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Magnetization of high-density plasma with a jet velocity of hundreds of km/s
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High magnetic fields at the kilotesla scale have been experimentally generated and finding methods to fully
embed such fields into high-density plasma is interesting for magnetically assisted a fast ignition scheme of
inertial confinement fusion, laboratory astrophysics, and magnetically guided fast electron beam for broad
applications. We investigate diffusion and embedment of an external magnetic field inwards a high-density
plasma by analysis and simulation. By introducing the magnetic Péclet number, dimensional analysis indicates
that the magnetizing process is sensitive to the jet velocity, temperature, and size of the plasma and gives a
phenomenological scaling law of the magnetic field embedment time with an arbitrary jet velocity. The analytical
results are verified by magnetic field simulation and applied in 100-g/cm3, 100-µm-radius plasmas with a
jet velocity of 0–400 km/s and a temperature of 50–500 eV, typically adopted in experiments. Attributed to
an effective electric field from frame transformation, the magnetic field embedment time can be significantly
reduced by one order of magnitude when a jetting plasma is adopted with a velocity of hundreds of kilometers
per second, e.g., from 5.5 ns in a static plasma to a 0.5 ns timescale in a jetting plasma of 200 km/s. The promoted
embedment process favors for various applications mentioned above.

DOI: 10.1103/PhysRevE.106.055211

I. INTRODUCTION

Fast ignition (FI) [1–3], an important scheme of inertial
confinement fusion (ICF), has been widely studied since the
early 1990s due to its lower driven energy requirement in
theory than the traditional central ignition ICF scheme [4,5].
Unlike the central ignition scheme, FI does not need the for-
mation of a hot spot [6,7] but uses picosecond (ps) laser pulses
to irradiate the compressed cold deuterium–tritium (DT) fuel
and generate the fast electron beam (FEB), which is expected
to heat the high-density plasma rapidly and create a spark for
ignition. Nevertheless, experiments from different facilities
[8–11] indicate that in the common FI scheme, the preplasmas
formed by the picosecond laser prepulse would significantly
enhance the divergence of the FEB, leading to an intolerable
decrease on the energy coupling efficiency from the ps laser
beam to the compressed target. Therefore, it is essential to
restrain the FEB divergence in FI scheme. Apart from heating
the compressed target in FI, FEB can be applied to generate
intense Kα [12–15] and bremsstrahlung [16,17] x ray. Both of
these radiation sources are applied to diagnostics in ICF and
other detection fields extensively [18,19]. To raise the yield
of x-ray radiation generated in the compressed plasma, an
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effective measure for constraining the divergent behavior and
energy regime of FEB is also in demand.

Based on the requirements above, the magnetically as-
sisted fast ignition (MAFI) schemes [20,21] and magnetically
guided FEB [22] have gradually caught broad attention since
the early 2010s. Loading an external strong magnetic field
can alter the evolution process and transport characteristics
in high-density plasma observably [23]. Previous works have
proven that the strong magnetic field parallel to the igni-
tion laser propagation direction can confine the macroscopic
beam divergence angle of the FEB produced by picosecond
pulses [20], create an ultra-high-energy-density state [24],
and reduce the growth rate of Weibel instability [25]. In
addition, in sufficiently magnetized plasma, the laser field
can be converted to whistler mode [26–28], which can be
applied to trigger thermonuclear fusion [29,30]. Additionally,
a proper configuration of the external field can lower the
impact on coupling efficiency caused by the magnetic mirror
effect [21,31]. To achieve a higher transport efficiency of
laser-driven FEB, various MAFI and other derivative schemes
have been developed [21,30–32] and part of them have at-
tained creditable results in experiments [33–37]. A neutron
yield increase of 30% has been observed in the cylindrical
spherical implosion experiment with seed magnetic fieldat the
OMEGA Laser facility [34]. Over the past few years, signif-
icant progress has been made in the magnetized ICF field.
The cylinder implosion experiment on OMEGA shows that
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an axial magnetic field at the optimal amplitude can increase
the DD neutron yield by up to 44% [38], and extended-
MHD simulations of both cylindrical and spherical implosion
schemes reveal that enhancements of ion temperature in hot
spot and neutron yield are approachable with the application
of external B field [39–41]. Some recent works have also made
detailed investigations into the features on electron transport
in magnetized ICF scheme [35,36]. Fojioka et al. generated a
magnetic field strength of 0.6 kT with a capacitor-coil target
to guide FEB in the FIREX experiment, reaching a 10-fold
boost in pciosecond pulse heating efficiency [37].

Although the external magnetic field is conducive to the
transport process of FEB in high-density plasma in many
aspects, its diffusion and embedment to the plasma interior
requires a time period. In particular with MAFI, the time
period from fuel compression to ignition is about 10 ns, which
imposes limitations on magnetic field embedment. Embed-
ding the magnetic field to the plasma too late would bring
about a failure in the FEB transport into the high-density
plasma, while premature generation of the strong external
field could trigger new magnetohydrodynamic instabilities
during fuel compression [42–45], and the vectorial property
of magnetic field would broke the spherical symmetry in some
scenarios of MAFI. Hence, for each specific MAFI scheme
and magnetically guided FEB, a tailored field loading strategy
is necessary. Recently, Zhang et al. proposed a double-cone
ignition scheme [46] (DCI), where the guidance of the FEB
by the external magnetic field is a crucial step. The fusion
plasma in DCI and impact ignition [47] has a high jet veloc-
ity u ∼ 102 km/s, so the evolution of magnetic field in both
static and jetting plasma under an external field is worthy of
studying.

In this article, we investigate the external magnetic field
embedment and diffusion process in high-density plasma by
analytic model and numerical simulation. Compared with the
static plasma, the field embedding process in plasma with a
high jet speed is dramatically expedited. When the plasma
moves, the Lorentz term u × B appears in the transforma-
tion to the rest frame, leading to an effective electric field
contributing to the ohmic current. Such an extra field can
weaken the induced magnetic field, and the characteristic time
of magnetization is eventually reduced from 5.5 to 0.5 ns in
typical high-density plasma.

The article is organized as follows. In Sec. II, we be-
gin with a simplified theoretical model based on the typical
characteristics of laser-compressed plasma and give the gen-
eral equations and self-consistent boundary conditions of
magnetic diffusion under quasistatic approximation [48]. In
Sec. III A, we attain an analytic solution in the case of
spherical static plasma with u = 0 and show the features of
magnetic field diffusion under typical parameters. To reveal
the influence on evolution of magnetic field from jet velocity,
a dimensionless number Pem is introduced in analogy with
Péclet number in hydrodynamics. In Sec. III B, a jet velocity is
taken into consideration, and a “magnetic convection term” is
then added into the magnetic diffusion equation. With numer-
ical simulation, we also compare the magnetic field loading
behavior in typical high-density plasma with and without a jet
velocity, demonstrating that the high jet velocity can strongly
promote the loading process. In Sec. III C, to approach a more

general temporal picture of external field penetration, a scal-
ing relationship is developed for embedment time of magnetic
field at the center of plasma. We obtain a phenomenological
formula for an arbitrary Pem according to the asymptotic be-
havior of magnetic fields in the limit of both Pem → 0+ and
Pem → +∞. Finally, it is the summary section.

II. ANALYTIC MODEL

To describe the issue addressed above, we suppose the
following:

(a) Continuous medium hypothesis is valid in high-density
regime, since we focus on magnetic field loading and do not
take into account strong unequilibrium and nonlocal effects
like fast electron transport. Thus, macro parameters like the
electrical conductivity σ can describe the features of high-
density plasma.

(b) The macroscopic flux can be ignored in the process
of magnetic field diffusion, due to a quasispherical symmetry
and its high density and high thermal pressure, which is far be-
yond the magnetic pressure B2/2μ0 of the field generated by
a coil target. Under this assumption, effects such as pressure,
viscosity, and heat flow are omitted, i.e., fluid equations are
not considered here. It is valid before the emergence of nonlin-
ear hydrodynamic effects in the high-density region. Once the
movement of plasma is decoupled from the electromagnetic
field, the magnetic field can be normalized, inferring that the
absolute value of the background field would not change the
embedment behavior.

In the assumptions above, the high-density plasma can be
regarded as a rigid nonideal conductor, whose magnetization
process can be described with the Maxwell equations in the
continuous medium.

For practical experiments in laboratory astrophysics and
MAFI, a usual strategy to generate a strong kilotesla mag-
netic field is to use a nanosecond-pulse-driven capacitor-coil
target [37,49,50], and Morita et al. [51] have researched the
embedment process in gold cone of magnetic field gener-
ated by such a target in detail. Based on their results, the
characteristic evolution time of the external field is �t �
2 ns, and the corresponding effective frequency and wave-
length are ω � 2π/�t � 109/s and λ � 10 cm, respectively.
Consider typical parameters in FI, DCI, and laboratory astro-
physics experiments, length of the high-density region 2a �
2 × 200 µm, temperature Te = Ti � 100–500 eV, and mass
density ρ � 100 g/cm3. With these parameters, the model can
be further simplified.

First, because 2a � λ, the displacement current in the
background plasma can be omitted at any time, which means
magnetostatic field equations are valid, i.e.,

∇ · B = 0, ∇ × H = 0. (1)

Second, both the electron and ion plasma frequency
ωpe, ωpi � ω. The period of magnetic field is far longer than
the characteristic time of the microscopic conduction. Further-
more, on account of the high density and low temperature,
the electron free path is extremely short, which leads to the
assumption that relationship between field and current is local.
The current density j at an arbitrary point r0 only relies on
the fields B(r0) and E(r0). Especially, in static plasma, one
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can calculate the current density with the Ohm’s law j(r) =
σE(r). Presume that the Spitzer formula [52],

σ = (4πε0)2(kBTe)3/2

πZe2√me ln 

, (2)

is valid in the high-density plasma, where ln 
 is the Coulomb
logarithm, Z is the average ionization of plasma, and Te is
the electron temperature. Under the typical parameters we
can evaluate ln 
 = 5 which is a “safe” value for the clas-
sical Spitzer-Harm (SH) formula and this treatment does not
change the basic conclusion in our work, as shown in the
discussion section. The conductivity ranges from 2.1 × 106 to
2.3 × 107 S/m, while the external field generated by the coil
target gives the value ωε0 = 10−2–10−1 S/m � σ . There-
fore, the displacement current in high-density plasma can also
be ignored.

When all the statements above are tenable, the field
is quasistatic and the current in the high-density region
obeys Ohm’s law. In this case, we can use the pre-Maxwell
equations,

∇ · D = 4πρ, ∇ × E = −∂B
∂t

,

∇ · B = 0, ∇ × H = j.
(3)

Since the high-density plasma considered here is in
the paramagnetic metallic fluid phase [53], the relative
magnetic permeability μr can be viewed as identity,
and the solenoidal condition is ∇ · B = μ∇ · H = 0. With
Eq. (3), the well-known magnetic diffusion equation can be
derived:

η∇2H = ∂H
∂t

, (4)

where η = 1/μσ is the magnetic diffusivity and we regard it
as a constant scalar in this ideal model. If the high-density
plasma has a jet velocity u � 102 km/s alone z axis, then
the transformation of pre-Maxwell equations (3) from the
laboratory to the rest frame [54] gives that

j′ = σE′, E′ = γ (E + u × B). (5)

Due to the relativity factor β = u/c ∼ 10−3, γ � 1, the
relativistic effects can be ignored except for electric field E′.
For a constant speed u = uêz, (H · ∇)u = H(∇ · u) = 0 and
in the rest frame we obtain the “magnetic convection-diffusion
equation,”

∂H′

∂t
+ (u · ∇)H′ = η∇2H′, (6)

and its boundary condition n × [H′(e) − H′(i)] = j′s, n ·
[B′(e) − B′(i)] = 0 becomes time independent. Here the
superscripts “e” and “i” denote the external and internal
field, j′s is the surface current density, n is normal vector
of the boundary surface of high-density region, and the
prime marks a physical quantity in the rest frame. If not
particularly indicated, then the discussion will be limited in
the rest frame and all the primes will be omitted in the rest of
this article. For typical high-density plasma, the skin depth
δ = 1/Re

√
iωμ(σ + iωε) � 11.9 µm, which suggests that

the induced current does not concentrate on the surface and

js can be ignored. The boundary condition finally becomes
H(e) = H(i).

It should be noted that the embedment process of B
field in plasma could be more complicated, which requires
systematic and extended MHD simulations [40,55,56]. Equa-
tion (6) only contains resistive diffusion (with a static
isotropous conductivity) and advection of a uniform bulk jet
velocity.

In this case, we assume a spherical symmetry of high-
density region with a radius of a. Because of the nonzero
values of Christoffel symbols �k

i j in spherical coordinate,
components of field are coupled in Eq. (4) and Eq. (6), making
the problem much more difficult than the convection-diffusion
process of a scalar field. To describe the magnetic field within
the high-density region, we introduce the toroidal-poloidal
decomposition (TPD) method commonly used in tokamak and
dynamo research [57]. According to the Helmholtz-Hodge
decomposition theorem, a smooth nondivergent vector field
H = T + P can be divided into a poloidal field P and a
toroidal field T. In the spherical coordinate, the two fields can
be expressed as

T = ∇ × (rT ), P = ∇ × ∇ × (rS), (7)

where r = rêr is position vector and T = T (r, θ, ϕ), S =
S(r, θ, ϕ) are scalar fields.

The same decomposition can be applied to a nondi-
vergent vector field v = t + p, t = ∇ × (rt), p = ∇ × ∇ ×
(rs). After tedious vector and tensor differential calcu-
lation, the well-known Bullard-Gellman equations [58] is
obtained:

(∂t − ηDγ )Sγ =
∑
α,β

[(sα, Sβ, Sγ ) + (sα, Tβ, Sγ )

+(tα, Sβ, Sγ ) + (tα, Tβ, Sγ )], (8a)

(∂t − ηDγ )Tγ =
∑
α,β

[(sα, Sβ, Tγ ) + (sα, Tβ, Tγ )

+(tα, Sβ, Tγ ) + (tα, Tβ, Tγ )]. (8b)

The subscripts γ represents for the (lγ , mγ ) coefficient
of spherical harmonics and radical differential notation
Dγ = ∂2

r + (2/r)∂r − lγ (lγ + 1)/r. The parenthesis terms
on the right-hand sides of Eqs. (8a) and (8b) are TPD
spectral interaction terms, which have been discussed in
Ref. [57].

Besides, the magnetic polarization cannot be ignored near
the surface of high-density plasma, it is essential to take
the change of background magnetic field into consideration.
Equation (1) suggests that we can introduce a magnetic scalar
potential φ to describe the field in the background plasma. We
suppose that H(e) has the form of H(e) = −∇φ(r, t ) + H∞,
and φ = 0,∇φ = 0 at the limit of |r| → ∞. Considering
that the external magnetic field is generated by the coil tar-
get, whose radius is much larger than the width of typical
high-density region, the magnetic field at infinity is close to
uniform along the x axis: H(r → ∞) = H∞(t ) = H∞(t )êx =
H∞(t )(sin θ cos ϕêr + cos θ cos ϕêθ − sin ϕêϕ ). The plasma
has a uniform velocity of u = uêz = u(cos θ êr − sin θ êθ ).
With the spherical harmonic expansion of potential S =∑

l,m Sm
l (r)Y m

l (θ, ϕ), T = ∑
l,m T m

l (r)Y m
l (θ, ϕ) as well as
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φ = ∑
l,m φm

l (r)Y m
l (θ, ϕ), we obtain the self-consistent

boundary conditions of their components Sm
l and T m

l at r = a,
which denote the coefficients of spherical harmonics Y m

l . We
present the detailed derivation in Appendix A and give the
results:

T m
l

∣∣
r=a = 0, (9a)[

a

l +1

∂Sm
l

∂r
+ Sm

l

]
r=a

=
{

0, (l, m) �= (1,±1)

−
√

6ma
8 H∞(t ), (l, m) = (1,±1)

.

(9b)

Notice that these boundary conditions are based on the
quasistatic approximation, the boundary field configuration,
and the geometry assumption.

We set that there is no magnetic field in high-density
plasma at t = 0. The initial value of TPD coefficients Sm

l (r <

a), T m
l (r < a) are zeros, and the initial external field can be

expressed with H∞0 = H∞(t = 0):

H(e)
0 = H∞0êx − H∞0

2

(a

r

)3
(2 sin θ cos ϕêr

− cos θ cos ϕêθ + sin ϕêϕ ). (10)

Once the temporal variable H∞(t ) has an explicit form,
Eqs. (8a), (8b), (9a), and (9b) give a unique solution, which
can be solved numerically.

III. EVALUATION IN STATIC AND JETTING PLASMA

A. Static plasma

First, we focus on the condition of u = 0 in static
plasma, where Eq. (6) degenerates to Eq. (4), and all of
the coupling terms on the right-hand sides of Eqs. (8a)
and (8b) are vanished, i.e., the spectral interaction equa-
tions are decoupled. Due to the form of (9a) and (9b),
for any T m

l and Sm
l with (l, m) �= (1,±1), both the equa-

tion and boundary conditions are homogeneous, resulting in
a trivial solution. For S±1

1 , nondimensionalizing this prob-
lem with r̃ = r/a, t̃ = t/(a2η−1), the solution is given by
Eq. (11), where jν represents for the spherical Bessel function
of the order ν and the tilde symbol signs a dimensionless
variable,

S±1
1 = ∓

[
H∞(t̃ )

2
√

6
ar̃ + a

2
√

6

∑
n=1

Cn(t̃ )
j1(nπ r̃)

nπ

]
, (11)

where

Cn(t̃ ) = (−1)n · 6e−(nπ )2 t̃

×
[

H∞0 +
ˆ t̃

0
H ′

∞0(τ̃ )e(nπ )2 τ̃ d τ̃

]
.

Substituting the results in Eq. (11) into Eq. (7), one can ob-
tain the the components of magnetic field in the high-density

region:

Hr = cos ϕ sin θ

[
H∞(t̃ ) +

∑
n=1

Cn(t̃ )
j1(nπ r̃)

nπ r̃

]

Hθ = cos ϕ cos θ

{
H∞(t̃ ) +

∑
n=1

Cn(t̃ )

2

[
j0(nπ r̃) − j1(nπ r̃)

nπ r̃

]}

Hϕ = − sin ϕ

{
H∞(t̃ ) +

∑
n=1

Cn(t̃ )

2

[
j0(nπ r̃) − j1(nπ r̃)

nπ r̃

]}
.

(12)

To grasp a clearer picture of the diffusion process, we
inspect a special case where H∞(t ) ≡ H∞0 = Hback. The
convolution term will vanish and the magnetic field inside
high-density plasma will be consistent with the background
field Hback at infinity points eventually. For the field generated
by a coil target, such a steady background field assumption
is appropriate around the plateau of field strength. Under the
irradiation of a nanosecond pulse, such a plateau lasts for
approximately 0.5 ns, shown in Ref. [51]. Unless indicated
otherwise, we always consider the field at infinite point time
independent for simplicity. We calculate the first 40 terms
of the series in Eq. (12) with the typical parameter values
mentioned in Sec. II, and plot the temporal evolution of the
field component Hx in Fig. 1(a) and the strength of Hx along
the x axis with kBT = 100 eV in Fig. 1(b).

The timescale of field embedding into the center of plasma
is around 10 ns, which is close to the compression laser beam
duration in ICF. Apart from that, the dimensional analysis
gives that the characteristic time of diffusion �t = a2/η ∝
a2T 3/2, indicating that the diffusion process is significantly
sensitive to the temperature of plasma. Actually, increasing
the temperature to kBT = 500 eV, 61 ns is needed for Hx

at central point reaching 0.75Hback, which is far longer than
typical ICF implosion time. Hence, for plasma with high
temperature, embedding magnetic field needs to be in advance
of compression for MAFI or DCI, which is unfavorable. If
the Spitzer formula (2) still works, then a sufficient low tem-
perature or an extremely low preheating is indispensable for
the magnetically guiding of FEB generated by the picosecond
laser pulse. Note that comparing with Ref. [51], we do not
consider the time evolution of electric conductivity due to
ohmic heating during the magnetic diffusion process, which
requires a detailed calculation of the equation of states of the
cold dense DT plasma.

B. Plasma with a jet velocity

When the plasma has a jet velocity u, the convection effect
starts to appear. In the usual convection-diffusion equation,
Péclet number (Pe) is a fundamental dimensionless number
which describes the ratio of convection and diffusion transport
speed. Here we introduce the magnetic Péclet number Pem as
in Eq. (13) with a similar definition,

Pem ≡ au/η = μ0σau ∝ σau. (13)

Substituting a = 100 µm, u = 200 km/s, and kBT =
100 eV into (13), we obtain Pem = 51.849, which suggests
that the magnetic “convection” takes a dominant position.
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FIG. 1. (a) The temporal evolution of the magnetic field Hx at
the plasma center with temperature kBT varied from 100 to 500 eV
(corresponding to the curves with different colors). (b) The distribu-
tion of Hx along the x axis with kBT = 100 eV at different moments
(corresponding to the curves with different colors).

Redefine t̃ = t/(au−1), and the dimensionless form of Eq. (6)
is given by

∂H
∂ t̃

+ (ũ · ∇̃)H = Pe−1
m ∇̃2H. (14)

With a steady jet velocity, ũ = û is the unit vector. To attain
a numerical solution of Eq. (14), the complex calculation of
the coupling terms in Bullard-Gellman equations is inevitable.
Fortunately, when the jet velocity u = uêz is steady, it is
easy to verify that the TPD of u is s(r < a) = (ur cos θ )/2 =
urY 0

1 /2
√

3, t(r < a) ≡ 0, leading to zero values of those cou-
pling terms except for (s0

1, Sβ, Sγ ), (s0
1, Tβ, Sγ ), (s0

1, Sβ, Tγ ),
and (s0

1, Tβ, Tγ ). After lengthy calculations, it is confirmed
that Eq. (8a) and Eq. (8b) can be simplified to two sets of
cascade equations (S1

l , T 1
l ), (S−1

l , T −1
l ) containing infinite un-

known scalar functions where l ∈ N∗. The cascade structure
of the simplified equations is shown in Fig. 2, and the accurate
form of these equations is given in Appendix B.

Even though the velocity u is fixed, it is hard to obtain
an analytical solution of those equations. Here we investigate
the jetting plasma by simulations. The simulation domain is a
sphere with the radius of 3a = 300 µm, and the high-density
plasma is located at the center cut at a sphere with r � a. We
take σp = 2.06 × 106 S/m (corresponding to kBT = 100 eV)
and u = uêz. The background electric conductivity is set to
σb = 0.1 S/m for the rest of domain. Based on Eq. (10), the

FIG. 2. The cascade structure of coefficients of TPD when the
spherical plasma has a uniform velocity u = uêz

induced field in the background shell is proportional to (a/r)3

and has a ignorable strength of ∼0.037Hback at r = 3a. Hence,
we set the boundary field H(e)(r = 3a) = Hback êx directly and
the initial values H(i)(t = 0) ≡ 0 and H(e) as Eq. (10). It
should be noticed that simulations which we present in this
article also use a rigid conductor model, which means that the
conductivity keeps uniform and static and no MHD physics
except the resistive diffusion and the advection of bulk plasma
is considered here. Figure 3 shows the temporal evolution of
magnetic field at different positions in the high-density region
with both u = 0 and u = 200 km/s. For comparison, other
parameters are set identically. The convection effect strongly
promotes magnetic field embedment and reduces the time cost
for magnetic field embedded at central point reaching 75%

FIG. 3. (a) The normalized magnetic field Hx/Hback at the center
of plasma with u = 0 and u = 200 km/s, respectively. (b) Distribu-
tion of Hx/Hback on z axis with u = 200 km/s at different moments.
The temporal evolution of Hx/Hback on x axis with the jet velocity
(c) u = 200 km/s and (d) u = 0.
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Hback from 5.5 ns (with u = 0) to ∼0.5 ns [u = 200 km/s, as
observed in Fig. 3(a)]. Figure 3(b) indicates that the temporal
evolution of magnetic field Hx parallel to the jet velocity is
similar with a normal convection-diffusion system of a scalar
field in hydrodynamics. The field is “propelled” along the +z
direction, and the induced magnetic field caused by surface
effect is smoothed gradually.

The analytical solution in Sec. III A is consistent with
results in Fig. 3(d), while the evolution shown in Fig. 3(c)
varies greatly due to the high jet velocity. Although the mag-
netization processes are similar at the early stage (t � 0.1 ns),
the field strength at the center of plasma with u = 200 km/s
soars dramatically from t = 0.3 to 0.6 ns, much faster than
the steady situation. Such a distinction can be ascribed to the
rapid move of the “magnetic diffusion front” shown in 3(b),
which reaches the plasma center at around 0.3 ns. Combining
Figs. 3(b), 3(c) and 3(d), it can be confirmed that “convection”
rather than diffusion process primarily contributes to the rapid
rise of Hx.

This phenomenon can be explained qualitatively as fol-
lows. When the spherical plasma is static, the current in the
high-density region is a bunch of loops flowing clockwise
around +x axis in the yOz plane, generating a induced field
to impede the external magnetic field embedment. However,
once the plasma has a jet velocity u = uêz, according to
Eq. (5), an equivalent additional electric field u × B appears
in the rest frame, which is along the +êy direction. The equiv-
alent electric field would weaken the induced current where
jy < 0 and strengthen it where jy > 0. Therefore, the induced
current loops are squeezed to the +z side of the high-density
region and the magnetic field can embed from −z toward the
+z direction.

Typical magnetic field distributions in the high-density re-
gion with u = 200 km/s and u = 0 are also plotted in Fig. 4.
When the plasma stays static, the system has a rotational
symmetry and magnetic field along x axis has the x component
only. However, the jet velocity along the z direction breaks
this symmetry, leading to the twist of magnetic field lines on x
axis. Such twist takes place mainly at the magnetic diffusion
front and then flattened in the further evolution. Concentrating
on the angle between the field and x axis at point (a/2, 0, 0),
the maximum value can reach ∼27◦, then decays near to zero
in the following 1 ns.

In the whole simulation, the maximum strength of mag-
netic field |H| � 1.5Hback. The magnetic field lines near the
plasma surface are twisted and compressed due to the curved
boundary, as shown in Fig. 4. If we take B0 ≡ Hback/μ0 =
1000 T (a typical field magnitude generated by coil targets),
then the magnetic pressure pm = B2

0/2μ0 = 8.95 Mbar, which
is far lower than the typical ICF target thermal pressure (∼102

Gbar) in the ignition phase. Therefore, it is reasonable to
ignore the influence of magnetic field on dynamic evolution
of high-density plasma jet flow, verifying the rationality of
assumption (b) in Sec. II.

C. Scaling law of the magnetic field embedment time

Assuming that the magnetic field at the infinite point is still
uniform and time independent, we evaluate the embedment
time of the magnetic field into the plasma center. We select

FIG. 4. The strength distribution of Hx/Hback and the magnetic
field lines on xOz plane with (a) u = 0 and (b) u = 200 km/s at t =
0.5 ns. The two concentric circles represent for r = a (boundary of
high-density region) and r = 2a separately.

the embedment time as the moment of Hx reaching 0.75Hback,
the average of the initial strength inside and outside the plasma
surface at r = a, θ = 0, given by Eq. (10), as a characteristic
parameter, which is marked by t0.75.

In the static plasma, the field at r = 0 has an analytical
solution according to Eq. (12). Letting r → 0, the solution
has a simple form of Hx(t ) = Hbackϑ4[exp(−π2t/a2μ0σ )],
where ϑ4 represents for the fourth elliptic theta function.
When t/a2μ0σ > 1, there is a expansion of Hx(t ) ≈ 1 −
2 exp(−2π2t/a2μ0σ ) + 2 exp(−4π2t/a2μ0σ ), giving the
result

t0.75 = 0.210μ0σa2 = 0.086
Te(keV)3/2a(μm)2

Z ln 

(ns), (15)

where Eq. (2) has been applied. As the plasma temperature
and scale rise, the time for magnetic field embedding to the
center increases. Note that such a relationship is determined
by the general property of the solution to a diffusion equation,
which means it may be applicable for high-density plasma
even with an irregular boundary geometry, where the coeffi-
cient 0.210 should be slightly adjusted.

With respect to the jetting plasma, according to the nondi-
mensionalization of the Bullard-Gellman equations [Eqs. (8a)
and (8b)] and boundary conditions [Eqs. (9a) and (9a)], it is
obvious that the solution is only related to the dimensionless
number Pem = μ0σau. Figure 5(a) shows that the embedding
time increases rapidly with the growth of Pem. For the typical
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FIG. 5. (a) Temporal evolution of Hx/Hback at the plasma center
with different Pems. The horizontal axis is t/(a · u−1), where u is the
jet velocity. (b) Fitted curve of normalized time when the magnetic
field at the plasma center reaches 0.75Hback with different Pems.

high-density jetting plasma, Pem ∼ 50 is much larger than
identity, corresponding to t0.75 = 0.986a/u. The peak value
of normalized Hx is larger than identity when Pem is above
∼10, which attributes to the weak diffusion process. That is,
the strong field generated by boundary effect has no time to
be flattened because of the relatively high jet speed. We set
t0.75/(au−1) = f (Pem) and discuss the asymptotic behavior of
f (Pem) as follows.

On the one hand, when Pem → +∞, the convection term
dominates the evolution process, and the right-hand side of
Eq. (6) can be omitted. The equation becomes the following:

∂H
∂t

+ (u · ∇)H ≡ dH
dt

= 0. (16)

Then Eq. (16) has a trivial solution H(x, t ) = H0(x − ut ).
Normalized time for the external field reaching the center
is t/(au−1) = f (Pem → +∞) = 1. It should be noted that
in this limit, the typical plasma parameters a = 100 µm and
u = 200 km/s result in a lower limit for embedment of 250
ps, 22 times shorter than time spent in the u = 0 limit.

On the other hand, Pem → 0 means that the convection
term can be ignored, the governing equation degenerates
to Eq. (4), and the solution comes back to Eq. (15),
where t0.75/(au−1) = 0.210μ0σa2/(au−1) = 0.210 μ0σau =
0.210Pem. Thus, f (Pem → 0+) = αPem, where α = 0.210 is
given by the analytical solution (15).

FIG. 6. t0.75s of (a) different plasma temperatures with the same
jet velocity u = 200 km/s, and (b) different jet velocity with the
same plasma temperature kBT = 100 eV, in comparison with the
fitting formula (17). The y axis is t0.75, and the x axis represents
kBT and u separately. The radius of the high-density region is fixed
at a = 100 µm and the Coulomb logarithm ln 
 takes the constant
value of 5.

We obtain t0.75s under different Pems by use of COMSOL
code. Based on the growth characteristics of t0.75 and the
asymptotic behaviors given above, we suppose that the data
are subject to a phenomenological formula,

f (Pem) = t0.75/(au−1)

= 1 − 1

1 + αPem + β(Pem)p
, p > 1, (17)

where α = 0.210 is given by Eq. (15). One can verify the
asymptotic behaviors by expanding Eq. (17) in Taylor series at
Pem = 0 and Pem → +∞. Fitting the t0.75 data with Eq. (17),
it turns out that β = 0.062 and p = 1.977. The fitted curve
and original data points are shown in Fig. 5, where the max-
imum residual error is 0.01 (at Pem = 25). For an arbitrary
Pem, one can get the characteristic time of magnetic field
embedment with Eq. (17) directly, where α, β, and p depend
on the boundary geometry only. Notice that t0.75(Pem > 20) is
larger than 0.95a/u in Fig. 5(b). For the typical high-density
plasma discussed in this article, Pem � 50 and it is enough to
estimate the embedment time with t0.75 ∼ a/u.

By substituting different plasma parameters into Eq. (17),
we can get insight into the dependence of t0.75 on both tem-
perature and jet velocity. Figure 6 compares results from
simulation and the fitting formula (17), with a fixed radius
of a = 100μm. With a high jet velocity of u = 200 km/s, the
embedment time changes little (less than 0.03 ns) where the
temperature varies from 50 to 500 eV. However, t0.75 decreases
rapidly with the rise of jet velocity where kBT is fixed at
100 eV; t0.75 with a jet velocity u = 10 km/s is 20 times larger
than the value of u = 400 km/s.

It should be noted that quantum effects would play
a role in electric conductivity calculation when the tem-
perature of high-density plasma is extremely low, which
could lead to a change in the curve in Fig. 6(a).
Actually, all of the results above are based on the Spitzer
electric conductivity formula (2), while for experimental
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high-density plasma with ρ ∼ 100 g/cm3 and kBT ∼ 100 eV,
the Fermi temperature of electrons is kBTF = (3π2ρ/M )2/3 ·
h̄2/2me ∼ 300 eV and the Coulomb-coupling constant � =
e2/4πε0(3M/4πρ)1/3kBT ∼ 0.67, where M is the average
atomic mass of DT fuel. Therefore, quantum degeneracy
could modify the Spitzer conductivity of plasma in Eq. (2) to
some degree. When T/TF � 0.1 and � � 2, the generalized
Coulomb logarithm ln 
 can be applied to the modification of
conductivity formula [59]. ln 
 falls rapidly with the decrease
of T at low temperature, and σ no longer varies with T 3/2,
where the classical SH formula is no longer valid. When the
plasma is at a high-density and low-temperature state, the
modification of Coulomb logarithm and transport coefficients
can vary greatly depending on different existing models and
methods [59–62]. In this work, we have taken the Coulomb
logarithm as ln 
 = 5, a “safe” value for the classical SH
formula. This value is somewhat larger than the one calculated
with the plasma temperature and density, but the influence on
our results is not significant because ln 
 and the quantum
effects would only affect electric conductivity σ in this model.
When the plasma state becomes further away from the clas-
sical limit, σ is larger than the value given by SH formula,
leading to a weaker resistive diffusion of B field. However,
larger σ leads to a higher Pem value (Pem ∝ σ ), which makes
the drifting effect stronger. According to Eq. (17), one can
find that the increased σ causes little influence on the B-field
embedment time in the jetting plasma. Another effect worthy
of investigation is the expansion of plasma. In fact, consid-
ering the velocity variation and compressibility of plasma,
there are two extra terms, −H(∇ · v) and (H · ∇)v, on the
right-hand side of Eq. (6). For usual SDP jet in free space,
−ρ∇ · v = dρ/dt < 0, implying that the expansion process
might play a negative role in magnetic field penetration.

The MHD effects could alter the magnetic field evolution
process. To self-consistently consider the MHD effects such
as Nernst effect and Hall effect, a systematic and extended
MHD simulation is demanded, which is beyond the research
regime of this work. Here a qualitative discussion is presented
to evaluate the strength of these MHD effects in our case.
First, we can evaluate the influence of the Hall term with Hall
parameter [43]:

ωcτei � 1.3(B/100 T)(Te/100 eV)3/2(ne/1021 cm−3)−1,

(18)

In magnetized ICF, due to the high temperature (∼keV) and
low density of the hot spot during stagnation, the Hall param-
eter can rise much higher than unity under the compressed B
field (∼kT). Therefore, the Hall term is significant to thermal
conduction and magnetic field transport. However, in the DCI
scheme, the plasma around target center is designed to be
compressed to a low-temperature (∼100 eV) and high-density
(∼100 g/cm3) state, where the Hall parameter is ωcτei ∼
10−3 � 1. Therefore, we consider the Hall effect as a less
important factor on magnetic field transport in the configu-
ration in our work. Second, under such plasma conditions, the
resistive diffusion predominates instead of Nernst advection
[56] and the cross-gradient-Nernst coefficient is also much
smaller than unity [55]. Therefore, one can expect that these
extended effects would bring a limited influence on the B-field

embedment process in our case. Besides, the mismatch of
gradients of temperature, density, and ion charge state usually
exists, which would lead to self-generated magnetic fields
(Biermann effect) [56,63]. Our investigation is limited in
magnetic field embedment to a plasma with relatively low
temperature, where the temperature gradient should be low
and the self-generated field would not influence the primary
picture of external field transport. Note that the jet veloc-
ity discussed in this article might lead to new instabilities
and amplify these extended-MHD effects. For example, the
equivalent electric field can change the distribution of in-
duced current, which would make the thermal transport effects
emerge. To examine these possible effects, further investiga-
tions with MHD simulation are demanded.

IV. CONCLUSION

In summary, we have investigated the evolution and em-
bedment of an external magnetic field inward high-density
spherical plasma with analytical and numerical methods.
Based on the rigid conductor model and quasistatic field ap-
proximation, we have derived the equations for the magnetic
field evolution and obtained the temporal solutions for static
and jetting plasma. For an arbitrary jet velocity u, a general
scalar relationship is presented. It is shown that jet velocity
of the 100-km/s scale can significantly promote the process
of field penetration and shorten the magnetization time of
typical high-density plasma in practical experiments, e.g., the
magnetization time can be reduced from 5.5 to 0.5 ns when
the jet velocity is changed from 0 to 200 km/s. The analytic
results are verified by simulation.

In this work, the diffusion process is based on a given
extern magnetic field initially distributed outside of a plasma;
therefore, our investigation does not depend on the genera-
tion route of the magnetic field. Furthermore, because our
analysis and calculations are based on a linear model, the
strength of the extern magnetic field would not change the
embedment time and normalized field configuration, i.e., even
if the kT-scale magnetic field cannot be generated, there is
little influence on the main conclusions. This model can be
considered valid before the emergence of nonlinear effects
of hydrodynamics. Fortunately, it should be enough for our
topic because as the hydrodynamic processes such as blow-out
become obvious, the high-density region could also break
down.

It should be noticed that we take the plasma with a density
around ∼100 g/cm3, a temperature of hundreds of eV, a jet
velocity of hundreds of km/s, and the jet velocity is perpen-
dicular to the extern B field, which is mainly according to
the design as well as our experimental results in the double-
cone ignition scheme [46]. Also, the results of embedment
time could be referred by the laboratory astrophysics research
related to magnetized plasma (such as Ref. [50]). The inves-
tigation might be partially applicable to the magnetized ICF
[38,42] at the beginning stage when the plasma temperature
is as low as hundreds of eV. But it should not completely
applicable because the B field could not always be uniform
and perpendicular to the implosion velocity of the plasmas in
the whole space.
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Note that finding a method to accurately measure the mag-
netic fields in the laser-driven coil targets is still a challenge
[64]. Different diagnostic methods have been applied to the
measurement of B field from coil target [65–67], showing
that the result is related to the target configuration, material,
diagnostic method, etc. Although the significant confinement
and collimation of MeV electron beams and enhanced target
heating experimentally observed in Refs. [22,24] suggest that
the magnetic fields generated in coils should be at the order of
hundreds of tesla, direct and accurate measurement demands
further investigation. Our work can be utilized in MAFI

schemes, such as the DCI scheme, the laboratory astrophysics
involved with magnetized plasma jet, and magnetically guid-
ing of REB.
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APPENDIX A: SELF-CONSISTENT BOUNDARY CONDITION

Defining the inner product of the functions (scalar or vectorial) f , g on a spherical surface as in Eq. (A1), the normalized
spherical harmonic function Y m

l (θ, ϕ) has the form of Eq. (A2), where Pm
l (x) is the associated Legendre function. With Wigner-3J

symbols, the vector spherical harmonics can be defined by Eq. (A3) [68],

〈 f |g〉 ≡ 1

4π

‹
f · g∗d�, (A1)

Y m
l (θ, ϕ) ≡

√
(l − m)!

(l + m)!
(2l + 1)(−1)mPm

l (cos θ )eimϕ, (A2)

Ym
l,l1 ≡ (−1)l−m

√
2l + 1

∑
m1,μ

(
l l1 1
m −m1 −μ

)
Y m1

l1
êμ, (A3)

where μ = 0,±1 and l1 = l, l ± 1. The complex vectors êμ have the forms of ê0 ≡ êz, ê±1 ≡ −(iêy ± êx )/
√

2. Here
(x, y, z) = (r sin θ cos ϕ, r sin θ sin ϕ, r cos θ ). Radial differential operators ∂ l+1

l ≡ ∂r − l/r, ∂ l−1
l ≡ ∂r + (l + 1)/r, and Dl ≡

∂2
r + (2/r)∂r − l (l + 1)/r2 are introduced and part of the differential properties of spherical harmonics are listed here where we

note Yα ≡ Y mα

lα
and Yα ≡ Ymα

lα,l1α
for short,

〈Yα|Yβ〉 = δαβ ≡ δlα lβ δmαmβ
, (A4a)

〈Yα|Yβ〉 = δαβ ≡ δlα lβ δmαmβ
δl1α l1β

, (A4b)

Ym
l,l = i

(
êθ csc θ∂ϕY m

l − êϕ∂θY m
l

)
√

l (l + 1)
, (A4c)

∇(
f Y m

l

) =
√

l

2l + 1
Ym

l,l−1∂
l−1
l f −

√
l + 1

2l + 1
Ym

l,l+1∂
l+1
l f , (A4d)

∇ × (
f Ym

l,l

) = i

√
l + 1

2l + 1
Ym

l,l−1∂
l−1
l f + i

√
l

2l + 1
Ym

l,l+1∂
l+1
l f , (A4e)

∇2
(

f Y m
l

) = Y m
l Dl f . (A4f)

Under the definition of vector spherical harmonics, the Y-form of the field at infinity is H∞(t ) = H∞(t )(Y−1
1,0 − Y1

1,0)/
√

2.
We can derive the spherical harmonic spectrum form of boundary condition H(e) = H(i) at r = a, expressing the field with TPD
in Eq. (7) inside SDP and scalar potential outside:

H∞(t )
Y−1

1,0 − Y1
1,0√

2
−

∑
l,m

[√
l

2l + 1
Ym

l,l−1∂
l−1
l φm

l −
√

l + 1

2l + 1
Ym

l,l+1∂
l+1
l φm

l

]

=
∑
l,m

[
(l + 1)

√
l

2l + 1
Ym

l,l−1∂
l−1
l Sm

l + l

√
l + 1

2l + 1
Ym

l,l+1∂
l+1
l Sm

l

]
−

∑
l,m

i
√

l (l + 1)Ym
l,l T

m
l . (A5)

The vector spherical harmonics are orthonormal vectors, so Eq. (A5) requires T m
l (r = a) ≡ 0. For Sm

l s, after some algebras we
will get:

∂ l+1
l

[
φm

l − lSm
l

]
r=a = 0 (A6a)
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√
l

2l + 1
∂ l−1

l

[
φm

l + (l + 1)Sm
l

]
r=a =

{
0, (l, m) �= (1,±1)

−mH∞(t )√
2

, (l, m) = (1,±1)
. (A6b)

Since the scalar potential obeys Laplace equation ∇2φ = 0, with the assistance of (A4f), the general solutions of coefficients
have the form shown in Eq. (A7),

Y m
l

[
∂2

∂r2
+ 2

r

∂

∂r
− l (l + 1)

r2

]
φm

l = 0 φm
l (r, t ) = Cm

l (t )

rl+1
, (A7)

where the positive power term has been omitted because of the boundary condition of r → +∞. Combining Eq. (A7),
(A6a), and (A6b), the scalar potential term can be eliminated and the boundary conditions in Eqs. (9a) and (9b) are finally
obtained.

APPENDIX B: EXPLICIT FORM OF SIMPLIFIED BULLARD-GELLMAN EQUATION

When the velocity field u(r) = uêz is identical, the interaction terms on the right-hand side of Bullard-Gellman equations (8a)
and (8b) can be simplified as Eq. (B1), where pγ = lγ (lγ + 1)

(∂t − ηDγ )Sγ =
∑

β

[(
s0

1, Sβ, Sγ

) + (
s0

1, Tβ, Sγ

)]

(∂t − ηDγ )Tγ =
∑

β

[(
s0

1, Sβ, Tγ

) + (
s0

1, Tβ, Tγ

)]
, (B1)

where

8πpγ r2(sα, Sβ, Sγ ) = [−pα (−pα + pβ + pγ )sα (rSβ )′ + pβ (pα − pβ + pγ )(rsα )′Sβ]Aαβγ ∗ ;

4πpγ r(sα, Tβ, Sγ ) =pαsαTβEαβγ ∗ ;

4πpγ r3(sα, Sβ, Tγ ) = [(pα + pβ + pγ )sαSβ−(pα + pβ−pγ )(rs′
αSβ + rsαS′

β + r2s′
αS′

β ) − pαr2sαS′′
β − pβr2sα

′′Sβ]Eαβγ ∗ ;

8πpγ r2(sα, Tβ, Tγ ) = [pα (pα − pβ − pγ )(rs′
αTβ + rsαT ′

β ) − pγ (pα + pβ − pγ )(sαTβ + rs′
αTβ )]Aαβγ ∗ ;

Aαβγ ∗ = (−1)mγ 4π
αβγ

(
lα lβ lγ
0 0 0

)(
lα lβ lγ
mα mβ −mγ

)
;

Eαβγ ∗ = − (−1)mγ 4πi
αβγ �αβγ

(
lα + 1 lβ + 1 lγ + 1

0 0 0

)(
lα lβ lγ
mα mβ −mγ

)
;


αβγ = √
(2lα + 1)(2lβ + 1)(2lγ + 1);

�αβγ =
√

(lα + lβ + lγ + 2)(lα + lβ + lγ + 4)

4(lα + lβ + lγ + 3)

√
(lα + lβ − lγ + 1)(lβ + lγ − lα + 1)(lγ + lα − lβ + 1).

The signs Aαβγ ∗ and Eαβγ ∗ represent for Adams-Gaunt integral and Elsasser dynamo integral separately [57,69]. When sα ≡
s1

0 = ur/2
√

3, lα ≡ 1,pα = 2, and mα ≡ 0, the 3J symbols in Aαβγ ∗ and Eαβγ ∗ can be further simplified. Nonzero values of
both Aαβγ ∗ and Eαβγ ∗ require that mβ = mγ = m, and lβ = lγ , lγ ± 1. Moreover, Eαβγ ∗ and Aαβγ ∗ will not be nonzero at the
same time due to the first 3J symbol in their expressions. The further calculation gives the interaction forms for each spectrum
equation in Eq. (B2)–(B4) as follows:

(a) lβ = lγ + 1:

(s0
1, Sβ, Sγ ) = −u

lγ + 2

lγ + 1

√
(lγ + 1)2 − m2

4(lγ + 1)2 − 1

[
(lγ + 2)

Sβ (r)

r
+ S′

β (r)

]

(s0
1, Tβ, Sγ ) = 0

(s0
1, Sβ, Tγ ) = 0

(s0
1, Tβ, Tγ ) = −u

lγ + 2

lγ + 1

√
(lγ + 1)2 − m2

4(lγ + 1)2 − 1

[
(lγ + 2)

Tβ (r)

r
+ T ′

β (r)

]
, (B2)
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(b) lβ = lγ :

(s0
1, Sβ, Sγ ) = 0

(s0
1, Tβ, Sγ ) = − ium

Tβ (r)

lγ (lγ + 1)

(s0
1, Sβ, Tγ ) = ium

[
1

lγ (lγ + 1)
S′′

β (r) + 2

lγ (lγ + 1)

S′
β (r)

r
− Sβ (r)

r2

]

(s0
1, Tβ, Tγ ) = 0, (B3)

(c) lβ = lγ + 1:

(
s0

1, Sβ, Sγ

) = u
lγ − 1

lγ

√
l2
γ − m2

4l2
γ − 1

[
(lγ − 1)

Sβ (r)

r
− S′

β (r)

]
(
s0

1, Tβ, Sγ

) = 0(
s0

1, Sβ, Tγ

) = 0

(
s0

1, Tβ, Tγ

) = u
lγ − 1

lγ

√
l2
γ − m2

4l2
γ − 1

[
(lγ − 1)

Tβ (r)

r
− T ′

β (r)

]
. (B4)

Let Tγ ≡ iTγ , and (B1) becomes a set of real scalar variable cascade equations. The prerequisite mβ = mγ = m indicates
that coefficients with different m values are decoupled. According to the boundary conditions (9a) and (9b) and all-zero initial
value, only coefficients with a superscript of m = ±1 have nontrivial evolution behavior, leading to the cascade structure given
in Fig. 2. With a truncation of l , the numerical method can be applied to solving such a coupled system.
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