient pore-network extraction procedure for binary 3D images
based on Morse theory and persistent homology that achieve
the goal of conserving the topological properties of the origi-
nal pore space.

II. THEORETICAL BACKGROUND

As it is not possible to provide a detailed description of the
topological theory here, in this section we provide only a brief
overview and illustrate the introduced concepts with simple
examples, where possible. For a very good introduction to
discrete Morse theory and persistent homology see Scoville’s
book [80]; also Sousbie et al. [76] provide a very intuitive
matching of discrete Morse theory against continuous Morse
theory that may help in getting over the steepest part of the
learning curve.

A. Cubical complexes

In topology, a complex can be treated as a decomposi-
tion of a space into cells of different dimensions. Here we
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FIG. 1. Mapping voxels to the cells of a cubical complex: (a) 0-
cell; (b) 1-cell; (c) 2-cell; (d) 3-cell.

consider cubical complexes, which describe 3D grid struc-
tures [81]. One can define 0-, 1-, 2-, and 3-cells as vertices,
edges, squares, and cubes of the grid. We denote a cell belong-
ing to cubical complex K as α(p), where p is cell dimension
(p = 0, 1, 2, 3). A cell α(p) is a face of another cell β (q), if
p < q and the vertices of α(p) are a subset of the vertices
of β (q). We can also say that β (q) is a coface of α(p). If
q = p + 1, we call α(p) a facet of β (p+1) and β (p+1) a cofacet
of α(p).

For a given cubical complex K , a filtration of K is defined
as the sequence of complexes: ∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K .
If � is a set of all vertices (0-cells) of K , and function f :
� → R, one can extend this function to p-cells with p > 0
by the following way: each cell is assigned the maximum
function value of the vertices it contains. Then the filtration
of K with respect to f is defined by the sublevel complexes
K (t ) = f −1(−∞, t]. We start with an empty complex and at
each step of the filtration one cell is added. The cell to be
added is chosen according to the following rule: the value of
function f at this cell is not less than function values of cells
which have already been added at previous filtration steps. If
two cells α(p) and β (q) of different dimensions p and q have
equal function values, then the cell with a smaller dimension
is added first. The filtration concept plays an important role
in the persistent homology of cubical complex (see the next
subsection).

In 3D image analysis we can map voxel structure to a
cubical complex as the following: each voxel is mapped to
a vertex (0-cell) of a cubical complex. Then any 0-cell will
represent 1 voxel, 1-cell – 2 voxels, 2-cell – 4 voxels, and
3-cell – 8 voxels, as is shown in Fig. 1.

Let us demonstrate the concepts presented in this sec-
tion using a toy example of the cubical complex presented in
Fig. 2. For simplicity, we consider only the 2D case; therefore
3-cells are absent in this complex.

We enumerate vertices of the considered complex by in-
tegers i = 0,...,11. Then we denote 0-cells as c(i), 1-cells
as c(i, j), 2-cells as c(i, j, k, l). It is easy to show that
our cubical complex contains 12 0-cells, 17 1-cells, and six
2-cells. Taking, for example, 1-cell c(7, 11) we can find its
facets, 0-cells c(7) and c(11), as well as its cofacets, 2-cells
c(7, 8, 10, 11) and c(6, 7, 11, 9). To illustrate the filtration of
cubical complex, presented in Fig. 2, let us define function f
at its cells. Note that this function can be chosen arbitrarily,

FIG. 2. Example of a cubical complex. Vertices are enumerated
by integers from 0 to 11.

and for simplicity we consider the following example:

f (c(i)) = i,

f (c(i, j)) = max(i, j),

f (c(i, j, k, l )) = max(i, j, k, l ), (1)

where i, j, k, l = 0,...,11. Then, for example, f (c(5)) = 5,
f (c(6, 9)) = 9 and f (c(4, 1, 8, 7)) = 8. Now we get
the following sequence of sublevel complexes Ki:
K0 = {c(0)}, K1 = {c(0)), c(1)}, K2 = {c(0), c(1), c(2)},
K3 = {c(0), c(1), c(2), c(0, 2)} and so on, until we add all the
cells of complex K .

B. Homology of cubical complex

A set of facets of any p-dimensional cell α(p) is called its
boundary and denoted by ∂pα. Let a p-chain be a formal sum
of p-cells with Z2 (modulo 2 addition) coefficients, and we
can add two p-chains by adding their values. This forms a
group (called chain group) Cp(K,Z2). Then a given cubical
complex K can be represented as chain complex, defined by
the following sequence:

C(K ) : C3
∂3−→ C2

∂2−→ C1
∂1−→ C0

∂0−→ 0, (2)

where boundary operator ∂p is np × np−1 binary matrix, whose
columns are the boundaries of p-dimensional cells. Here np is
the number of such cells.

One can also define cycle group Zp(K ) = Ker∂p, bound-
ary group Bp(K ) = Im∂p+1 and homology group Hp(K ) =
Zp(K )/Bp(K ). The rank of the pth homology group Hp is
called the pth Betti number and can be calculated using di-
mensions of vector spaces Ker∂p and Im∂p+1 as

bp = dim(Ker∂p) − dim(Im∂p+1). (3)

Betti numbers provide direct topological description of
a given 3D complex K : b0(K ) is the number of connected
components in the complex, b1(K ) and b2(K ) are the numbers
of 1D and 2D holes, respectively. Another widely used topo-
logical characteristic, the Euler number χ , can be expressed
through Betti numbers as

χ (K ) = b0(K ) − b1(K ) + b2(K ). (4)

Now let us explain how can we can calculate Betti number
for the cubical complex, presented in Fig. 2. Here, we use the
pipeline as described in [80]. In the 2D case we start from C2

in chain complex [Eq. (2)]. We have six 2-cells, 17 1-cells, and
12 0-cells. Then ∂2 is the matrix of size 6 × 17; to construct it
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FIG. 3. Two steps of filtration with respect to the function f
given by Eq. (1) for the cubical complex, presented in Fig. 2: (a) cre-
ator 0-cell c(6) is added; (b) destroyer 1-cell c(5, 6) is added.

we should enumerate 2-cells from i = 1 to 6, and 1-cells from
j = 1 to 17. Then the matrix element ∂2(i, j) = 1, if 1-cell
j is a facet of 2-cell j, and ∂2(i, j) = 0 in the opposite case.
The similar procedure is applied to construct ∂1 matrix of size
17 × 12. Since 0-cell has no facets, ∂0 is a matrix of size 12 ×
1, which contains only zeros. Now we can calculate image
(Im) and kernel (Ker) dimensions for constructed matrices and
obtain Betti numbers using Eq. (3).

The persistent homology studies evolution of topological
features in time, during the filtration process. The main idea of
this theory is grouping all cells added during the filtration into
the closest in time pairs which do not change Betti numbers.
Note that adding a new cell α(p) to the complex will increase
by one the value of bp, so it will contribute to the first term in
Eq. (3) or decrease by one the value of bp−1, thus contributing
to the second term. In the first case, cell α(p) is called a creator,
in the second a destroyer.

The examples of creator and destroyer cells are presented
in Fig. 3. Adding 0-cell c(6) leads to the change in the com-
plex’s topology. We have two connected components before
adding this cell, and three components after its addition. So
0-cell c(6) creates a new topological feature. At the next filtra-
tion step, we add 1-cell c(5, 6), and the number of connected
components becomes 2 again. Thus, 1-cell c(5, 6) destroys the
topological feature created in the previous filtration step.

Closest in time pairs “creator-destroyer” α(p)(t1) and
β (p+1)(t2) which do not change bp are called persistent pairs,
and the difference f (β ) − f (α) is called persistence. It char-
acterizes the lifetime of the topological feature described by
the corresponding Betti number. If we set some persistent
limit and remove from the complex persistent pairs with the
persistence less than this limit, it does not affect the homology
of pairs with the larger persistence. This technique can be
used for noise filtration and size reduction of the complex
considered. The list of persistent pairs for the complex can
be obtained using reduced matrix algorithm [69,82].

C. Discrete Morse theory

Discrete Morse theory [56] can be treated as the expansion
of Morse theory [83] to discrete data. While Morse theory
considers smooth scalar functions defined over continuous
manifolds, discrete Morse theory is applicable to scalar data
on cells of different dimensions. Therefore, one should mod-
ify the smoothness condition to be used in cell complexes.
Discrete Morse function defined as the following meets these
requirements.

A discrete function f defined over a cubical complex K
associates a real value f (α(p) ) to each cell α(p) ∈ K . The
discrete function f is a discrete Morse function if and only if,
for every α(p) ∈ K , f takes a value less than or equal to f (α(p) )
on at most one cofacet of α(p) and takes a value greater than
or equal to f (α(p) ) on at most one facet of α(p).

A cell α(p) is critical, if all its cofacets take strictly greater
values and all its facets are strictly lower. In other words,
locally, a cell has a higher value than its facets and a lower
value than its cofacets, and there can be only one exception at
most in each case.

Forman showed [56] that for any discrete Morse function
f , cell α(p) can be noncritical if one of the following exclusive
conditions is satisfied: exactly one of cofacets of this cell and
all its facets have a lower or equal value or exactly one of its
faces and all its cofacets have a higher or equal value. As a
result, each noncritical cell α(p) may be paired either with a
noncritical cell that is a cofacet of α(p), or with a noncritical
cell that is a facet of α(p). A collection of such pairs and a set of
critical cells form discrete gradient vector field V , the discrete
equivalent of gradient vector field in continuous Morse theory.

The discrete equivalent of of an integral line is a V -path,
the sequence of cells α

(p)
0 , β

(p+1)
0 , α

(p)
1 , β

(p+1)
1 , α

(p)
2 , . . . ,

β
(p+1)
r , α

(p)
r+1 such that for each i = 0, . . . , r, cells α

(p)
i and

β
(p+1)
i form the pair belonging to V , α

(p)
i is facet of β

(p+1)
i ,

f (α(p)
i ) � f (β (p+1)

i ) and α
(p)
i �= α

(p)
i+1. One can denote such a

pair as V (α(p)
i ) = β

(p+1)
i . All V -paths are acyclic if and only

if f is a discrete Morse function [56].
As in the case of continuous Morse theory, in discrete

Morse theory the dimension of critical cell equals to the index
of criticality. Therefore, for cubical complexes critical 0-cells
(vertices) are minima, critical 1-cells (edges) are 1-saddle
points, critical 2-cells (squares) are 2-saddle points, and criti-
cal 3-cells (cubes) are maxima. V -paths starting at facets of a
critical cell are discrete equivalents of descending manifolds.
V -paths terminating at a critical cell are discrete equivalents
of ascending manifolds.

To construct the discrete gradient vector field V , one can
use the algorithm ProcessLowerStar. The detailed description
of this algorithm, including corresponding pseudocode and
the illustration of major steps with a toy example can be found
in Robins et al. [62]. Here we present only the main idea
of ProcessLowerStar. In this algorithm each 0-cell (vertex)
α of cubical complex K generate a set of cells L(α) called
Lower Star such that sum of this sets over all vertices is equal
to K , and for any 0-cells α and β, L(α) ∩ L(β ) = ∅. Then
discrete gradient vector field is constructed for each set L(α)
by searching for pairs (α(p)

i , β
(p+1)
i ); cells of smaller dimen-

sions are paired before the cells of larger dimensions. Cells
remaining unpaired are treated as critical. Note that Lower
Star partition of K is possible only if the values of Morse
function f are unique at all vertices of K [62].

We construct gradient vector for the cubical complex, pre-
sented in Fig. 2, using function f given by Eq. (1), and
the ProcessLowerStar algorithm; the results are presented
in Fig. 4. Arrows show pairs of cells for which V (α) = β,
for example, V (c(4)) = c(4, 1), V (c(7, 11)) = c(6, 7, 11, 9).
One can observe two critical 0-cells c(0) and c(1), two
critical 1-cells c(8, 12) and c(6, 9), and one critical 2-cell
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FIG. 4. Gradient vector field V for the cubical complex, pre-
sented in Fig. 2. Arrows show pairs of cells, for which V (α) = β.
Critical 0-, 1-, and 2-cells are denoted by red, blue, and green,
respectively.

c(7, 8, 12, 11). Note that there are no cycles in the constructed
vector field, or in other words, no cell that has both arriving
and departing arrows. In this case function f , as given by
Eq. (1), is indeed the Morse function.

D. Homology of Morse chain complex

Similarly to chain complex C [Eq. (2)], one can define
Morse chain complex M as the sequence

M(K ) : M3
∂3−→ M2

∂2−→ M1
∂1−→ M0

∂0−→ 0. (5)

Here Mp ⊆ Cp(K,Z2) is the chain group generated by critical
p-cells. Boundary operator ∂p is np × np−1 binary matrix, in
which (∂p)αβ = 1, if the number of V -paths between faces of
critical p-cell α(p) and the critical (p − 1)-cell β (p−1) is odd.
In the opposite case, (∂p)αβ = 0. Here np is the number of
critical p-cells. Morse chain complexes can be treated as the
discrete analogues of Morse-Smale complexes considered in
continuous Morse theory.

Forman [56] proves that the homology of C defined by
Eq. (2) is always isomorphic to the homology of M. Therefore
such topological characteristics as Betti and Euler numbers
calculated for C are equal to ones calculated for M. This
means that for Betti number calculations we can use Eq. (3)
and take boundary operators ∂p depending only on critical
cells, as was described above. Also, the persistent homology
of C coincides with the persistent homology of M [62]. Since
M is usually much smaller than C, using discrete Morse the-
ory leads to more memory- and time-efficient algorithms for
persistent homology.

Both chain complexes and Morse chain complexes belong
to a more general class, CW-complex, in which the cells are
homeomorphic to euclidean balls [84].

One can build Morse chain complex using gradient vector
field V simply by following V -paths from the faces of each
critical cell α(p) ∈ M, and determining which critical (p − 1)-
cells the V -paths terminate at. Modified breadth-first search
algorithm [64] can be used to solve this problem.

Let us consider Morse chain complex for the cubical com-
plex, presented in Fig. 2. We can find V -paths for critical
cells from the analysis of gradient vector field, presented in
Fig. 4. We have one critical 2-cell, two critical 1-cells, and two
critical 0-cells. There is a single V -path between critical 2-cell
c(7, 8, 12, 11) and critical 1-cell c(8, 12): {c(8, 12)}. There
is a single V -path between critical 2-cell c(7, 8, 12, 11) and

critical 1-cell c(6, 9): {c(7, 11), c(6, 7, 11, 9), c(6, 9)}. Thus,

∂2 =
[

1
1

]
. (6)

There is a single V -path between critical 1-cell c(8, 12)
and critical 0-cell c(0): {c(12), c(12, 3), c(3), c(3, 0), c(0)}.
Also, between critical 1-cell c(8, 12) and critical 0-cell c(1):
{c(8), c(8, 1), c(1)}. Also, between critical 1-cell c(6, 9) and
critical 0-cell c(0): {c(9), c(9, 2), c(2), c(2, 0), c(0)}. There
is a single V -path between critical 1-cell c(6, 9) and critical
0-cell c(1): {c(6), c(6, 5), c(5), c(5, 4), c(4), c(4, 1), c(1)}. In
this case,

∂1 =
[

1 1
1 1

]
. (7)

Since we have two critical 0-cells, ∂0 is a zero 2 × 1 matrix:

∂0 = [0, 0]. (8)

To calculate image and kernel dimensions of matrix (∂p), we
can use well-known linear algebra formulas

dim(Im∂p) = Rank∂p (9)

and

dim(Ker∂p) = np − Rank∂p. (10)

Since Rank∂2 = 1, Rank∂1 = 1 and Rank∂0 = 0, using
Eq. (3) we can compute Betti numbers for the considered com-
plex: b0 = 1, b1 = 0. Afterwards, using Eq. (4) we evaluate
the Euler number value: χ = 1.

Some of critical cells found in discrete Morse approach can
be canceled according to a given persistent limit. This process
is usually called simplification. Forman [56] shows that the
cancellation is possible if there is exactly one V -path from the
boundary of α(p) to β (p−1). In this case, after the cancellation
one should reverse V -path between α(p) and β (p−1) and the
modified vector field satisfies the condition of acyclic V -paths.
After V -paths reversing loops arise if there is more than one
V -path. The condition of exactly one V -path existence pro-
vides us with a possibility to abandon the reduced matrix
algorithm for the derivation of persistent pairs from Morse
chain complex, and use more time-efficient algorithm based
on a cancellable close pair concept [64].

A cancellable close pair (α(p), β (p+1)) is a pair of critical
cells such that there is a single V -path from the boundary
of β (p+1) to α(p), with the condition that any other critical
cell γ (p) that is reachable via a V -path from the boundary of
β (p+1) has f (γ (p) ) � f (α(p) ), and for any critical cell δ(p+1)

for which there is a V-path terminating at α(p) has f (δ(p+1)) �
f (β (p+1)). As it is proven in [64], a cancellable close pair
is the persistent pair and its cancellation does not affect the
homology of pairs with the persistence larger than a given
persistence limit.

When the list of cancellable close pairs for the initial gradi-
ent vector field is found for the fixed value of persistent limit,
they are removed and the gradient vector field is modified
by the reversing of corresponding V -paths. New cancellable
close pairs can be found again with the same value of per-
sistent limit parameter. Thus, several simplification steps are
required, until the list of cancellable close pairs becomes
empty.
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FIG. 5. Binary structure of samples presented in Table I: (a) carbonate; (b) ceramic; (c) soil; (d) sandstone. Pore phase is shown by blue.

E. Euler number in discrete Morse theory

Let us consider a list of persistent pairs “creator-destroyer”
and a set of unpaired creators (if any) derived from Morse
chain complex, Np, NC

p , ND
p are numbers of critical cells,

creators and destroyers, respectively, for p = 0, 1, 2, 3. Then
the expression for pth Betti number [Eq. (3)] can be rewritten
as

bp = NC
p − ND

p+1. (11)

The number of critical cells can be expressed through num-
ber of creators and destroyers as the following:

N0 = NC
0 ; N1 = NC

1 + ND
1 ; N2 = NC

2 + ND
2 , N3 = ND

3 .

(12)

Here we take into account that all 0-cells can be only creators,
and all 3-cells can be only destroyers. Now substituting the ex-
pression [Eq. (11)] into the formula for Euler number [Eq. (4)]

and taking into account [Eq. (12)] one can obtain

χ = N0 − N1 + N2 − N3. (13)

This formula depends only on numbers of critical cells,
which can be obtained just after gradient vector field construc-
tion. So discrete Morse theory has a simple in-built algorithm
for the calculation of such important topological characteristic
as Euler number. We should also stress here that the value
of χ is not changed after the simplification. This important
property is provided by the usage of the persistent homology
theory.

The formula for Euler number [Eq. (13)] can be also be
derived in a different manner, starting from the expression for
Euler number for the set of voxels [85]:

χ = #vertices − #edges + #faces − #volumes, (14)

where # means “number of.” Taking into account mapping
voxels to the cubical complex, one can obtain the expression
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TABLE I. Porosity 3D image characteristics used to test the pore-
network extraction algorithm based on the discrete Morse theory.

Connected Imaging 3D image
Sample Porosity porosity resolution, μm volume, voxels

Carbonate 0.073754 0.05045 5.38592 7003

Ceramic 0.37666 0.37655 2.24 5003

Soil 0.098103 0.084112 20.96 7003

Sandstone 0.16952 0.16687 5.16734 7003

depending on the numbers of p-cells Npc (p = 0, 1, 2, 3):

χ = N0c − N1c + N2c − N3c. (15)

Since at the transition from chain complex C to topologically
equivalent Morse chain complex M, p-cells are replaced by
critical p-cells, one can finally get Eq. (13).

It is easy to show that application of Eq. (13) and Eq. (15)
to the cubical complex, presented in Fig. 4, leads to the same
result for the Euler number, χ = 1, as we obtain in the previ-
ous subsection using Eq. (4).

III. APPLICATION OF DISCRETE MORSE THEORY
AND PERSISTENT HOMOLOGY TO

PORE-NETWORK EXTRACTION

In this section, we demonstrate how to apply discrete
Morse theory and persistent homology to the analysis of 3D
binary images. First, we describe all methodological details of
the extraction procedure, which can be separated into several
major steps.

The first step is to construct the discrete Morse func-
tion and gradient vector field from the binary image. The
immediate extraction of pore-network elements from the con-
structed field would lead to unrealistically large number of
them, therefore the preliminary simplification is required.
Such simplification is the second step of the pore-network
extraction algorithm. The last step is the derivation of pore-
network elements from final vector field modified after
simplification.

Our early attempts were based on C++ code Diamorse
[86] that can perform the first and the second steps of the
pipeline described above, with a final step performed by a
code algorithmically similar to that used by Gerke et al.
[40]. A fully parallelized in-house C++ code was devel-
oped afterwards to implement the whole PNM extraction
pipeline, but some efficient solutions such as hashes for
facets were adopted from Diamorse in a more of less intact
form.

Four different 3D binary images were used to test the pore-
network extraction algorithm based on the discrete Morse
theory. The major characteristics of these images are pre-
sented in Table I, and their binary structure is shown in Fig. 5.
The variety of samples is wide enough to cover different ge-
ological genesis, e.g., sandstone and carbonate rocks studied
in petrophysical applications [40]; soil as a regular object in
soil sciences and hydrology [87]; and artificial porous me-
dia (ceramic sample) relevant for industrial applications [88].
Moreover, the porosity of the chosen sample collection varies
between 5% and 37%, thus, providing a possibility to test

FIG. 6. Two pore boxes surrounded by solid space. Calculations
are performed with cell ID used as the additional comparison key for
equal EDT values. Pore and throat voxels are presented by blue and
red, respectively.

our pore-network extraction model on both tight and highly
porous examples.

A. Construction of a gradient vector field from a binary image

The input of the pipeline consists of a 3D binary image.
It is represented by a 3D array � = L × M × N . Solid and
pore phases are coded by unity and zero. Voxel structure of 3D
image is mapped to a cubical complex K as has been described
in Sec. II A (see also Fig. 1). Each cell of the cubical complex
is denoted by unique ID, linear in l , m, n [86].

Mapping voxel structure of 3D image to a cubical com-
plex results in 6-connectivity between voxels. If one wishes
to utilize 26-connectivity condition, mapping to a simplicial
complex is required. We prefer 6-connectivity due to am-
biguity of pore connectivity in the 26-connectivity model;
moreover, high-resolution images (with discretizations higher
than a couple of voxels for a pore element) should provide
enough information for 6-connectivity to work properly. Note
that the discrete Morse theory can be successfully applied to
both cubical and simplicial complexes.

To construct gradient vector field one needs to define
Morse function f : � → R. We take signed Euclidean dis-
tance transform (EDT) function as f , with negative values in
pore phase. It guarantees us that minima of f coincide with the
pore centers. The algorithm from the work of Meijster et al.
[89] was implemented to calculate EDT values.

The uniqueness of Morse function values at the vertices
of the cubical complex can be ensured by several ways.
Robins et al. [62] proposed to use small perturbation, linear
in l , m, n, to break the equality of Morse function values.
In the original Diamorse code [86] cell ID is used as the
additional comparison key: in the case when the values of f
at two 0-cells α and β are equal, it is defined f (α) > f (β ) if
cell ID(α) > cell ID(β). Both approaches lead to systematic
shift in the properties of extracted pore-network elements.
See, for example, Fig. 6, where EDT values are equal at the
central axis voxels of the neck between the two box-shaped
pores. Using cell ID as the additional comparison key leads
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FIG. 7. Distributions of pores (red) N p and throats (blue) Nt

numbers caused by small random perturbation of Morse function.
The results as shown are the results of 500 pore-network extractions
from the carbonate sample. Mean values and standard deviations are
indicated.

to the shift of throat to the border of the right box in this
example.

We propose to add small random perturbation to all Morse
function values. For any 0-cell α ∈ K we use

f (α) = f (α) + εr, (16)

where r ∈ R is a random number in (0,1) interval, and ε

should be taken small enough to not exceed the minimal
nonzero difference between Morse function values at any
two vertices of K . The proposed approach seems to be more
realistic and ensures the absence of any systematic shifts in
the extracted pore-network properties. Moreover, it accounts
for the uncertainty of local EDT due to XCT resolution lim-
itation for real porous media samples. In the present study
we fix the parameter as ε = 0.001 voxel size units for all
extractions.

The small disadvantage of the proposed approach is that
the extracted pore-network characteristics demonstrate the
statistical behavior (see Fig. 7 as an example) even at very
small values of ε. In this sense, discrete Morse theory is
not stable to small perturbations. However, whether the other
pore-network extraction models which use EDT values are

TABLE II. Execution times (in seconds) for several binary 3D
images with two different approaches for gradient field construction
(I - with total complex, II - with pore complex), case a - using one
thread for computation, case b - 32 threads.

Sample Ia Ib IIa IIb

Carbonate 1825 s 278 s 356 s 37 s
Ceramic 486 s 98 s 250 s 40 s
Soil 1403 s 192 s 346 s 46 s
Sandstone 1829 s 312 s 405 s 56 s

stable is still open. We are not aware of any research results
in this area. As one can see in Fig. 7, the standard deviations
both for pores and throats number are very small, so we adopt
the expression in Eq. (16) for the Morse function in all our
calculations.

There is another way to decrease the deviations of
pore-network characteristics distribution if the additional
comparison key is used when EDT values in two vertices
are equal. The possible solution is to compare the sums of
EDT values at the neighboring vertices. Small random per-
turbation can be added only if these sums are still equal.
This approach has more physical sense than the simple com-
parison of cell IDs, but, as we found, decrease the speed of
run.

Since during the extraction of pore-network properties we
are interested only in the pore phase, it is necessary to consider
only those cells which have negative Morse function values.
This can be implemented using two different strategies. The
first one operates during the gradient vector field construction
followed by the simplification for the total cubical complex;
we choose only those cells that belong to the pore phase at the
stage of pore-network properties extraction. In the second ap-
proach, this choice is made at the first step; the gradient vector
field is constructed only for pore complex, in other words, for
cells which Morse function value is negative. The exclusion
of the solid phase can be performed during the Lower Star
partition of cubical complex. We include into the Lower Star
sets only those cells which belong to the pore phase. Thus
obtained gradient vector field are the starting point for the next
steps of the pore-network extraction algorithm.

We checked that these two approaches lead to the same
results. Nevertheless, the execution time in the second case
is several times less (see Table II) due to the large decrease
of cells included in the gradient vector field. So we can con-
clude that using the pore complex at the stage of the gradient
vector field construction is preferable in practical calculations
than using the total complex. The results presented in Table
III are obtained using computer station with a double Intel
Xeon Gold 6248R CPU at 3.00 GHz. The simple OpenMP
parallelization approach showed significant speed-ups, but its
efficiency is far from linear for 32 threads. We estimate the
upper bound for memory requirements as 20N bytes, where
N is the total number of voxels within the sample. The exact
amount of the used memory depends on the number of ex-
tracted PNM components.

During the simplification procedure numerous critical cells
obtained from the initial gradient vector field are canceled
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TABLE III. Pores, throats, junction numbers, values 
χintr , and Euler numbers calculated for several binary images.

Sample N p Nt N j 
χintr χ

Carbonate 37 741 24 925 935 −545 13 206
Ceramic 9238 33 299 7221 2145 −14 695
Soil 49 464 27 678 2660 −3505 20 941
Sandstone 84 401 67 253 2038 −4838 14 348

according to a given persistent limit. As one can see in
Fig. 8(a), this parameter has a significant influence on the
results of pore-network extraction. So, its proper choice is
important. We calculate the dependence of neighboring and
nonneighboring cancellable close pairs numbers on the per-
sistent limit. We call the cancellable close pair neighboring, if
at last two vertices belonging to critical (p + 1)- and p-cells,
which form this pair, coincide or are located at 6-connectivity
neighborhood of each other. In the opposite case, we call
the cancellable close pair nonneighboring. Figures 8(b) and
8(c) show that the canceling of neighboring pairs is the dom-
inant process at simplification. This is an intuitively logical

FIG. 8. (a) The dependence of pores N p (black solid line) and
throats Nt (dashed solid line) numbers on the persistent limit pa-
rameter. (b, c) The dependence of neighboring (red solid line) and
nonneighboring (red dashed line) cancellable close pairs numbers
Npairs on the persistent limit parameter. All calculations shown are
carried out for the carbonate sample.

result, as the neighboring critical cells usually map neigh-
boring topological properties (for example, pore and throat
centers) and such neighborhood is unreal in most cases and
should be removed by simplification. While the number of
nonneighboring cancellable close pairs smoothly grows with
increase of persistent limit, the number of neighboring close
pairs comes to the plateau at the value of persistent limit
equal to 1. Such behavior of this value is observed for all
the samples considered in this work (see Fig. 9). So we fix
the persistent limit parameter at the value equal to 1 in all
calculations. The same value of this parameter was chosen
by Deglado-Friedrichs et al. [64], yet no explanation was
provided. Taking the larger values of persistent limit can lead
to the loss of actual pore-network characteristics described by
the critical cells (note that Euler characteristics are unchanged
by simplification).

FIG. 9. The dependence of neighboring cancellable close pairs
numbers on the persistent limit parameter for ceramic (blue), soil
(green), and sandstone (cyan) samples.
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B. Extraction of pore bodies and pore throats

In this subsection we describe in details the algorithm
for the extraction of pore-network characteristics from the
gradient vector field constructed for the initial pore complex
using perturbed EDT as the discrete Morse function and the
ProcessLowerStar algorithm, after the constructed vector field
is transformed during several simplification steps according
to the chosen persistent limit. Such final modified gradient
vector field is the starting point for the extraction of separate
pore-network elements.

As it is shown in the work [64], any 0-cell of cubical
complex belongs to the stable set of exactly one critical 0-cell
which corresponds to the local minimum. The stable set of
critical cell α consists of all 0-cells from V -paths taken in
reversed directions and starting at the cofacets of a α. This
provides us with the natural partitioning to separate pores of
all pore voxels mapped by 0-cells. First, we mark all critical 0-
cells of the gradient vector field by unique IDs, then construct
the stable set of each critical 0-cell α and mark all 0-cells from
this set by the same ID as ID of α. A modified breadth-first
search algorithm [64] is used for the construction of stable
sets.

By the end of this procedure, each voxel from the pore
phase of the input binary image is related to some pore with
the unique ID, the example of such partitioning by different
pore IDs is presented in Fig. 10.

The coordinates of pore center for a given pore ID are
easily found as the coordinates of the center of the voxel
mapped by the corresponding critical 0-cell, and the radius
of pore rp is simply the absolute EDT value calculated at
this point. Pore volume Vp is calculated as the product of the
number of 0-cells with a given ID and the elementary voxel
volume.

To parametrize each pore-network element we find the pore
boundary for the calculations of pore surface area Sp and
pseudodiameter Dp. The pore boundary can be easily found as
the set of all pore voxels for which at last one of 6-connectivity
neighboring voxels does not belong to this pore. For 0-cell α,
its 6-connectivity neighborhood is the set of all the facets of
all 1-cell cofacets of α except for α itself. If at least one of
found facets does not belong to the given pore, α is included
to the pore boundary.

The value of pore surface area Sp is calculated as the prod-
uct of the elementary voxel area and number of such 1-cell
cofacets of the pore boundary 0-cells, as one of their facets
does not belong to the given pore. The pore pseudodiameter
Dp is defined as the maximal length of edges passing through
the pore center, and starting and terminating at the surface
of the pore boundary voxels. Using the values Vp, Sp and
Dp, one can calculate the pore shape factor Gp = VpDp/S2

p.
This is a classical pore morphological approach, e.g., [38,40],
but with known caveats (for example, this way surface area
depends on the resolution the 3D input image). Here we
focus on topological features of the pore network and leave
the perfection of the geometrical representation for the future
studies.

Using the obtained pore partitioning of the cubical pore
complex, it is easy to extract throats between the pores with
different IDs. We define an element of a throat’s set as two

FIG. 10. (a) Pore phase of binary image, 1003 voxels subcube of
soil sample. (b) Partitioning of pore phase by separate pores using
discrete Morse theory. Different colors represent different pore IDs.

voxels mapped by 1-cell, with its vertices being marked by
different pore IDs. Then passing through all 1-cells of given
complex, we can find the sets of 1-cells, which are marked
by the same pairs of pore IDs (e.g., ID1, ID2). All the voxels
corresponding to the vertices of 1-cells marked by (ID1, ID2)
form one or several throats which connect pores marked by
ID1 and ID2.

The number of unique throats between two pores is equal to
the number of unconnected components in the set T of 1-cells
marked by unique (ID1, ID2). We use the following algorithm
to mark the throats:

(a) 2-cell cofacets of 1-cell β ∈ T are 1x1 squares with β

as one of their edges. Now we can define the neighbors of β

as 1-cell facets of these 2-cells, except for β itself.
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(b) Cell β and all the neighbors of β which also belong to
T are added to the same component.

(c) Taking any 1-cell from T as starting point and making
breadth-first search we find out the subset t of T which corre-
sponds to the separate throat.

(d) Set difference T − t is the input for the next uncon-
nected component extraction step.

The coordinates of throat center are found as the coordi-
nates of the center of the voxel mapped by the vertex of 1-cell
from t with the minimal (recall that pore complex has negative
EDT values) EDT value. If critical 1-cell βc ∈ t , one of its
vertices contributes to the throat center.

Since in discrete Morse theory throats are considered as
pairs of voxels mapped by 1-cells, the surface between the
voxels in the pair contributes to the throat area. Then the
throat area St is calculated as the product of elementary voxel
area and number of 1-cells in t . We define border 1-cells as
such 1-cells neighboring to 1-cells from t that do not belong
to t itself. The perimeter of the throat Pt is then calculated
as the product of the number of border cells and elementary
voxel length. Using the values St and Pt , one can calculate the
classical throat shape factor as Gt = St/P2

t [41].
Correct throat identification is a challenge in most algo-

rithms used to extract the pore network from a 3D binary
image. Skeleton-based algorithms [90–93] define a throat as
the smallest cross-section voxel area belonging to the pore
phase with the center at medial axis path (skeleton) between
two pore centers. First, the segment of interest in the skeleton
is chosen, then pore areas crossing all voxels of the segment
are minimized. Only the planes perpendicular to the segment
direction can be considered [92,93] to speed up the calcula-
tions. The found throats are always planar and the correction
for nonplanarity can be made at the last step of the algo-
rithm [93]. One more problem which should be solved in the
skeleton-based approach is possible throat intersection, which
is forbidden by hydraulic reasons. So postprocessing of in-
tersecting events is necessary [92]. Classical watershed-based
segmentation to obtain the throats does not provide correct
result, as has been extensively discussed in skeleton-based
extraction literature mentioned earlier.

Here we can indicate the advantages of throat extraction us-
ing the discrete Morse theory over skeleton-based algorithms.
First, preliminary skeleton extraction is not required in our
algorithm. In addition, we do not encounter the computational
difficulties as related to searching for a huge number of 2D
planes and our algorithm does not require any approximations
to avoid such difficulties. As one can see in Fig. 11, discrete
Morse theory provides the correct description of nonplanar
throats. The throat crossing problem does not exist in our
approach, as we consider only unconnected components with
unique pair of pore IDs as separate throats. No extraction al-
gorithm except for Morse theory based, and the one described
by Jun [93] can produce a throat as shown in Fig. 11.

In the extracted pore network more than two pores can
have common points or borders. Such cases called junctions
are also taken into account in our pore-network extraction
algorithm. In 6-connectivity, provided by cubical complex
structure, not more than four voxels can have common points,
so only 3- and 4-junctions are possible in our approach. We
extract junction after the pore and throat segmentation steps.

FIG. 11. The throat (red) found in pore space (blue) formed by
two crossing cylinders using discrete Morse theory.

First, all the loops including three and four pores are found.
They are further treated as junction candidates. Consider, for
example, a loop of three pores marked by ID1, ID2, and ID3
and take the throats set T marked by the pair (ID1, ID2). We
find the vertices of the cofacets of all 1-cells which belong to
this set. If the vertex belongs to the pore marked by ID3, we
get 3-junction point. The similar approach is used to detect
4-junctions. Note that for all the samples considered in this
paper only 3-junctions were observed.

Note that our toy example of cubical complex, as shown
in Fig. 2, does not represent any real porous media image.
The gradient vector field for this cubical complex (Fig. 4)
is constructed with a Morse function that differs from
perturbated EDT, which we used for 3D binary image
analysis. The choice of such a toy example was dictated by
our inability to draw clear 3D real examples, but proved
helpful in explaining the major steps of the discrete Morse
theory and persistent homology applications. Nevertheless, it
is formally possible to extract pores and throats from gradient
vector field, presented in Fig. 4. To get the pore separation
of all 0-cells, one needs to find all V -paths taken in the
reversed direction which start at the cofacets of critical 0-cells
(pore centers), and for each critical 0-cell select 0-cells
which are included in found V -paths. In our example we
have two critical 0-cells: c(0) and c(1). It is easy to find the
required reversed V -paths from the analysis of Fig. 4. Next,
we search for the direct V -pathes, in doing so we should
move according the directions of arrows in Fig. 4, and in the
case the reversed V -pathes, we should move in the opposite
direction. Then for critical 0-cell c(0) we obtain the following
V-paths: {c(0, 3), c(3), c(12, 3), c(12)}, {c(0, 11), c(11)},
{c(0, 2), c(2), c(9, 2), c(9)}. Taking 0-cells from the found
V -paths, we get the following set of voxels, forming
the first pore: P1 = {c(0), c(3), c(12), c(11), c(2), c(9)}.
For critical 0-cell c(1) we get the following V-
paths: {c(1, 8), c(8)}, {c(1, 4), c(4), c(4, 7), c(7)},
{c(1, 4), c(4), c(4, 5), c(5), c(5, 6), c(6), c(6, 7), c(7)}.
Taking 0-cells from the found V -paths, we get the
following set of voxels, forming the second pore: P2

= {c(1), c(8), c(4), c(7), c(5), c(6)}. The found 0-cells
belonging to pores P1 and P2 are denoted in Fig. 12 by
yellow and purple, respectively. Searching for 1-cells,
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FIG. 12. Gradient vector field V and pore separation for the
cubical complex, presented in Fig. 2. Arrows show pairs of cells,
for which V (α) = β. Critical 1- and 2-cells are denoted by blue and
green, respectively. 0-cells belonging to different pores are denoted
by yellow and purple.

which vertices belong to P1 and P2, give us the throat set
t (1, 2) = {c(8, 12), c(7, 11), c(6, 9)}.

C. Topology of the extracted pore network and critical cells

As the pore-network is the graph structure, for the analysis
of its topology it is natural to start from Euler number formula
for a graph:

χ = V − E + F, (17)

with V vertices, E edges, and F faces, formed by loops be-
tween vertices.

In the case of pore-network graph, vertices are pores, edges
are throats, and only those loops between pores should be
counted which do not include the solid phase. Such loops cor-
respond to junctions. Then Euler number of the pore network
can be calculated as

χ = N p − Nt + N j, (18)

where N p, Nt , N j are numbers of pores, throats, and junctions.
As the Eq. (18) suggests, it is proposed that each pore

contributes to total Euler number with the summand equal
to 1. In reality, this condition is not fulfilled, as pores can
have complicated intrinsic topological structure leading to
the Euler number other than 1 for some pore summands.
The examples of ring and cavity single pore structures are
presented in Figs. 13(a) and 13(b). It can be argued that some

FIG. 13. Ring (a) and cavity (b) structures in a single pore. Pore
phase, formed by the light blue box, is surrounded by solid phase.
Solid phases inside the pores are presented by black boxes. Euler
numbers are equal to 0 (a) and 2 (b).

of the cases in Fig. 13 are related to a case where solid phase
“hangs” within the pore space and is, thus, unphysical. While
this is indeed true in some situations, creating a universal
solution that can take into account any possible situation (e.g.,
multiphase flow in nonbinary porous media) is our target here.
Based on these considerations, the expression in Eq. (18)
should be modified as

χ = N p − Nth + N j + 
χintr, (19)

where the member 
χintr characterizes the contribution of
single pores intrinsic topological structures.

Numbers of different pore-network elements and the values

χintr , calculated for all samples are presented in Table III.
The number of pores, throats, and junctions can be calcu-
lated during the pore-network extraction, using the algorithms
described in the previous subsection. The direct calculation
of the values 
χintr is the problem. First, some pores can
have very complicated intrinsic topological structures other
than simple rings and cavities presented in [Figs. 13(a) and
13(b)]. Second, several pores can share one ringlike structure.
Imagine, for example, the rings of different outer diameters,
corresponding to pores, put on the rod, corresponding to the
solid phase. Fortunately, we can extract these values using the
equality of Euler numbers calculated with formulas in Eq. (19)
and Eq. (13), since the cubical complex and pore network
extracted from it using discrete Morse theory should have the
same topological properties.

Based on the analysis of the data in Table III we can
conclude that the contribution of junctions and intrinsic pore
topology to final results depends on the sample porosity and
pore sizes. While both N j and 
χintr values are less than 10
% from total pore number for low-porosity carbonate, soil,
and sandstone samples, the relative values of N j and 
χintr

come up to, respectively, 78% and 23% for the highly porous
ceramic sample. Whereas the sandstone sample has higher
porosity than the soil sample, its relative values N j and 
χintr

are smaller, as by contrast to soil, it has many small size
pores. Most of these pores both have no complicated intrinsic
topology and barely form junctions. Note, also that 
χintr is
positive for ceramic sample and negative for other samples. It
means, that pores with complicated intrinsic topology mainly
have cavity-like structure in ceramic and ringlike structure in
other considered media.

The topology of cubical complex, as was discussed in
Sec. II, is characterized by critical cells, and the expression for
Euler number is given by Eq. (13). The choice of signed EDT
as the discrete Morse functions guarantees us the absence of
maxima and corresponding critical 3-cells in the pore phase,
and N3 = 0. The numbers of critical cells obtained using dis-
crete Morse theory and Euler number values for several binary
3D images are presented in Table IV.

According to our findings here, one can conclude that
each extracted pore is characterized by critical 0-cell, which
determines the position of the pore center. This leads to the
equality N p = N0.

In the case of throats, the picture is more complicated. The
results of throats’ extraction for several binary images are pre-
sented in Table V. Here we observe that the throats containing
one critical 1-cell provide the dominant contribution to the
throats’ total number. Nevertheless, the contribution of throats
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TABLE IV. Numbers of critical cells Ni (i = 0, 1, 2) obtained
using discrete Morse theory and Euler number values for several
binary 3D images.

Sample N0 N1 N2 χ

Carbonate 37 741 25 252 717 13 206
Ceramic 9238 30 160 6227 −14 695
Soil 49 464 36 994 8471 20 941
Sandstone 84 401 73 192 3139 14 348

containing more than one critical 1-cell and without critical
1-cells ranges from 5% to 25% for different samples and, thus,
cannot be neglected.

The throat containing n critical 1-cells with n > 1 are char-
acterized by these cells and a set of n − 1 critical 2-cells to
provide the correct Euler number, as it is shown in Fig. 14. As
observed from Fig. 14(d), several critical 1-cells correspond
to the parts of throats having curvatures of different sign, and
critical 2-cells indicate that sign of the curvature has changed.
The throat without critical 1-cells can be characterized by crit-
ical 1-cell with both vertices belonging to one of neighboring
pores or can indicate junction [see Figs. 15(b) and 15(e)].
Large contribution of Nt

0 in total throats number for ceramic
and soil is explained by the large number of junctions within
these samples.

Critical 1- and 2-cells also contribute to the characteriza-
tion of single pores with complicated topology and junctions.
There are two possible scenarios of junction characterization
by critical cells (see Fig. 15). Three critical 0-cells as pore
centers, three critical 1-cells as throat centers, and one crit-
ical 2-cell provide the correct Euler number equal to one
[Figs. 15(c) and 15(e)]. Another possibility is the presence of
three critical 0-cells and only two critical 1-cells, leaving one
throat free from 1-critical cells [Figs. 15(b) and 15(d)]. As
seen from Fig. 15(d), this scheme of critical cells is actualized
when the size of one throat (ab in the considered example) is
much less than the sizes of other two throats. At this point it is
not clear how to incorporate junctions into the pore network.
The easiest solution would be to represent them with a pore
body with a size equal or smaller than the surrounding throats;
this is correct from at least topological considerations. On
the other hand, we argue that direct single and, especially,
multiphase flow simulations are needed to understand the
influence of the junctions on the flow properties that could
reveal a better idea how to include them into the PNM model.

TABLE V. Numbers of different type throats extracted using
discrete Morse theory for several binary 3D images. Nt

i is the number
of throat cell subsets containing exactly i critical cells (i = 0, 1). Nt

>1

is the number of throat cell subsets containing more than one critical
1-cell. Nt

total is the total number of throats.

Sample Nt
0 Nt

1 Nt
>1 Nt

total

Carbonate 943 23 616 366 24 925
Ceramic 6576 24 588 2135 33 299
Soil 2614 23 074 1990 27 678
Sandstone 2033 64 246 974 67 253

FIG. 14. (a, b) Scheme of topology features revealed in the cubi-
cal complex and the pore network in the case of two pores connected
by the throat: (a) one critical cell at the throat; (b) two critical 1-cells
and one critical 2-cell at the throat, which is topologically equivalent
to case (a). Pores and channels are presented by circles and lines,
respectively. Critical 0-, 1-, and 2-cells are presented by red points,
blue rectangles and green squares, respectively. (c, d) Actualization
of schemes (a) and (b), respectively, in soil sample. A (yellow), B
(red) are pores, ab (light blue) is a throat between them, 1, 2 (dark
blue) are critical 1-cells, I (green) is a critical 2-cell. Euler number is
equal to 1.

For a single pore with ring structure [Fig. 13(a)] one critical
0-cell and one critical 1-cell provide the correct Euler number.
A single pore with cavity structure [Fig. 13(b)] is character-
ized by 1 critical 0-cell, k critical 1-cells, and k + 1 critical
2-cells, where the value k � 0 depends on the position, form,
and relative volume of a cavity.

D. Calculated pore-network characteristics: Comparison to
other extraction methods

The results of pore-network extraction from real 3D porous
media images shown in Fig. 5 using our approach are de-
picted as conventional ball-and-stick diagrams in Fig. 16.
Pore-network characteristics calculated for these samples are
presented in Table VI. The results as shown in the table,
represent our method presented in this paper (Morse), as
compared with PNMs obtained using maximum inscribed
ball (MIB) [38], watershed-based (WS) [35], and hybrid [40]
approaches. We have also compared pore and throat radius
distributions, and coordination number distributions obtained
using different pore-network extraction models for all these
samples (Figs. 17–20). We normalized the presented distri-
butions separately for each sample and extraction method.
According to the MIB-based algorithm of pore-network ex-
traction [37,38], first, a maximal inscribed ball is found by
inflation and deflation at each pore voxel of the considered
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FIG. 15. Scheme of junction point revealed in the pore network
(a) and the cubical complex (b, c). In both systems Euler number
is equal to 1. Pores, channels, and junction are presented by circles,
lines, and black point, respectively. Critical 0-, 1-, and 2-cells are pre-
sented by red points, blue rectangles, and green squares, respectively.
(d, e) Actualization of schemes (b) in soil sample and (c) in ceramic
sample, respectively. A (yellow), B (red), and C (red) are pores, ab
(light blue), bc (brown), and ac (purple) are throats between them, 1,
2, 3 (dark blue) are critical 1-cells, I (green) is a critical 2-cell. Euler
number is equal to 1.

binary 3D image (the ball inflation can be substituted with
EDS, something that became a de facto inscribed ball in
later works). After all MIBs are placed, they are sorted and
clustered in a hierarchy. The MIBs of largest radii become the
parent of family trees, and a new MIB with smaller or equal
radius is added to this tree as a child if it has common voxels
with the MIBs from previous generation. This clustering pro-
vides segmentation of pore space into pores with the centers
at the centers of parent MIBs. Set of voxels belonging to dif-
ferent families is treated as the throat between corresponding
pores, and the throat radius is defined as the minimal MIB
radius value within all the throat voxels.

WS-based algorithms [34,35] start with distant transform
for each pore voxel of the considered binary 3D image. Then
a Gaussian filter and a maximum filter are applied to the ob-
tained distance map and peaks of the resulting smooth scalar
function defined over pore voxels are analyzed and processed.
Filtering also helps in saddle points removal and merging
of the nearby peaks. The rest of the peaks are taken as the
seeds of watershed segmentation provided by a marker-based
algorithm [94]. Obtained basins and watersheds are treated as
the pores and throats, respectively.

The hybrid approach [40] to pore-network extraction com-
bines methods of MIB-based and WS-based algorithms. The

TABLE VI. Pore N p and throat Nt numbers, mean pore < Rp >

and throat < Rt > radii, and mean coordination numbers Z calcu-
lated for several samples using different pore-network extraction
methods.

Characteristic Morse MIB WS Hybrid

Carbonate
N p 37 741 29 355 12 685 38 496
Nt 24 925 25 111 5071 36 462
< Rp >, μm 14.3 10.4 12.0 13.4
< Rt >, μm 8.8 6.1 9.3 9.3
< Z > 1.3 1.7 0.8 1.9
Ceramic
N p 9238 9636 5174 13 778
Nt 33 299 32 918 14 469 38 095
< Rp >, μm 11.4 10.3 9.9 10.9
< Rt >, μm 5.1 6.1 12.6 6.6
< Z > 7.2 6.8 5.6 5.5
Soil
N p 49 464 35 690 3908 46 705
Nt 27 678 37 026 10 540 50 157
< Rp >, μm 28.5 37.6 43.6 50.1
< Rt >, μm 27.8 23.1 42.6 35.1
< Z > 1.1 2.0 0.7 2.1
Sandstone
N p 84 401 54 518 18 497 80 017
Nt 67 253 85 570 73 003 120 557
< Rp >, μm 8.0 11.2 31.6 13.6
< Rt >, μm 4.7 5.9 2.6 8.7
< Z > 1.6 3.1 7.9 3.0

centers of pores are found using MIB clustering, and segmen-
tation into pores is carried out using the watershed algorithm
[95].

Compared to MIB, hybrid approach leads to the larger
number of pores due to the slightly different methods for
MIB finding. In [40] a looser criterion to maximum ball
placement is applied to get the speed of execution compared
to the algorithm presented in the classical paper [38]. The
difference in pore numbers strongly depends on the simpli-
fication parameters used in different pore-network extraction
models: persistent limit in Morse-based model and parameters
of filters in WS-based model. The number of pores is minimal
in WS-based model, so we can conclude it provides the most
intensive merging of nearby pores. The pore number calcu-
lated using Morse-based model can be larger or smaller than
the values of this characteristic calculated using MIB-based
and hybrid models depending on the sample considered. It
is influenced by two differently directed trends. First, the
expansion of MIBs clusters is carried out with 26-connectivity
condition in MIB-based and hybrid models, while in our algo-
rithm 6-connectivity is used. This leads to the larger number
of pores in the Morse-based model. In WS-based model the
preprocessing of peaks before the watershed segmentation is
performed with the 26-connectivity condition as well. Second,
no pore merging is applied in MIB-based and hybrid models,
while simplification in Morse-based model reduces the num-
ber of pores. Nevertheless, one can point out the closeness of
Np values found using Morse-based and hybrid approaches
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FIG. 16. Ball-and-stick diagrams of pore networks extracted from XCT 3D images of studied samples: (a) carbonate; (b) ceramic; (c) soil;
(d) sandstone. Pores and throats are presented by red balls and blue cylinders, respectively. Ball and cylinder radii are proportional to the radii
of corresponding pores and throats.

for all the considered samples except for highly porous
ceramic.

The increase in the pore number leads to increase in throat
count, yet the increment is not linear and depends on the local
pore geometry for each sample. Trends of increasing throat
number due to 6-connectivity in our model and its decreasing
caused by simplification are also actual. Note, however, that
simplification has the stronger influence on Nt value than
on N p value, since when two pores are merged there can
be more than one throat between them. As Euler number is
conserved in Morse-based algorithms, single-pore ring struc-
tures appear in the pore network after simplification in this
case. This case is schematically presented in Fig. 21. Before
the simplification, we have N p = 2, Nt = 2, 
χintr = 0, and
after the simplification N p = 1, Nt = 0, 
χintr = −1. So the
pore number is decreased by 1, and the throat number is

decreased by 2. Thus, the values of Nt calculated in our model
are smaller than those obtained using hybrid approach. The
smaller number of throats lead to the smaller coordination
number.

The maximum in coordination number distribution ob-
tained using Morse-based model is observed at zero for
all samples except for ceramic. To clarify its origin we
calculated numbers of nonconnected pores N p

con=0 in differ-
ent models and compared them against the total number
of closed pore space components N p

closed, obtained with
6- and 26-connectivity conditions. The results are pre-
sented in Table VII. One can see from this table that
almost all closed pore components consist of only one
pore due to simplification in Morse-based mode, since in
other models they are likely to be segmented into sev-
eral pores. In the ceramic the sample number of closed
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TABLE VII. Numbers of pores N p
con=0, calculated in different pore-network extraction models and the total numbers of closed pore space

components N p
closed obtained with 6- (6-con.) and 26-connectivity (26-con.) conditions in the samples considered.

Sample N p
con=0, N p

con=0, N p
con=0, N p

con=0, N p
closed, N p

closed,
Morse MIB WS hybrid 6-con. 26-con.

Carbonate 16 970 7530 7845 7404 19 248 18 666
Ceramic 324 68 111 74 324 264
Soil 36 879 8061 7358 8265 37 889 29 821
Sandstone 46 839 6236 129 6378 47 806 39 540

pore space components is very small, and its influence is
negligible.

From the analysis of Table VII, one can also note rather
large difference between the values N p

closed calculated with 6-
and 26-connectivity conditions for soil and sandstone sam-
ples. Small volume closed pore components entirely belong to
one pore in all the compared pore-network extraction models,
therefore their excess in 6-connectivity analysis leads to the
shift of pore radius distribution to small values in Morse-based
approach for these samples. Average throat radii calculated in

FIG. 17. Pore radius (a), throat radius (b), and coordination num-
ber (c) distributions extracted using different models for carbonate
sample.

our model are rather close to the results obtained using the
other models.

Euler numbers calculated using discrete Morse theory
(Morse on figures) based on Eq. (13) for several samples are
presented in Table VIII. The values obtained with approxi-
mate expression as the difference between pores and throats
numbers:

χ ≈ N p − Nt (20)

FIG. 18. Pore radius (a), throat radius (b), and coordination num-
ber (c) distributions extracted using different models for ceramic
sample.
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FIG. 19. Pore radius (a), throat radius (b), and coordination num-
ber (c) distributions extracted using different models for soil sample.

are also presented. Our results are now compared with those
assessed using other pore-network extraction models (MIB,
WS, hybrid; see figures).

In Table VIII we also present Euler numbers calculated
with the help of open source library EulerCharacteristic.jl [96]

TABLE VIII. Euler numbers calculated for studied samples us-
ing different PNM extraction models and different software packages
for image analysis.

Carbonate Ceramic Soil Sandstone

PNM
Morse, (13) 13 206 −14 695 20 941 14 348
Morse, (20) 12 816 −24 061 21 718 17 148
MIB, (20) 4989 −22 491 −318 −29 501
WS, (20) 6714 −9295 −6632 −54 506
Hybrid, (20) 3037 −23 212 −2256 −38 281
3D Image
EulerC.jl 13 206 −14 695 20 941 14 348
MorphoLibJ 13 206 −14 695 20 941 14 348
Quantim 11 622 −14 949 20 903 11 319

FIG. 20. Pore radius (a), throat radius (b), and coordination num-
ber (c) distributions extracted using different models for sandstone
sample.

and software packages for image analysis and Minkowski
functionals evaluation, MorphoLibJ [97] for ImageJ and
Quantim code [85].

From the analysis of Table VIII one can note the coinci-
dence of values calculated with formula (13) and obtained
using EulerCharacteristic.jl and MorphoLibJ package. The
rather small disagreement of these data with results obtained
using Quantim code can be explained by boundary effects.
As our calculations of Euler numbers using formulas in
Eq. (13), EulerCharacteristic.jl and MorphoLibJ calculations
are carried out with open image boundaries, stereological
rule [98] is applied to boundaries in Quantim. In the case
of open boundaries, all objects that contact boundaries are
included. Due to stereological rule, all objects that contact
the top, left, and front boundary are included but all ob-
jects that contact the bottom, right, and back boundary are
excluded.

The comparison of Euler numbers values calculated in our
approach using Eq. (13) and Eq. (20) let us conclude that using
the approximate expression (20) leads to the small errors in
the case of low porosity samples, but with the increase of
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FIG. 21. Schematic picture of pores and throats before (a), and
after (b) simplification. Gray area indicates the solid phase. First,
pores P1 and P2 are connected by two throats T1 and T2. Then
simplification can merge these pores into one pore P with intrinsic
ring structure, as in Fig. 13(a). Euler number is equal to 0 in both
cases.

porosity the deviations from the correct Euler number grow
up considerably.

Morse-based, MIB-based, and hybrid models lead to close
Euler number values calculated using the formula in Eq. (20).
In other cases, the large deviation from the correct values
is observed for Euler numbers calculated using other pore-
network extraction algorithms other than Morse-based. For
soil and sandstone samples other methods even produce the
incorrect sign of χ . This fact confirms the importance of the
accurate topology preservation in pore-network extraction—
this is provided by discrete Morse theory solution presented
in this paper.

IV. SUMMARY AND OUTLOOK

In this paper we present pore-network extraction al-
gorithm for binary 3D images based on discrete Morse
theory and persistent homology. The main advantage of
our method is conserving the topological properties of the
original 3D image in the extracted pore network. This
is confirmed by the coincidence of Euler numbers calcu-
lated in PNM and on 3D image using direct topological
analysis.

The first step of our algorithm of pore-network extraction
is the choice of discrete Morse function and the construction
of gradient vector field. To avoid any systematic shifts in final
results, we propose to use the randomly perturbed signed EDT
function as Morse function. ProcessLowerStar algorithm [62]
was applied to construct gradient vector field.

The further simplification of gradient vector field leads to
the removal of persistent pairs which consist of critical p-

and p − 1-cells. The part of pairs to be removed is controlled
by persistent limit parameter. We showed that the character-
istics of the extracted pore network are very sensitive to the
value of this parameter and proposed the method how to fix
it. The choice of persistent limit equal to 1 seems to be rea-
sonable for all the samples considered in this paper. However,
the influence of this parameter on final results can be studied
further for larger set of 3D images.

The gradient vector field transformed after simplification
is the starting point for segmentation of pore space to sepa-
rate pores. The stable set of 0-cells is constructed by V -path
traversals for each critical 0-cell. All 0-cells which belong to
this set correspond to the voxels forming the separate pore.
1-cells with vertices belonging to different pores are included
into the set corresponding to the throat between these pores.
Junction points are found from the analysis of loops including
three and four pores.

The topological properties of the initial cubical complex
are the same as for Morse chain complex extracted from
gradient vector field. They are characterized by critical cells.
For the extracted pore network, topology is defined by con-
figuration of pores, throats, and junctions. We clarified the
relationship between these pore-network characteristics and
critical cells. Critical 0-cells coincide with pore centers,
critical 1-cells correspond to throats, critical 2-cells can char-
acterize throats containing more than one critical 1-cell and
can indicate junctions. Also, critical 1- and 2-cells contribute
into the characterization of single pores with complicated
intrinsic topology.

We compared pore-network characteristics calculated for
several samples using discrete Morse theory with ones
calculated using MIB-based, WS-based, and hybrid models.
While for some specific samples and characteristics the other
models lead to the results close to ones obtained in our
approach, in general, the deviations are quite large. The differ-
ence between Euler numbers calculated using discrete Morse
theory and other models is especially remarkable.

The results of our analysis and the developed approach
open the way for deeper understanding of pore-network topo-
logical features on the flow simulations. It was shown already
that the permeability can be predicted with high accuracy with
PNMs. On the other hand, multiphase flow does not seem to
be simulated adequately in modern pore-network simulators
[40,52]. Further development of our PNM extraction coupled
with a novel PNM flow simulator to study such influences is
the focus of ongoing research.
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