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Generalizability of reservoir computing for flux-driven two-dimensional convection
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We explore the generalization properties of an echo state network applied as a reduced-order model to predict
flux-driven two-dimensional turbulent convection. To this end, we consider a convection domain with constant
height with a variable ratio of buoyancy fluxes at the top and bottom boundaries, which break the top-down
symmetry in comparison to the standard Rayleigh-Bénard case, thus leading to highly asymmetric mean and
fluctuation profiles across the layer. Our direct numerical simulation model describes a convective boundary
layer in a simple way. The data are used to train and test a recurrent neural network in the form of an echo state
network. The input of the echo state network is obtained in two different ways, either by a proper orthogonal
decomposition or by a convolutional autoencoder. In both cases, the echo state network reproduces the turbulence
dynamics and the statistical properties of the buoyancy flux, and is able to model unseen data records with
different flux ratios.
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I. INTRODUCTION

Machine learning (ML) methods are known for their ex-
ceptional capabilities in the classification of comprehensive
data records and data-driven modeling. In fluid mechan-
ics, ML thus found its way into the analysis and control
of turbulent flows [1–6]. Applications now cover a broad
spectrum of problems, such as the subgrid scale modeling
in Reynolds-averaged Navier-Stokes equations [7] or large-
eddy simulations [8,9], the exploration of inertial manifolds
in the phase space of the systems [10], and the control of
their spatiotemporal dynamics [11], or the reconstruction and
generation of partially missing turbulent data by deep neu-
ral networks [12,13]. The aim of such ML applications is
usually to reduce the computational cost which comes with
solving the governing equations of motion in direct numerical
simulations or analyzing high-resolution experimental data
[14]. Among other fluid flows which have been studied in
Refs. [15–18], turbulent convection has been chosen as a
prominent application case. We mention the classification of
convective heat flux patterns [19], spectral nudging methods
to reconstruct the flow fields from temperature measurements
[20], the application of reinforcement learning to control the
heat transport in a Rayleigh-Bénard cell [21], or the predic-
tion and reconstruction of turbulent dry and moist convection
flows by recurrent neural networks [22–25]. Convection plays
a prominent role in geophysical flows [26,27]. Machine
learning is then applied for parametrizations of unresolved
convection processes in the oceans [28] and atmosphere
[29,30]. Given the strong variability in the environmental
conditions in atmospheric flows, particular interest lies in the
development of robust ML methods which can model configu-
rations that are different from the training cases with respect to
the parameter setting [31]. This particular point sets the stage
for the present work which consists of two major parts.

In the first part, we discuss a two-dimensional Rayleigh-
Bénard convection (RBC) model [32] that is driven by heat
or buoyancy fluxes from the top and bottom. In our direct nu-
merical simulations (DNS), we consider a convective cell with
constant height H in which bottom and top fluxes are chosen
such that the cell as a whole is differently strongly heated from
the bottom and the top. This configuration can be understood
as a simplified model of a convective boundary layer (CBL) in
cloud-free and shear-free conditions. In this model, we retain
the entrainment of fluid from the free troposphere into the
turbulent region by prescribed top flux into the convective
domain as well as heating from below, i.e., from the heated
ground. A difference between this model and a real CBL is
that H in our model remains constant, whereas the height of
the atmospheric layer increases slowly with increasing time,
i.e., the CBL grows into the free troposphere [33–36]. Given
this setup, the top-down symmetry of a standard RBC flow
will be broken; highly asymmetric mean profiles of buoyancy,
convective buoyancy flux, and velocity fluctuations follow.
This clearly challenges the reproduction of statistical proper-
ties by the ML algorithm.

In the second part, we use the DNS data as a training
data base to study the performance of reduced-order models
of turbulent convection dynamics based on recurrent neural
network architectures, i.e., neural networks with a short-term
memory. These ML algorithms will then be applied to data
that have a different ratio of boundary fluxes as the training
configuration, i.e., a different set of system parameters. Our
study thus addresses one important point of supervised ML
algorithms, namely, how well do they perform with respect
to unseen data with changed system parameters—known as
the generalization property or generalizability [31]. More
specifically, we apply echo state networks (ESNs) which are
one implementation of reservoir computing [37,38]. The ESN
approach has found interest recently in inferring states of
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a nonlinear dynamical system. Applications concerned the
Rössler and Lorenz 63 systems [39,40], the Lorenz 96 model
[41], and Galerkin models of plane shear flows [42]. More-
over, hybrid models which combine both data-driven (ESN)
and knowledge-based methods, i.e., solving the mathematical
equations, have already been proposed [43,44] and tested in
terms of a global atmospheric forecast model [45]. Further,
reservoir computing techniques, due to their computationally
inexpensive training routine, could serve as a substitute for
conventional parametrization schemes. The performance of
ESNs in two-dimensional dry and moist turbulent Rayleigh-
Bénard convection has already shown great promise, as
low-order statistics of buoyancy and liquid water fluxes are
successfully reproduced [22–24]. Here, we want to apply this
framework to a case that is a bit closer to real atmospheric
flows than standard RBC.

Even two-dimensional DNS data records are still too large
to be directly processed by the ESN. Thus, a data reduction
step is required. We suggest two methods here: (1) the proper
orthogonal decomposition (POD) and (2) the convolutional
autoencoder (CAE) [24,46–49]. As a consequence, the present
ML algorithm is a combination of two building blocks, i.e.,
the encoder-decoder module and the dynamical core in the
form of an ESN which advances the convection flow in time
in the low-dimensional latent space. We will refer to this as
the combined POD/CAE–ESN algorithm in the following.

It is found that despite smaller differences in flux statistics
and reconstruction of the fields, both models perform well.
We thus investigate (1) the performance of two data reduction
methods, namely, POD and CAE, on turbulent convection
data, (2) the generalization capability of the ESN to data with
a different heat flux ratio (which will be defined in the next
section), and (3) the combined application of data reduction
and reservoir computing to flux-driven highly asymmetric
Rayleigh-Bénard convection flow.

The outline of the manuscript is as follows. In Sec. II, we
describe the two-dimensional convection model and define all
parameters, in particular, the ratio of the buoyancy fluxes at
the top and bottom boundaries, β, which is the major control
parameter. Section III introduces the individual modules of the
combined POD/CAE–ESN algorithm. We provide details of
the training and the generalization performance of the ESN.
We summarize our results and give a brief outlook in Sec. IV.
Technical details of ML and further results are listed in Ap-
pendices A to D.

II. FLUX-DRIVEN CONVECTION MODEL

A. Governing equations and model parameters

We use the Boussinesq approximation to the two-
dimensional Navier-Stokes equations. For convenience, we
formulate the problem in terms of the buoyancy field b, which
is given by

b(x, z, t ) ≡ αgT (x, z, t ), (1)

where α, g, and T are the thermal expansion coefficient, the
acceleration due to gravity, and the temperature field, respec-
tively. We consider a cell of height H and length L (see Fig. 1).
In the vertical direction, we consider no-slip boundary condi-
tions for the velocity and constant-flux boundary conditions

FIG. 1. Scheme of the two-dimensional Rayleigh-Bénard setup
with constant buoyancy-flux boundary conditions. The bottom of
the cell is heated by the incoming flux B0. We explore the effect
of asymmetric boundary conditions by imposing a different flux
B1 = −βB0 (β > 0) at the top. The values β ∈ {0.1, 0.2, 0.3} are
representative values for convective boundary layers. (a) Adiabatic
top wall with β = 0 and (b) warming flux at the top with β > 0.

for the buoyancy. We impose the fluxes B0 and B1 at the
bottom and top, respectively. In the horizontal direction, we
consider periodic boundary conditions.

The resulting evolution equations are given by

∂ux
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+ ∂uz
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= 0, (2)
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(
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∂x2
+ ∂2b

∂z2

)
. (5)

In these equations, ux and uz are the horizontal and vertical
components of the velocity, p is the modified pressure divided
by the constant density, ν is the kinematic viscosity, and κ is
the molecular diffusivity. The boundary conditions are ux = 0
and uz = 0 at z = 0 and z = 1, together with

∂b

∂z
(x, z = 0, t ) = −B0/κ, (6)

∂b

∂z
(x, z = 1, t ) = −B1/κ. (7)
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For the sake of generality, we will present the analysis in a
nondimensional form. Choosing H and B0 as reference scales,
one finds the following characteristic scales: the convective
velocity (B0H )1/3, the convective time (H2/B0)1/3, and the
convective buoyancy (B2

0/H )1/3 [50]. The resulting four sys-
tem parameters are the aspect ratio � = L/H , the Prandtl
number

Pr = ν

κ
, (8)

the convective Rayleigh number

Rac = B0H4

νκ2
, (9)

and the buoyancy-flux ratio

β = −B1

B0
. (10)

As further explained below, we are interested in the cases
B0 > 0 and B1 < 0, and hence β > 0, i.e., the fluid is heated
from the bottom and the top.

The buoyancy difference,

�b = 〈b〉x(z = 0, t ) − 〈b〉x(z = 1, t ), (11)

between the two plates is a dependent variable for configu-
rations with constant-flux boundary conditions and needs to
be diagnosed from experimental or simulation data (angle
brackets indicate an averaging operation and the subscript
indicates the variable with respect to which the averaging
operation is performed, in this case, the horizontal coordinate
x). Therefore, the Dirichlet Rayleigh number,

Ra f = �bH3

νκ
, (12)

is a diagnostic variable as well. From Eqs. (2)–(5), one can
derive the vertical buoyancy profile, up to a constant, for the
purely conductive case to be

bcond = B0H

κ

(z/H − 1)2 + β(z/H )2

2

+ B0

H
(1 + β )t + const. (13)

For β = −1, we recover the steady, linear solution that cor-
responds to the problem with Dirichlet boundary conditions.
In the Neumann case, the profile of b has a parabolic shape
and it grows linearly in time (given that we heat from below
and from above). Nonetheless, it is quasisteady in the sense
that the shape of the profile remains constant in time. The
buoyancy difference between the bottom and top plates for
this case is

�bcond = B0H

κ

1 − β

2
. (14)

B. Direct numerical simulations

We fix the Prandtl and convective Rayleigh number to
Pr = 1 and Rac = 3 × 108 and consider extended layers with
an aspect ratio � = L/H = 24. The control parameter that
we vary is the flux-ratio parameter β defined by Eq. (10).
In the atmospheric CBL over land, one typically finds the
conditions B0 > 0 and B1 < 0, which represent the surface

TABLE I. Simulation parameters. The time average has been
calculated over the last 500 free-fall times. The buoyancy and
time values in the second and third columns are given in units
of convective buoyancy (B2

0/H )1/3 and convective time (H2/B0)1/3,
respectively. The last column lists the large-scale eddy turnover time
τeddy = H/urms with urms = 〈u2

i 〉1/2
V,t . This timescale is given in units

of the free-fall time Tf .

β 〈�b〉t 〈Tf 〉t 〈Nu f 〉t 〈Ra f 〉t τeddy

0.0 22.0 ± 0.4 0.21 15.2 ± 0.3 9.9 × 106 3.08
0.1 19.0 ± 0.4 0.23 15.9 ± 0.3 8.5 × 106 3.03
0.2 15.4 ± 0.3 0.26 17.4 ± 0.4 6.9 × 106 2.92
0.3 10.7 ± 0.5 0.31 21.9 ± 0.9 4.8 × 106 2.74
0.4 4.1 ± 0.51 0.50 49.8 ± 6.6 1.84 · 106 1.94

warming and the entrainment warming of the CBL, respec-
tively. Hence, we are mainly interested in the case β > 0.
Typical atmospheric conditions correspond to the range of β

ranging approximately from 0.1 to 0.3 [26,51]. As β increases
further to a value of 0.4, the upper region of the convective
layer is increasingly stabilized (positive mean buoyancy gra-
dient; see, also, Fig. 5), while an unstable layer of decreasing
area fraction at the bottom continues to exhibit convective
motion. In fact, preliminary simulations (not shown) indicate
that at β ≈ 0.5, the buoyancy difference �b changes the sign
which is in line with a different dynamics. Therefore, we will
consider the cases β ∈ {0.0, 0.1, 0.2, 0.3, 0.4} in our CBL
model (see, also, Fig. 1). The case β = 0 corresponds to an
upper adiabatic wall. This case is considered as a first step to
understand the effect of asymmetries in the boundary condi-
tions in the results obtained from Rayleigh-Bénard convection
with constant-buoyancy boundaries.

The Boussinesq equations (2)–(5) are discretized by a
high-order spectral-like compact finite-difference method.
The time evolution is treated by a low-storage fourth-order
Runge-Kutta scheme. The pressure-Poisson equation is solved
with a Fourier decomposition in the horizontal planes and
a factorization of the resulting difference equations in the
vertical direction. More details of the numerical method can
be found in Mellado and Ansorge [52]. The software used to
perform the simulations is freely available; see Ref. [53].

The grid size is Nx × Nz = 2400 × 150. The horizontal
grid spacing is uniform. The vertical grid spacing follows
a hyperbolic tangent profile: it is equal within 1.2% to the
horizontal grid spacing in the center of the convection cell, and
diminishes by a factor of 2.5 next to the wall. The time steps
are in the range �t ≈ 0.0012–0.0016 (H2/B0)1/3, with the
specific value depending on the simulation. They are defined
to obtain data exactly every 0.25 free-fall times (definition
follows) and satisfy the stability constraints of the numerical
algorithm described in the previous paragraph. Since the free-
fall time is a derived variable in the case of the constant-flux
boundaries considered in this study, preliminary simulations
were performed to obtain the free-fall time in each case, and
we repeated the simulations with the appropriate �t . Table I
summarizes important parameters of the five simulation runs.
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C. Cellular convection patterns and vertical profiles
at different flux ratios

Integrating the evolution equation for b yields that the
volume-averaged buoyancy 〈b〉x,z increases as

〈b〉x,z = B0

H
(1 + β )t . (15)

Hence, in the turbulent case, the fluid warms linearly with
increasing time as in the conduction case. The mean verti-
cal profile, however, is different from the pure conduction
profile and, as mentioned above, a major dependent variable
is the buoyancy difference �b across the cell. After an initial
transient, this quantity becomes statistically stationary, as can
be seen in Fig. 2(a) for all five simulations. The free-fall
time Tf = √

H/�b and free-fall velocity Uf = √
H�b can

be computed and used as scales for better comparison to
the more common case of Rayleigh-Bénard convection with
constant-buoyancy boundaries. Moreover, we can express the
buoyancy difference in terms of a Nusselt number,

Nu = �bcond

�b
= 1 − β

2

B0H

κ�b
, (16)

defined here as the ratio between the buoyancy difference
in the purely conductive case �bcond [see Eq. (14)] and
the fully convective case, i.e., �b. For β = −1, we again
recover the functional relationship corresponding to Rayleigh-
Bénard convection with constant-buoyancy boundaries. The
relaxation to a statistically stationary state for the buoyancy
difference and the Nusselt number are demonstrated in Fig. 2
for all five cases.

Figures 3 and 4 show snapshots of the normalized buoy-
ancy, which is given by

b∗(x, z) = b(x, z) − 〈b〉x,t (z = 1)

〈�b〉t
, (17)

and the vertical flux u′
z(x, z)b′(x, z) in the statistically sta-

tionary regime. For β = 0.0, the flux at the top is zero and
no thermal boundary layer is present. This changes when the
warming flux at the top becomes greater than zero, i.e., β > 0.
With increasing warming flux at the top, we find a thermal
boundary layer at z = 1, which increases in thickness as β

increases. For β = 0.4, the convection is confined to a smaller
domain near the bottom plate. From there, thermal plumes
detach and rise into the bulk that is increasingly stabilized
from the top, thus causing the strongly fluctuating time se-
ries of the Nusselt number. Naturally, the structures in the
buoyancy flux are also affected by the change of the top flux.
As more buoyant fluid is transported from the top into the
center of the turbulent region, the cellular order is increasingly
dissolved, which can be seen by prominent thermal plumes in
both figures; compare Figs. 3(a), 4(a) and Figs. 3(e), 4(e).

We show the line-time average vertical profiles, denoted
as 〈·〉x,t (z), of b∗ in Fig. 5(a). All profiles show the tendency
towards a constant mean value in the central part of the
domain, implying a layer of well-mixed fluid. Contrary to
the common Rayleigh-Bénard case with constant-buoyancy
boundary conditions [32], constant-flux boundary conditions
break the top-down symmetry of the mean buoyancy profile.
Furthermore, for β > 0, the incoming warming flux at z = 1
results in positive buoyancy gradients and hence a stable layer

FIG. 2. Temporal variation of (a) the buoyancy difference �b
[see Eq. (11)] and (b) the Nusselt number Nu [see Eq. (16)]. Both
quantities become statistically stationary after an initial transient.
The case β = 0.4 exhibits the strongest fluctuations, in particular
for the Nusselt number in (b). This indicates a different dynamics
in comparison to β ∈ [0.1, 0.3] and the adiabatic top configuration.
Note that both time axes are normalized by the time mean of the
free-fall time Tf = √

H/�b in the statistical stationary regime.

at the top. We examine the variability of the velocity and
buoyancy fields fields and decompose both into their volume
mean 〈ux〉x,z, 〈uz〉x,z, 〈b〉x,z and their fluctuations u′

x, u′
z, b′.

They are given by

ux(x, z, t ) = 〈ux〉x,z(t ) + u′
x(x, z, t ), (18)

uz(x, z, t ) = 〈uz〉x,z(t ) + u′
z(x, z, t ), (19)

b(x, z, t ) = 〈b〉x,z(t ) + b′(x, z, t ). (20)
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FIG. 3. Instantaneous snapshot of the normalized buoyancy field b∗ = (b − 〈b〉x,t (z = 1))/〈�b〉t in the statistically stationary state. The
five different top boundary conditions (β = 0.0, 0.1, 0.2, 0.3, 0.4) differ in their width of the top thermal boundary layer. For the adiabatic
top β = 0.0, no such layer is present. For β = 0.4, the convective motion is confined to a small layer near the bottom plate. Note that with
increasing β, the range of b∗ increases.

Note that 〈b〉x,z depends on time, as it incorporates the linear
warming of the fluid. Meanwhile, 〈ux〉x,z and 〈uz〉x,z are statis-
tically stationary and vary weakly about their zero mean. The
vertical profiles of the root mean square (rms) of u′

z and b′
are shown in Figs. 5(b) and 5(c). The rms’s of the fluctuations
of the buoyancy differ greatly in their magnitude and trend
in the upper portion of the domain. The vertical rms velocity
component 〈u′2

z 〉1/2
x,t , on the other hand, does not vary too much

while changing β. Additionally, the total buoyancy flux,

Fb = 〈u′
zb

′〉x,t − κ
∂〈b〉x,t

∂z
, (21)

normalized by its bottom value is shown in Fig. 5(d). We
find that the flux decreases linearly with increasing height. As

indicated by Fig. 5(a), the molecular terms mostly contribute
to the near-wall regions. The turbulent transport (not shown),
on the other hand, declines linearly over the middle of the
domain and results in negative contributions near the top. This
is expected by the stabilization by entrainment warming in
the CBL [26,51], here considered by imposing the negative
buoyancy flux B1 at the top boundary. One goal of this study is
to ascertain the capability to reproduce these vertical profiles
of the turbulent contributions by the recurrent neural network,
which will be presented in the next section.

In the following, we use the DNS data of β = 0.1 to
train a recurrent neural network and make subsequent pre-
dictions for unseen data with flux ratios β = 0.2, 0.3, and
0.4, respectively. This is done to explore the generalization

FIG. 4. Instantaneous snapshot of the vertical buoyancy flux u′
z(x, z, t0 )b′(x, z, t0) in the statistically stationary state. The cellular order is

increasingly dissolved with growing parameter β. Panels (a) to (e) correspond to those of Fig. 3.
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FIG. 5. Vertical profiles of (a) the normalized buoyancy b∗ =
(b − 〈b〉x,t (z = 1))/〈�b〉t , (b) buoyancy fluctuations, (c) vertical
velocity fluctuations, and (d) normalized total buoyancy flux
Fb(z)/Fb(z = 0) = Fb(z)/B0. While the boundary conditions signif-
icantly affect the buoyancy and its fluctuations, the influence on the
vertical velocity profiles is less important. The fluxes show linear
variation across the cell. The legend shown in (a) is valid for all
graphs shown.

properties of the echo state networks. We therefore interpolate
all fields from the nonuniform grid with 2400 × 150 points to
a 720 × 30 uniform grid by cubic splines. This grid will be
denoted as the coarse-grained grid, and the data as coarse-
grained DNS data.

III. CONVECTION PREDICTION FROM MACHINE
LEARNING ALGORITHM

In the following, we describe the architecture of the ESN
module of the combined POD/CAE–ESN machine learning
algorithm and its training in more detail before discussing
the predicted results for DNS at different parameters than the
training data. Details of the architecture of the CAE and the
POD snapshot method are outlined in Appendices A and B,
respectively.

A. Echo state network and echo state property

In the following, we specify the architecture of the ESN
that will be applied to process the DNS data of the CBL model
described in the previous section. The discrete-time reservoir
state dynamics is given by

r(n) = (1 − γ )r(n − 1)

+ γ tanh[W rr(n − 1) + W inx(n) + d1], (22)

where r(n) ∈ RNr , x(n) ∈ RNin are the reservoir state and in-
put at time step n, respectively. W r ∈ RNr×Nr ,W in ∈ RNr×Nin

are the reservoir and input weight matrices and γ ∈ [0, 1],
d are the constant leaking rate and constant bias. The reser-
voir output ŷ ∈ RNin is computed by a linear mapping of the
extended reservoir state r̃(n) = [d, x(n), r(n)] (vertical con-
catenation of bias, reservoir input, and state),

ŷ(n) = W out
∗ r̃(n). (23)

The fitted output weights W out
∗ ∈ RNin×(1+Nin+Nr ) are chosen as

to minimize the mean square cost function,

C(W out ) =
−1∑

n=−TL

‖y(n) − W out r̃(n)‖2
2 + λ‖W out‖2

F , (24)

where y are the target outputs, which are part of the training
data. TL is the number of training time steps and ‖ · ‖F denotes
the Frobenius norm. The last term penalizes large values of the
output weight matrix by adjusting the regression parameter λ.
This is one possibility to avoid overfitting, where the machine
learning algorithm learns the training data by heart, conse-
quently performing poorly when operating on data outside
the training data set. The solution to this L2-penalized linear
regression problem is given by

W out
∗ = Y RT (RRT + λI )−1, (25)

where the nth column of Y ∈ RNin×TL , R ∈ RNr×TL are y(n) and
r̃(n), respectively. I ∈ RNr×Nr denotes the identity matrix and
(·)T , (·)−1 are the transpose and inverse. After the training
phase, an initial input is given at n = 0 and the reservoir
output at time step n � 0 is fed back to the input layer, by
letting x(n) = W out

∗ r̃(n − 1). During this testing phase, the
ESN autonomously predicts the next TT iterations of the initial
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FIG. 6. Echo state network architecture. For time n < 0, the
network learns the dynamics of the training data by computing the
output weights in W out

∗ . In the testing phase (n > 0), it runs in a mode
of autonomous prediction, where the last network output is fed back
to the input layer to be used as new input for the next prediction step.

input. Figure 6 summarizes the architecture of the ESN in a
sketch.

This inexpensive training procedure comes at a cost of
finding a suitable set of hyperparameters, i.e., parameters
which are not learned and have to be tuned beforehand. Here
we restrict ourselves to h = {γ , λ, Nr, D, �}. The last two
quantities are the reservoir density D and spectral radius �.
They are algebraic properties of the reservoir weight matrix
and represent the number of nonzero elements and largest
absolute eigenvalue of W r , respectively. Finding an optimal
set of these hyperparameters is crucial, as they influence the
memory capacity of the reservoir [54]. In [55], a necessary
condition for an effective reservoir was proposed: the echo
state property. A reservoir is said to possess echo states when
two different reservoir states r1(n − 1), r2(n − 1) converge to
the same reservoir state r(n), provided the same input x(n) is
given and the system has been running for many iterations n.
This property highly depends on the data one uses, a suitable
set of hyperparameters h, as well as the reservoir initialization
[56]. So far, no universal rule for the presence of echo states
has been proposed.

Note also that the echo state property is a necessary con-
dition and that no feasible sufficient condition has yet been
found, as discussed in [57]. We will keep using reservoir
initializations and hyperparameter ranges, which have shown
good results, e.g., in [22] or [23]. We initialize the input
and reservoir weights randomly, i.e., W in ∼ U [−0.5, 0.5] and
W r ∼ U [0, 1]. W r is then normalized by its largest absolute
eigenvalue and is subsequently scaled by �. Afterwards, ran-
domly selected entries of this matrix are set to zero to get
the specified value of the reservoir density D. The specific
value of each of the quantities in h is chosen by a grid search
procedure, which will be discussed further below. For this
study, the ESN was implemented in Python using the library
turbESN [58].

B. ESN training for case β = 0.1

In the following, we explore whether we can use the ESN
to infer changes in the convective flow, induced by changes
in the buoyancy flux at the top of the two-dimensional do-
main. A trained network is thus exposed to unseen data at

a different physical parameter set. Such a procedure probes
the generalization properties of the ESN. The subject is also
connected to a transfer of the learned parameters from one
task to a similar one, which is known as transfer learning [59].
Due to the computationally inexpensive training scheme of
ESNs, transfer learning is not often applied for this class of
algorithms, even though implementations have been proposed
very recently [60].

Here, we take a different approach, which is sketched in
Fig. 7. A reservoir is trained with the reduced data of one
case of constant-flux boundary conditions at z = 1, namely,
β = 0.1. An intermediate reservoir washout phase clears the
reservoir memory of recent β = 0.1 information and leads
to a transition of the reservoir state to one of three different
and unseen convection flows with buoyancy flux parameters
β = 0.2, 0.3, or 0.4. Finally, we use the trained network for
the prediction of the dynamics and the statistical properties of
the unseen regimes.

The DNS data possess many degrees of freedom, so that
we have to introduce a preprocessing step before passing the
convection data to the reservoir. We propose two common
reduced-order modeling techniques, the (1) proper orthogonal
decomposition (POD) and the (2) convolutional autoencoder
(CAE). The former is well known in fluid mechanics as a
linear method, where the data reduction is realized by a trun-
cation to a set of Galerkin modes [46]. The CAE, on the
other hand, represents a deep convolutional neural network,
commonly used in deep learning tasks, such as feature ex-
traction in image processing [48]. We stress that the same
neural network architecture of the CAE (number of neurons
and hidden layers) is used for each β; this CAE network is,
however, trained for each β separately. That is, we do not
test the generalization property of the data reduction mod-
ule. For brevity, we only mention major aspects of both data
reduction methods in the main text and move the details to
Appendices A and B.

For both data reduction approaches, we sample 700 time
steps of our coarse-grained DNS data in an interval of 0.25Tf

for the simulation of β = 0.1 in the statistically stationary
regime. Also, snapshots of 700 further time steps with the
same sampling interval are gathered for the unseen target
simulations at β = 0.2, 0.3, and 0.4,

b′(x, z, t ) = 〈b′〉t (x, z) + b′′(x, z, t ). (26)

Finally, we apply both POD and CAE to the vector g =
(u′

x, u′
z, b′′)T for each value of β, such that we end up with four

separate POD computations and four separate CAE networks.
Both methods are chosen to reduce the dimensionality of this
vector to NPOD = NCAE = 300 features per snapshot. The total
number of degrees of freedom is thus reduced from three
fields on a grid with size 2400 × 150 in the original DNS (that
corresponds to Ndof = 1.08 × 106) via coarse-grained data of
grid size 720 × 30 to 300 modes in the latent space by a factor
of 3600. With this choice of NPOD, the POD reduction captures
about 80% of the original energy (for more details, see the
Appendix).

We refer to this reduced data as POD time
coefficients a(n) = [a1(n), a2(n), . . . , aNPOD (n)]T for
the data reduction via POD and as encoding space
ξ (n) = [ξ1(n), ξ2(n), . . . , ξNCAE (n)]T for the one via CAE.
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FIG. 7. Sketch of the transfer learning concept. (a) During the training phase, 700 snapshots of the simulation data for β = 0.1 are encoded
into the latent space, either via the reduction by POD (denoted as aβ=0.1) or via the one by a CAE (denoted as ξβ=0.1). A reservoir is subsequently
trained with the latent space. The network learns the dynamics; the optimal output weights are obtained. (b) In the prediction phase, the reservoir
is then used to infer the dynamics of the target latent spaces at β = 0.2, 0.3, 0.4 and predicts either aβ �=0.1(POD) or ξβ �=0.1 (CAE). Snapshots
of the convection flow can then be reconstructed and validated by the corresponding decoder to obtain fully resolved fields for the cases of
β = 0.2, 0.3, and 0.4.

We construct the training data set for our ESN by taking
700 instances of a(n) or ξ (n) of β = 0.1. We recall from
Sec. II B that the spacing between outputs n and n + 1 is
0.25 Tf . The total training length of TL = 700 corresponds to
58 eddy turnover times. This timescale is given by τeddy =
H/urms ≈ 3Tf (see Table I). During this phase, the reservoir
is trained to predict the respective next time instance of the
POD expansion coefficients a(n + 1) or the encoding vari-
ables ξ (n + 1); see, again, Eq. (25).

In the next paragraph, we explain how these trained ESNs
can be used to predict the time coefficients (or encoding space)
of the three cases with different heat flux parameter, namely,
β = 0.2, 0.3, and 0.4. Finally, in Sec. III C, the individual
prediction performance of both POD and CAE methods to-
gether with the ESN will be examined.

C. Prediction for unseen cases at β = 0.2–0.4

Once the ESN has learned to process the data in the latent
space (which are obtained either by POD or CAE) for the case
of β = 0.1, it is exposed to unseen data of the three CBL
model cases, β = 0.2, 0.3, and 0.4, without further training
adjustments. For this, we initialize a new reservoir state which
is iterated for 50 steps following Eq. (22), i.e., the reservoir
input for 50 time steps is either aβ=0.2, aβ=0.3, and aβ=0.4

for POD-ESN or ξβ=0.2, ξβ=0.3, and ξβ=0.4 for CAE-ESN,
respectively. See, also, Fig. 8 where we display this crossover
dynamics for one example. As discussed above, with this
washout phase, we intend to transition to the run with a new β.
Starting from this reservoir state, the ESN will autonomously
predict TT = 700 future time steps with its output weights that
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FIG. 8. Time evolution of individual components of the reservoir
state vector r for inference of β = 0.3 in the POD-ESN algorithm.
During training, the reservoir is exposed to aβ=0.1. After the training
phase, W out is held fixed and the memory on the training inputs is
cleared, while 50 inputs of aβ=0.3 are given to the reservoir. Simul-
taneously, the reservoir builds up a memory of the unseen β = 0.3
case. Finally, the new initialized state and an initial input of aβ=0.3

is used to start the autonomous prediction phase. Line styles for the
different phases are given above.

TABLE II. Choice of optimal ESN hyperparameters h∗. These
are the leaking rate γ , the regression parameter λ, the number of
reservoir nodes, Nr , the reservoir density D, and the spectral radius �

of the reservoir network matrix W r . The values were chosen accord-
ing to a grid search. See Appendix C for more detailed information
on the grid search. We also present the hyperparameters for the base
case β = 0.1 for reference. We list the hyperparameter sets for each
β that gave the lowest NARE with respect to the buoyancy flux. Note
that the reservoir density D and the number of reservoir nodes, Nr ,
remain unchanged. Also, the spectral radius � > 1 for several cases.

β γ λ Nr D �

POD 0.1 0.8 0.5 1024 0.84 1.42
POD 0.2 0.8 0.5 1024 0.84 1.60
POD 0.3 0.8 0.5 1024 0.84 1.85
POD 0.4 0.9 0.5 1024 0.84 0.14
CAE 0.1 0.7 0.5 1024 0.84 0.25
CAE 0.2 0.4 0.5 1024 0.84 1.98
CAE 0.3 0.2 0.5 1024 0.84 0.81
CAE 0.4 0.1 0.5 1024 0.84 1.98

were learned for β = 0.1. We validate these predictions by a
direct comparison with either aβ=0.2(n), aβ=0.3(n), aβ=0.4(n)
or ξβ=0.2(n), ξβ=0.3(n), ξβ=0.4(n) with n ∈ [1, TT ], respec-
tively. For this, we apply the mean squared prediction error
(MSE) which, e.g., for the specific case of β = 0.2, is given
by

MSEh = 1

TT

TT∑
n=1

‖ŷ(n) − aβ=0.2(n)‖2
2. (27)

FIG. 9. POD case for inferring β = 0.2. Instantaneous snapshots of (a),(b) the local turbulent kinetic energy Ekin(x, z, t0), (c),(d) the vertical
velocity component uz, and (e),(f) the normalized buoyancy b∗, at time step n = 350 in the prediction phase. (a),(c),(e) POD reconstructions
with the most energetic NPOD modes of β = 0.2 (validation snapshot); (b),(d),(f) the corresponding ESN predictions.
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FIG. 10. Combined line-time average profiles of central quantities. (a)–(c) Turbulent kinetic energy, (d)–(f) root-mean-square profile of
vertical velocity fluctuations, (g)–(i) root-mean-square buoyancy fluctuations, and (j)–(l) convective buoyancy flux. The ESN predictions
(dashed lines) were chosen as to hold the median buoyancy flux NARE. They reproduce some low-order statistics of the truncated POD
reconstruction (solid lines) of β = 0.2 in the first column, β = 0.3 in the second column, and β = 0.4 in the third column. For the quantity
〈u′

z
2〉1/2

x,t , we also show the performance of the case of β = 0.0 with a different convection dynamics in (f).
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TABLE III. Normalized average relative errors [see Eq. (28)] of the inferred line-time average profiles shown in Figs. 10 and 13 for the
reduction by POD and CAE, respectively.

β Eh∗ [0.5〈u′2
x + u′2

z 〉x,t ] Eh∗ [〈u′2
z 〉x,t ] Eh∗ [〈b′′2〉x,t ] Eh∗ [〈u′

zb
′′〉x,t ]

POD 0.0 0.034 0.026 0.003 0.010
POD 0.1 0.022 0.008 0.002 0.013
POD 0.2 0.033 0.024 0.002 0.018
POD 0.3 0.015 0.009 0.003 0.018
POD 0.4 0.014 0.013 0.003 0.012
CAE 0.0 0.094 0.057 0.007 0.035
CAE 0.1 0.005 0.006 0.011 0.028
CAE 0.2 0.019 0.028 0.013 0.057
CAE 0.3 0.012 0.018 0.018 0.038
CAE 0.4 0.080 0.045 0.017 0.029

In addition, we take the normalized average relative error
(NARE) of the reconstructed fields u′

z, b′′, and u′
zb

′′. The def-
inition follows the work of [22,61] and is given, for example,
for u′

zb
′′ by

Eh[〈u′
zb

′′〉x,t ] = 1

Cmax

∫ 1

0

∣∣〈u′
zb

′′〉ESN
x,t (z) − 〈u′

zb
′′〉POD

x,t (z)
∣∣dz,

(28)

with the constant

Cmax = 2 max
z∈[0,1]

(∣∣〈u′
zb

′′〉POD
x,t

∣∣). (29)

The superscript indicates whether the field is reconstructed
[see Eq. (A2)] from the NPOD expansion coefficients (POD) or
the ESN predictions (ESN). This measure quantifies errors in
the line-time average profiles of the physical fields. Similarly,
one can define MSE and NARE for the CAE case by using ξ

instead of a, and the CAE instead of the POD reconstruction.
Our choice of the optimal ESN hyperparameters h∗ is listed

in Table II. We conducted grid searches of N, D, γ , and �.
See Appendix C for more details. For each setting, we addi-
tionally took 100 random realizations of the same reservoir
setting and computed MSEh and E [u′

zb
′′]. This sums up to

40 million individual training runs of the reservoir. The final
setting h∗ was chosen according to the lowest third quartile
of E [u′

zb
′′] of all 100 samples. We deliberately choose the

third quartile over the median, as it assures robust reservoir
outputs for different random weights W in, W r and therefore
more reliable predictions. Furthermore, we choose the NARE
of the buoyancy flux, due to its physical relevance, as opposed
to the MSE. Moreover, it is comprised of two quantities which
are prone to prediction errors.

1. Results for the POD-ESN algorithm

We reconstruct each component of the physical fields
ux, uz, and b via Eq. (A2) using the decompositions (18)–(20)
and (26). For the validation, we use the expansion coefficients
of the most energetic NPOD modes of the corresponding data.
For β = 0.2, instantaneous snapshots in the middle of the pre-
diction phase (the time step is n = 350) of the local turbulent
kinetic energy,

Ekin(x, z, t ) = 1
2

[
u2

x (x, z, t ) + u2
z (x, z, t )

]
, (30)

the vertical velocity component uz(x, z), and the normalized
buoyancy b∗(x, z) can be seen in Fig. 9. See, also, Appendix D
for β = 0.3 and 0.4. The ground truth, i.e., the POD data, is
shown for comparison. We find common features in the pre-
dicted and the validation fields. Even though some magnitudes
deviate, roll patterns in the kinetic energy can be identified
clearly in the prediction case. In the velocity field component,
vertical up- and downdrafts can be clearly identified. Their
width and shape differ slightly from the ground truth. More-
over, the thermal boundary layer at z = 1 is reproduced in
the predicted buoyancy field. Thermal plumes, which detach
primarily from the bottom wall, can also be identified. It is
clear that some features are not perfectly reproduced, but the
qualitative picture agrees fairly well. We emphasize that these
results were obtained for one particular realization out of the
100 reservoirs with the same hyperparameter setting, which
were taken typically. Nevertheless, both results are exemplary
for their setting h∗, as they correspond to the median NARE
of the buoyancy flux.

We now investigate the generalization capability of the
reservoir by computing line-time average profiles 〈·〉x,t of
the fluctuations of the corresponding fields for β = 0.2, 0.3,
and 0.4. These are important parameters of simulations of
large-scale turbulence. The profiles are given in Fig. 10 and
their corresponding NARE values are listed in Table III. We
find that in this setting h∗, the average reservoir produces
reasonable approximations to the profiles of the true low-order
statistics of all three β values. Despite some deficiency in the
profiles of turbulent kinetic energy and vertical velocity for
β = 0.3, the asymmetry due to the boundary conditions is
captured in all profiles. The buoyancy fluctuations are repro-
duced especially well. While the ESN reproduces the linear
decrease of the convective buoyancy flux, 〈u′

zb
′′〉ESN

x,t , it over-
shoots near the bottom of the cell for β = 0.2 as well as in
the upper cell for β = 0.3. Nevertheless, the inferred profiles
match the ground truth to a reasonable extent.

Surprisingly, the profiles of the β = 0.4 case are also cap-
tured very well, even though the dynamics from the training
and testing setup differ greatly, as discussed in Sec. II. This
suggests that the ESN-POD algorithm is capable to generalize
to substantially different convection setups. In order to test the
generalization capabilities to another distinct convection sys-
tem, we also investigated the adiabatic top lid case β = 0.0.
It is found that even though the adiabatic top lid case exhibits
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FIG. 11. Time series of selected POD expansion coefficients for
the case of β = 0.3. We compare the ESN prediction and the ground
truth (GT).

different convection dynamics, the trained ESN generalizes
well for the POD case. For brevity, we only show the inferred
root-mean-square fluctuations of the vertical velocity compo-
nent in Fig. 10(f) and list all NARE values in Table III.

Overall, the ESN generalizes well to unseen convection
data with similar boundary conditions, when using the low-
order POD model. The inferred fields of β = 0.2–0.4 (see,
also, Appendix D) reproduce features such as the thermal
boundary layer, up- and downdrafts, as well as roll patterns. In

the next section, we investigate how the ESN performs when
we combine it with a trained convolutional autoencoder.

Finally, we show examples of the temporal evolution of
selected POD expansion coefficients aβ=0.3

i (t ) in Fig. 11. It is
seen that the time series of the expansion coefficients of the
ground truth and the ESN output do not coincide for this un-
seen case. The characteristic frequency of aβ=0.3

i (t ) increases
with growing index i for both ground truth and reconstruction.
This is one reason why the statistical properties are eventually
reproduced well.

2. Results for the CAE-ESN algorithm

By decoding the inferred latent spaces using Eq. (B2)
and Eqs. (18)–(20) as well as Eq. (26), we reconstruct the
fields ux, uz, and b. Figure 12 shows instantaneous snapshots
of turbulent kinetic energy, vertical velocity, and normalized
buoyancy of inferred fields (ESN) and ground truth (CAE).
See, also, Appendix D for the cases β = 0.3 and 0.4. Here,
we find predicted and true fields almost indistinguishable in
terms of their features. Roll patterns, up- and downdrafts,
as well as thermal plumes detaching from the bottom are
reproduced very naturally. While the POD method introduces
some deviations in the inferred fields, the autoencoder repro-
duces the small-scale features of the convection patterns well.
Figure 13 shows the inferred line-time averaged profiles of the
physical fields. Their corresponding NARE values are listed in
Table III. Differently from the linear POD method, the CAE
is trained by a gradient descent procedure, which introduces
artifacts in the statistical profiles (solid lines). The loss of
information in the encoder-decoder structure thus impacts
the statistical features of the reconstructed flow. As a conse-

FIG. 12. CAE case for inferring β = 0.2. Instantaneous snapshots of (a),(b) the turbulent kinetic energy Ekin(x, z, t0), (c),(d) the vertical
velocity component uz, and (e),(f) the normalized buoyancy b∗, at time step n = 350 in the prediction phase. (a),(c),(e) CAE reconstructions
of β = 0.2 (validation snapshot); (b),(d),(f) the corresponding ESN predictions.
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FIG. 13. Combined line-time average profiles of central quantities. (a)–(c) Turbulent kinetic energy, (d)–(f) root-mean-square profile of
vertical velocity fluctuations, (g)–(i) root-mean-square buoyancy fluctuations, and (j)–(l) convective buoyancy flux. The autoencoder introduces
artifacts in the statistical profiles (solid lines) of β = 0.2 in the first column, β = 0.3 in the second column, and β = 0.4 in the third column.
The ESN predictions (dashed lines) were chosen such to hold the median buoyancy flux with respect to NARE. For the quantity 〈u′

z
2〉1/2

x,t , we
also show the performance of the case of β = 0.0 with a different convection dynamics in (f).
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FIG. 14. Probability density functions (PDF) of the ESN predic-
tions for β = 0.2 in comparison to the output of the data reduction
module, (a) the time coefficients aβ=0.2 of the POD approach, and
(b) the latent space state vector ξβ=0.2 of the CAE approach, re-
spectively. While the ESN captures the symmetric Gaussian PDF
of the POD time coefficients, the asymmetric PDF obtained from
the encoder is not captured. Note that all quantities are normalized
by their corresponding root-mean-square values, such that they are
directly comparable to a Gaussian PDF which is indicated by a solid
line.

quence, larger magnitudes of this measure can be observed for
most entries of the table.

It is possible that this error can be reduced by introduc-
ing an additional term to the loss function of the CAE that
penalizes large deviations from the mean profiles. This is not
applied here. The biggest artifacts can be seen in the buoyancy
flux in Figs. 13(j)–13(l). Nevertheless, we find the differences
acceptable, as the asymmetry and shape of the true profiles
are retained. The reservoir manages to reproduce the overall
trend of the line-time average profiles. It is seen that the
〈u′

zb
′′〉x,t profiles are less well predicted in the lower boundary

layer, where the maxima are overestimated by the reservoir.
Furthermore, we also find that the CAE-ESN algorithm man-
ages to reproduce the strongly fluctuating case of β = 0.4
fairly well. The velocity and buoyancy fluctuations are slightly
underestimated in the middle of the domain.

Additionally, we find that the generalization to the adia-
batic top lid case at β = 0 overestimates the amplitudes of the
profiles of turbulent kinetic energy (not shown) and vertical
velocity fluctuations; see Fig. 13(b) and Table III. The reason
for these deviations might be that a CAE always extracts
prominent features for the latent space which correspond to
the strong localized up- and downdrafts in the convection
layer. At the end of this section, we compare the probability
density function (PDF) of the ESN output to the target latent
spaces for the case β = 0.2 to better understand the dynamics
in the latent space. The POD-ESN case in Fig. 14(a) exhibits
symmetric Gaussian PDFs which are reproduced by the echo
state network prediction. The results of the CAE-ESN case
in Fig. 14(b), on the other hand, result in a strongly skewed
distribution that seems to be connected to sharp edges of
extracted features. These features are not captured in the PDF
of the ESN prediction, even though the distribution is also
slightly skewed. This may explain the poor ESN performance
in the CAE approach. The complex latent space of the CAE
might pose a harder learning problem for the ESN.

IV. CONCLUSIONS AND OUTLOOK

In this work, we explored the generalization property of
a machine learning method applied to a more complex con-
vection flow than standard RBC. In particular, we considered
echo state network algorithms applied to two-dimensional
convection with different constant-flux boundary conditions
at the top and bottom. To this end, we impose buoyancy fluxes
at the top and bottom boundaries which can be understood as
entrainment from the top and surface heating from the bot-
tom in an atmospheric convective boundary layer. The model
is hence characterized by the buoyancy flux ratio β, beside
Rayleigh and Prandtl numbers. An increasing value of β quan-
tifies a counterheating that stabilizes the top layer and results
in negative values of the mean convective buoyancy flux close
to the top boundary. Thus our model resembles properties that
are absent in a standard Rayleigh-Bénard setup with uniform
temperatures at the top and bottom. In particular, the top-down
symmetry of the boundary layers is broken; in this respect,
the present model is similar to a complex non-Boussinesq
convection flow. On the one hand, it is thus an ideal testing
bed for dynamic parametrizations of the buoyancy flux and its
low-order moments by machine learning algorithms. On the
other hand, it is still a simplification of an atmospheric layer,
in particular in view to its two-dimensionality.

We conducted a series of direct numerical simulations
for values of β that vary between 0 and 0.4, a range that
represents mid-day atmospheric conditions over land. The
spectrum reaches from an adiabatic top boundary without
incoming and outgoing flux (β = 0) to a rare case with a
very strong buoyancy gradient at the top (β = 0.4). The five
simulations result in flows with distinct features which are not
common in Rayleigh-Bénard convection. The mean buoyancy
is nearly constant throughout the middle of the domain, which
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resembles a mixed layer inside the convective cell. Further,
positive buoyancy gradients at the top and a linear decline with
height of the covariance of vertical velocity and buoyancy can
be observed, both features which are also observed in an atmo-
spheric boundary layer. The five simulations also display dif-
ferent dynamics and convection patterns, which demonstrates
the impact of the incoming top flux. These differences become
evident when considering the low-order statistics of the buoy-
ancy and its vertical flux. As β increases, so does the thickness
and magnitude of the stable layer at the top of the convec-
tion cell, and the intensity of the buoyancy fluctuations. At
β = 0.4, the convective motion is confined to a small region
near the bottom plate only, while the stably stratified fluid at
the top inhibits a significant fluid motion in the upper domain.

At the core of our combined POD/CAE–ESN machine
learning method is a recurrent neural network in the form of
an echo state network to predict the dynamics and low-order
statistics for the unseen simulation data at β = 0.2, 0.3, and
0.4. The echo state network is trained with simulation data
records at β = 0.1. In this way, we can explore the general-
ization properties of the recurrent neural network or, in other
words, the performance of the machine learning algorithm to
unseen data with different physical parameters.

We use two common approaches to reduce the amount of
DNS data for the prediction task: (1) the proper orthogonal
decomposition and the (2) convolutional autoencoder. Both
methods reduce the data to 300 degrees of freedom per snap-
shot. We find that the training of the echo state network with
data of the low-magnitude flux (β = 0.1) at the top yields
good approximations of the dynamics of the higher-magnitude
turbulent flux cases at β = 0.2, 0.3, and 0.4. This is the
case for both data reduction methods. We are also able to
reconstruct velocity and buoyancy fields very well. This is in
line with a low-order statistics of these fields which is also
properly reconstructed, for example, for the vertical profiles
of the buoyancy flux. In particular, the features of the β = 0.4
case are captured by the model, even though the training
and target setups exhibit very different dynamics. We also
studied the case of zero incoming flux at the top boundary,
β = 0.0, to test the generalizability of our machine algorithm
for a more distinct convection dynamics. The results indicate
a good performance for the POD-ESN case and a somewhat
poorer quantitative agreement for the CAE-ESN case.

We point out that the two low-order models differ in
their compression technique and hence yield different perfor-
mances, when combined with the reservoir computing model
in the latent space. While the POD preserves line-time aver-
age profiles, the autoencoder introduces small artifacts to the
statistics. Also, the quality of the predicted spatial features dif-
fers among the methods. The predicted POD time coefficients
capture coarse convection features, while the convolutional
autoencoder reproduces the natural convection patterns, i.e.,
the prominent features, very well. Moreover, the POD-ESN
case reproduces the statistics in the latent space well, while the
distribution of the latent space variables of the CAE-ESN case
becomes asymmetric. This can affect the training and general-
ization capability of the ESN, which requires further investi-
gation. We can conclude that for our setup, the data emerging
from one case with constant flux boundary conditions can be
used to infer at least statistical and spatial features of three dif-

FIG. 15. Spectrum of eigenvalues of the POD modes. (a) In-
dividual contribution of each POD mode to the total energy.
(b) Cumulative contribution. The green shaded area marks the con-
tribution of the first 300 modes.

ferent cases with different conditions. The echo state network
can thus serve as a reduced-order and scalable model that
generates the appropriate turbulence statistics without solving
the underlying Navier-Stokes equation of the flow.

The present study can be considered as one step in the
development of efficient reduced-order models of convection
dynamics by machine learning methods. Several directions for
future research are possible from this point. First, an extension
to the three-dimensional case is desirable. This requires a
stronger reduction of the data, which can be achieved by even
deeper convolutional encoder-decoder networks in combina-
tion with spatial filtering of the direct numerical simulation
data. Such a reduction could lead to a dynamical model of
a recent approach by [19], which reduced the convective
turbulent heat transport across a convection layer to a dy-
namic planar network. We also suggest to incorporate physical
laws or known flow properties in the training routine of the
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TABLE IV. Mean squared error loss of the CAE reconstruction after 1200 epochs of training. Each CAE was trained on 8000 snapshots of
(u′

x, u′
z, b′′) for their corresponding β. The validation loss was computed on 2000 different snapshots.

β 0.0 0.1 0.2 0.3 0.4

Training loss (%) 6.0 × 10−4 6.2 × 10−4 7.1 × 10−4 8.1 × 10−4 5.4 × 10−3

Validation loss (%) 3.1 × 10−3 2.66 × 10−3 2.76 × 10−3 2.72 × 10−3 1.37 × 10−2

autoencoder, as mere mimicking of the input fields produces
artifacts in the statistical features of the reconstruction. This
has been done in several works, e.g., in Ref. [62]. Moreover,
one should keep the balance between the demand of physical
reality and computational expense as to keep the use of a
low-order model meaningful.

The approach presented in this manuscript was only con-
cerned with the generalization capability of the recurrent
neural network. Future works will also include the data
reduction method into the analysis of the generalization ca-
pabilities. Here, one might follow the conventional transfer
learning approach of neural networks [63], where a single
neural network is pretrained such that the actual training to
the different physical systems does not require as much data,
as if one would train a CAE for all systems, as it is done in
this work. Furthermore, by definition, neural networks are not
designed to process data that live on a continuum of different
lengths and times, a property which is immanent to turbulent
flows. Architectures which can represent the multiscale nature
of turbulence are required. Studies in these directions are
currently underway and will be reported elsewhere.

Code used for this work available on GitHub [58].

ACKNOWLEDGMENTS

This work is supported by Project No. P2018-02-001
“DeepTurb – Deep Learning in and of Turbulence” of
the Carl Zeiss Foundation. Partial support for J.P.M. was
provided by Grant No. PID2019-105162RB-I00 funded by
MCIN/AEI/10.13039/501100011033. The authors grate-
fully acknowledge the Gauss Centre for Supercomputing e.V.
[64] for funding this project by providing computing time
through the John von Neumann Institute for Computing (NIC)
on the GCS Supercomputer JUWELS at the Jülich Supercom-
puting Centre (JSC).

APPENDIX A: PROPER ORTHOGONAL
DECOMPOSITION

Technical details of both data reduction techniques are
discussed in the following appendices to keep the manuscript

self-contained. We apply the POD in the form of the method
of snapshots [46,47] on the vector g = (u′

x, u′
z, b′′)T , such that

its kth component can be written as

gk (x, z, t ) =
Ndof∑
i=1

ai(t )�(k)
i (x, z). (A1)

This linear method decomposes the scalar field gk into time-
dependent coefficients ai(t ) and spatial modes �

(k)
i (x, z), such

that the truncation error is minimized. The degrees of freedom
Ndof can then be reduced, by taking only NPOD 
 Ndof modes
and coefficients with the largest variance into account,

gk (x, z, t ) ≈
NPOD∑
i=1

ai(t )�(k)
i (x, z). (A2)

As mentioned above, we consider the NPOD = 300 most en-
ergetic POD time coefficients as the input for the ESN. The
cumulative contributions of the first NPOD = 300 POD modes
for the four cases of β = 0.1, 0.2, 0.3, and 0.4 capture then
82.4%, 80.2%, 78.4%, and 73% of the original total energy
(kinetic energy plus temperature variance), respectively, see
also Fig. 15.

APPENDIX B: CONVOLUTIONAL AUTOENCODER

An autoencoder is a feed-forward neural network which
is trained to reproduce its network input g as network out-
put [31,48]. Since the network should not copy its inputs to
the output layer only, an intermediate bottleneck structure is
introduced, such that the original information is compressed
to an encoding or latent low-dimensional space. Therefore,
the autoencoder consists of two parts which are trained as
one network. The encoder f compresses the high-dimensional
inputs to a low-dimensional representation,

ξ = fθencoder (g), (B1)

where ξ ∈ RNCAE is the encoding or latent space and θencoder

includes all trainable weights and biases of the encoder net-
work.

TABLE V. Size of convolutional channels, kernel, and max pooling (MP) kernel for each layer in the autoencoder network. The channels
are given in the form (input channel, output channel), while both the convolutional and MP kernel are given by (height, width). The shape of
the input data was (3,30,720), where 3 stands for the included turbulence fields.

Conv. Conv. Conv. Conv. Conv. Conv. Conv. Conv. Conv.
Layer No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9

Channels (3,8) (8,16) (16,16) (16,32) (32,16) (16,16) (16,8) (8,3) (3,3)
Kernel (7,7) (5,5) (3,3) (3,3) (3,3) (3,3) (3,3) (5,5) (7,7)
MP kernel (2,1) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,1)
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The decoder h then attempts to decode the encoded latent
space and reconstruct the original information,

gAE = hθdecoder (ξ ) = hθdecoder [fθencoder (g)]. (B2)

Here, gAE is the autoencoder reconstruction and θdecoder in-
cludes all trainable weights and biases of the decoder network.
We use a convolutional autoencoder (CAE) which makes
use of convolutional layers that have proven to be extremely
useful in pattern detection and classification of images [65].
While the ξ can be understood as a low-dimensional repre-
sentation of the input, similar to the POD time coefficients a,
the trained weights and biases correspond to the POD spatial
modes which contain information on how to decode the la-
tent space. The training of the CAE requires backpropagation
of errors through the convolutional networks. An optimally
working CAE minimizes the difference between original input
and final output, gAE ≈ g.

As for the POD approach, we take snapshots of g =
(u′

x, u′
z, b′′)T of β = 0.1–0.4 as input for their own CAE. Fi-

nally, one can use the trained encoder to translate the flow
dynamics into dynamics of the latent space ξ (t ). We choose
an encoding dimension of NCAE = 300 and train the network
with 8000 snapshots of g and use 2000 further snapshots to
validate its performance. The training and validation mean
square error loss of each CAE is listed in Table IV. Out of
the 2000, to the CAE unseen snapshots, we sample the 700
time steps of ξβ=0.1(t ), used for training the ESN, and 700
time steps of ξβ=0.2(t ) and ξβ=0.3(t ), used for validation of
the ESN predictions.

We use a CAE with four convolutional layers and one
dense layer in the encoder and five convolutional layers and
one dense layer in the decoder. Except for the last layer in
the decoder, each convolutional layer is complemented by
a max-pooling (MP) operation, in order to downsample the
input data. Further, all layers are followed by a batch normal-
ization and dropout layer. We find that batch normalization
stabilizes the training process and dropout reduces the effect
of overfitting, where the neural network shows poor perfor-
mance on the validation data. The activation function of the

TABLE VI. ESN grid search range of each hyperparameter that
was studied. The number of samples indicates how many different
values of each hyperparameter were studied.

N, D, γ �

Range [512, 4096] [0.1, 1.0] [0.1, 1.0] [0.1, 2.0]
No. samples 4 100 10 100

last layer in both the encoder and decoder was sigmoid, while
all other layers were followed by a parametric rectified linear
unit (PReLU) [66]. The channel size, as well as convolutional
and max pooling kernels, are listed in Table V. Using this
architecture, the total number of trainable weights and biases
amounts to 4.96 × 106.

The autoencoder is trained using the ADAM optimizer [67]
with a learning rate 10−5, batch size 64, and a L2-norm penalty
term with penalty parameter 10−6. The loss function that was
minimized was chosen to be the mean square error between
the input and output fields. Moreover, the input data were
scaled to the range [0, 1] before they were passed to the input
layer of the CAE. Finally, each network was trained for 1200
epochs on 2 GPUs and took about 106 min to finish.

APPENDIX C: ECHO STATE NETWORK GRID
SEARCH PROCEDURE

In order to find an optimal reservoir for both reduction
methods and both β values, we conducted grid searches on
four important reservoir hyperparameters, namely, N, D, γ ,
and �, when training the case of β = 0.1. The range and
number of different values of each hyperparameter study are
listed in Table VI.

APPENDIX D: FIELDS FOR β = 0.3 AND 0.4

For completeness, we show in Figs. 16–19 the results for
β = 0.3 and β = 0.4 that correspond to those for the case β =
0.2 in the main text. See Figs. 9 and 12 for comparison.
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FIG. 16. POD case for inferring β = 0.3. Instantaneous snapshots of (a),(b) the local turbulent kinetic energy Ekin(x, y, t0 ), (c),(d) the
vertical velocity component uz, and (e),(f) the normalized buoyancy b∗, at time step n = 350 in the prediction phase. (a),(c),(e) POD
reconstructions with the most energetic NPOD modes of β = 0.3 (validation snapshot); (b),(d),(f) the corresponding ESN predictions.

FIG. 17. CAE case for inferring β = 0.3. Instantaneous snapshots of (a),(b) the turbulent kinetic energy Ekin(x, y, t0 ), (c),(d) the vertical
velocity component uz, and (e),(f) the normalized buoyancy b∗, at time step n = 350 in the prediction phase. (a),(c),(e) CAE reconstructions
of β = 0.3 (validation snapshot); (b),(d),(f) the corresponding ESN predictions.
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FIG. 18. POD case for inferring β = 0.4. Instantaneous snapshots of (a),(b) the local turbulent kinetic energy Ekin(x, y, t0 ), (c),(d) the
vertical velocity component uz, and (e),(f) the normalized buoyancy b∗, at time step n = 350 in the prediction phase. (a),(c),(e) POD
reconstructions with the most energetic NPOD modes of β = 0.4 (validation snapshot); (b),(d),(f) the corresponding ESN predictions.

FIG. 19. CAE case for inferring β = 0.4. Instantaneous snapshots of (a),(b) the turbulent kinetic energy Ekin(x, y, t0 ), (c),(d) the vertical
velocity component uz, and (e),(f) the normalized buoyancy b∗, at time step n = 350 in the prediction phase. (a),(c),(e) CAE reconstructions
of β = 0.4 (validation snapshot); (b),(d),(f) the corresponding ESN predictions.
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