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Nonlinear electrostatic ion cyclotron wave collapse and formation of wave packets
in the presence of trapped electrons
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The weakly nonlinear and dispersive electrostatic ion cyclotron wave dynamics in the presence of Schamel dis-
tributed trapped electrons is studied in collisionless plasmas. The dynamics of the nonlinear wave is shown to be
governed by a Schamel-Ostrovsky type equation. Analytical and numerical solutions of this equation reveal the
collapse of a solitary (localized) pulse at a critical time that depends on the trapping parameter and the strength
of the magnetic field. The time-dependent computational result is noteworthy, which predicts the formation of
wave packets (wave group) beyond the critical time. The results are in good agreement with the astrophysical
observations in auroral plasmas.
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I. INTRODUCTION

The study of nonlinear wave propagation in a magnetized
plasma is an interesting topic of research from both exper-
imental and theoretical points of view as the inclusion of
magnetic field in plasmas can change the entire wave dynam-
ics by introducing a different space and timescales compared
to unmagnetized plasma [1]. In a magnetized electron-ion
plasma, one of the low-frequency eigenmodes is the electro-
static ion cyclotron wave (EICW) mode [2], which is observed
in laboratory plasmas [3,4].

Moreover, several satellite (S3-3, ISEE-1, Viking, Polar,
GEOTAIL, and FAST) observations also confirm the exis-
tence of EICWs in the auroral magnetosphere at altitudes
between (3–8) × 103 km and beyond [5–13]. These waves are
believed to be responsible for the plasma heating [14].

The astrophysical [5–13], theoretical [15–23], and exper-
imental [24–26] observations reveal that the EICWs exhibit
nonlinear coherent (spiky, sawtooth, bipolar) structures in re-
sponse to the large amplitude disturbances. These coherent
structures are believed to be associated with the multihar-
monic EICWs due to the ion shear flow in the absence of
trapped electrons [22,23,26].

However, in the auroral acceleration region, a signifi-
cant fraction of the electrons are trapped by the EICWs
between the ion cavities [27]. Also, the FAST satellite
observation [11] and simulation [28] on auroral magneto-
sphere confirm the existence of electron holes; the signature
of the presence of trapped electrons. In the presence of
a strong magnetic field, the electron holes are generated
through the process of magnetic reconnection [29–32]. These
holes are characterized by a localized positive potential well
in which a population of electrons is trapped [33,34] and
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are well explained by the Schamel’s distribution (a vortex
distribution) [35–38]. The transport properties of nonlinear
EICWs in the presence of trapped electrons are not well
investigated [39].

In this article, we present a theoretical and computational
study on the weakly nonlinear and dispersive transport prop-
erties of EICWs in the presence of trapped electrons in
collisionless and homogeneous plasmas. The trapped elec-
trons are incorporated in the plasma through the Schamel’s
distribution [35–38]. The external uniform and static magnetic
field is assumed to be weak under the assumption that the
ion cyclotron frequency �i (=eB0/mi, e is the magnitude of
the electric charge, B0 is the magnitude of the magnetic field,
and mi is the ion mass) is small compared to the ion oscil-
lation frequency ωpi (=

√
n0e2/(ε0mi ), n0 is the equilibrium

plasma density, and ε0 is the permittivity) so that the ratio
� = �i/ωpi ∼ O(

√
ε) (where ε is a measure of the smallness

of the perturbed amplitude). It is shown that the weakly non-
linear dynamics of EICW is governed by a rotation modified
Schamel equation or Schamel-Ostrovsky equation (SOE) due
to the Lorentz force induced rotation. This derived nonlinear
SOE is solved analytically with the help of a two-time-
scale Krylov-Bogoliubov-Mitropolsky (KBM) perturbation
method [40] and numerically for the typical auroral plasma
parameters. Depending on the strength of the magnetic field
and trapping parameter, both the analytical and the compu-
tational results predict (i) the existence of a critical time τcr

(that determines the life of a solitary pulse) at which the
nonlinear wave collapses, the formation of (ii) oscillatory tails
and (iii) EICW packets (wave group) in the long time. The
computational results are in qualitative agreement with the
astrophysical observations [12].

The article is organized in the following manner: The phys-
ical model with basic equations and the derivation of the SOE
are provided in Sec. II. The approximated analytical solution
of the SOE is derived in Sec. III. The computational results
with graphical representations are discussed in Sec. IV. Fi-
nally, the results and their possible applications in the context
of auroral plasmas are briefly discussed in Sec. V.
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II. BASIC EQUATIONS AND DERIVATION OF
SCHAMEL-OSTROVSKY EQUATION

We consider a fully ionized, unbounded and homogeneous
plasma consisting of cold ions and trapped electrons im-
mersed in a static uniform magnetic field �B = B0ẑ. Further,
without any loss of generality it is assumed that the pertur-
bations are in the x-z plane [1,15–17,39]. The low-frequency
EICWs are ion waves propagating almost but not exactly
perpendicular to �B. Here, the ions move essentially in a
plane perpendicular to �B so that the electric field �E ≈ −x̂∂xϕ

[ϕ(x, z) is the electrostatic potential] and the wave vector �k ≈
kxx̂ (kz ∼ 0), whereas the much lighter electrons can move
along �B to establish charge neutrality [1]. Actually, the small
deviation from the 90◦ relative to �B allows for a component of
the wave electric field parallel to �B which causes the electrons
to distribute along the field lines (here in the ẑ direction) at
any instant behaving like massless fluid and its perpendicular
motion becomes unimportant [1,15–17,39].

Also for the EICWs in the auroral region, both the electrons
and the ions satisfy the relation

�i

ωpi
� 1 � �e

ωpe
⇒ ρe � λD � ρsi, (1)

where �e (=eB0/me, me is the electron mass) and ωpe [=√
n0e2/(ε0me)] are the electron cyclotron and plasma fre-

quencies. Also λD [=
√

ε0Tef/(n0e2), Tef is the free electron
temperature] is the plasma Debye length, ρe [=VTe/�e, VTe =
(Te f /me)1/2 the electron thermal velocity] is the electron gy-
roradius and ρsi (=cs/�i, cs = √

Tef/mi is the ion acoustic
speed) is the ion acoustic gyroradius. The relation (1) suggests
the kinetic and fluid descriptions of the electrons and ions,
respectively, to study the EICWs. Accordingly, we consider
the collisionless normalized Vlasov equation for electrons in
the ẑ direction (as electrons are distributed along ẑ), which in
the ion timescale (stationary) can be read [35] as

vez
∂ fe

∂z
+ δ−1 ∂φ

∂z

∂ fe

∂vez
= 0, φ = eϕ

Tef
, δ = me

mi
. (2)

Here fe and vez are the normalized electron distribution and
velocity (along the z axis; normalized by cs), respectively.
The space scale is normalized by λD. The general solution
of Eq. (2) is of the form fe ≡ fe(�ve, φ). The most commonly
used solution is the Maxwell-Boltzmann distribution which
follows equilibrium thermodynamics. The nonlinear EICWs
are well studied in the presence of equilibrium electron distri-
bution [1,15–17].

However, to model the trapped electron distribution in the
presence of an external uniform magnetic field, first we esti-
mate the contribution of the cross-field electron drifts in the
distribution. Thus, we consider the total energy (normalized)
of the electrons as

Etot = φ + δ

2

(
v2

e⊥ + v2
ez

)
. (3)

Taking ve⊥ as the �E × �B drift, one can estimate [39]

δ

2
v2

e⊥ = 1

2

(ωpe

�e

)2
(∇φ × ẑ)2 <

1

2

(ωpe

�e

)2
(∇φ)2. (4)

It has already been established [39] that for Schamel dis-
tributed trapped electrons (∇φ)2 ∼ O(φ5/2) and ωpe/�e � 1
[relation (1)], which indicate that the v2

e⊥ term in Etot as well
as in the corresponding trapping condition is negligible and
fe is then effectively one-dimensional parallel to �B [39]. Thus
the trapping occurs here in the ẑ direction. Accordingly, fe is
considered as the Schamel’s nonequilibrium distribution [35],
i.e., fe = fef + fet [ fef(t ) is the free (trapped) electron distribu-
tion function] where

fef =
√

δ

2π
exp

[
− δ

2

(
v2

ez − 2φ

δ

)]
, |vez| >

√
2φ/δ,

fet =
√

δ

2π
exp

[
−δβ

2

(
v2

ez − 2φ

δ

)]
, |vez| �

√
2φ/δ. (5)

Here β = Tef/Tet is the trapping parameter and Tet is
the trapped electron temperature. The electron distribution
[Eq. (5)] represents Maxwellian, flattop, and trapped (a
vortexlike excavated trapped electron distribution that corre-
sponds to the electron hole in phase space) for β = 1, β = 0,
and β < 0, respectively [35]. Finally, taking the first moment
of the distribution [Eq. (5)], in the small amplitude limit
(φ � 1), the electron density can be expressed [35–38] as

ne = 1 + φ − 4b

3
φ3/2 + 1

2
φ2 + · · · , b = (1 − β )√

π
. (6)

The β < 0 region where b is relatively large is of interest in
our present investigation.

The normalized ion fluid equations [1,15,16] are

∂n

∂t
+ ∂

∂x
(nu) = 0, (7)

∂u

∂t
+ u

∂u

∂x
= −∂φ

∂x
+ �v, (8)

∂v

∂t
+ u

∂v

∂x
= −�u. (9)

Here the timescale (t ) is normalized by ω−1
pi . The ion fluid

velocities u (along the x axis) and v (along the y axis) are nor-
malized by cs. The ion density n is normalized by equilibrium
density (n0). Finally, for the closure, we consider the Poisson’s
equation

∂2φ

∂x2
= ne − n. (10)

Linearizing these equations [Eqs. (6)–(10)] in a homogeneous
background, we derive the dispersion relation of the EICW [1]
as

ω̃2 = k̃2

1 + k̃2
+ �2 ⇒ ω2 = k2

x c2
s

1 + k2
x λ

2
D

+ �2
i , (11)

where ω̃ (= ω/ωpi ) and k̃ (= kxλD) are normalized frequency
and the wave number, respectively.

To study the weakly nonlinear dynamics of EICWs in the
presence of a relatively large number of trapped electrons (b >

1), we introduce the stretched variables [37]

ξ = 4
√

ε(x − V t ), τ = 4
√

ε3t, (12)
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where V is the normalized phase velocity of the linear wave.
The dynamical variables are expanded as

n = 1 + εn(1) + ε3/2n(2) + · · · ,

u = εu(1) + ε3/2u(2) + · · · ,

v = ε5/4v(1) + ε7/4v(2) + · · · ,

φ = εφ(1) + ε3/2φ(2) + · · · . (13)

In the auroral region, plasma density n0 ∼ 107m−3, B0 ∼
1.2 × 10−5T and the predominant ions are H+ (mi ∼ 1.6 ×
10−27 kg) [6,20,21]. These estimate ωpi ∼ 4 × 103 s−1 and
�i ∼ 1.2 × 103 s−1 so that � ∼ 0.3. Thus to incorporate the
effects of this low �, we consider the following consistent
scaling:

� ∼ O(
√

ε). (14)

Substituting Eqs. (12)–(14) in the set of basic Eqs. (7)–(10)
and then equating the coefficients of different powers of ε,
we obtain the first- and second-order relations among the
dynamical variables. The first-order relations are

V
∂n(1)

∂ξ
= ∂u(1)

∂ξ
, V

∂u(1)

∂ξ
= ∂φ(1)

∂ξ
, (15)

n(1) = φ(1), V
∂v(1)

∂ξ
= �u(1). (16)

These relations self-consistently determine

V = 1 and n(1) = u(1) = φ(1) = ψ (say). (17)

The second-order relations are

−V
∂n(2)

∂ξ
+ ∂n(1)

∂τ
+ ∂u(2)

∂ξ
= 0. (18)

−V
∂u(2)

∂ξ
+ ∂u(1)

∂τ
+ ∂φ(2)

∂ξ
= �v(1). (19)

∂2φ(1)

∂ξ 2
= −n(2) + φ(2) − b(φ(1) )3/2. (20)

Eliminating all the second-order variables and using the first-
order relations [Eqs. (16) and (17)], we finally obtain the
following nonlinear partial differential equation that describes
the weakly nonlinear dynamics of EICWs in the presence of
trapped electrons:

∂

∂ξ

(
∂ψ

∂τ
+ 3b

4

√
ψ

∂ψ

∂ξ
+ 1

2

∂3ψ

∂ξ 3

)
= εψ, ε = �2

2
. (21)

Here the term ε appears due to the magnetic field induced
Lorentz force. In the absence of magnetic field (ε = 0),
Eq. (21) reduces to the well-known Schamel equation for
nonlinear ion acoustic wave in electron-ion plasmas [35],

∂ψ

∂τ
+ 3b

4

√
ψ

∂ψ

∂ξ
+ 1

2

∂3ψ

∂ξ 3
= 0. (22)

Thus the derived equation is a rotation modified Schamel
equation. However, the rotation modified Korteweg–de Vries
equation is known as the Ostrovsky equation, which describes
the nonlinear internal waves in a rotating ocean [41–44]. Thus,
we call Eq. (21) a Schamel-Ostrovsky equation. A similar
type equation was used to study the nonlinear wave dynamics
in elasticity theory for fractional order strain intensity [45].

However, SOE is not derived and studied before in plasma
physics.

III. ANALYTICAL SOLUTION

Multiplying Eq. (21) by ψ and integrating over ξ , we get
the total energy of the system as

∂E
∂τ

+ Erot = 0, E =
∫ ∞

−∞
ψ2dξ,

Erot = ε

[(∫ ∞

−∞
ψ dξ

)2

−
∫ ∞

−∞

(
ψ

∫ ξ

−∞
ψ d ξ́

)
dξ

]
. (23)

Here the first term is the rate of change of wave energy (E),
while the second term (Erot) is the rate of change of energy
due to the Lorentz force induced rotation and thereby the
total energy of the plasma system is conserved. However,
the SOE [Eq. (21)] is not exactly integrable (solvable) as
the wave energy is not conserved. Therefore, here we derive
an approximated analytical solution using the KBM pertur-
bation method [40,46,47]. Interestingly, in the absence of
magnetic field (ε = 0), Eq. (21) reduces to the Schamel equa-
tion [Eq. (22)] which possesses the solitary wave solution [35]

ψ = N sech 4

[
�−1

(
ξ − 2b

√
N

5
τ

)]
, � =

√
20

b
√

N
, (24)

where N , �, and 2b
√

N/5 are the amplitude, width, and
velocity of the solitary wave.

To study a finite but small effect of ε on the solution (24),
we assume that the N is a slowly varying function of time
(τ ), instead of a constant (in the absence of ε) and perform
a two-timescale [fast (τ0) and slow (τ1)] KBM perturbation
analysis [40,46,47] of Eq. (21) with

τ0 = τ, τ1 = ετ. (25)

Also introduce a new space variable ζ in a frame moving with
the solitary wave as

ζ = �−1

(
ξ − 2b

5

∫ τ

0

√
Ndτ

)
. (26)

In the presence of ε, we seek a solution of Eq. (21) of the form

ψ (ζ , τ, ε) = ψ0(ζ , τ0, τ1) + εψ1(ζ , τ0) + O(ε2). (27)

Substituting (26), (25), and (27) into (21), we have the order
unity relation as

∂ψ0

∂τ0
+ L[ψ0] = 0, L ≡ 1

κ

∂

∂ζ

[
∂2

∂ζ 2 +
(

30

√
ψ0

N
− 16

)]
,

(28)

where κ = 2(b
√

N/20)−3/2. Solving this order unity
relation (28) subject to the initial condition ψ (ζ , 0, ε) =
N0sech 4ζ [N0 = N (τ = 0)] and boundary conditions
ψ (±∞, τ, ε) = 0, we obtain

ψ0(ζ , τ0, τ1) = N (τ1) sech 4ζ . (29)

This solution implies that ψ0 does not depend on τ0, i.e., at
the lowest order the solution is the same as (24).
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Next the order ε relation yields

∂ψ1

∂τ1
+ L[ψ1] = M[ψ0], (30)

where ψ1(±∞, τ0) = 0, ψ1(ζ , 0) = 0, and

M[ψ0] = −
(

∂

∂τ1
+ ζ

4N

∂N

∂τ1

∂

∂ζ

)
ψ0

+
(

2

κ

)1/3(∫ ζ

−∞
−

∫ ∞

−∞

)
ψ0dζ . (31)

Now for the existence of a solution of Eq. (30), its right-
hand side must be perpendicular to the kernel of the operator
L†[g] = 0 [48] where L† is the adjoint operator to L given by

L† ≡ 1

κ

(
∂2

∂ζ 2
+ (30 sech 2ζ − 16)

)
∂

∂ζ
. (32)

The only solution of L†[g] = 0, g(±∞) = 0 is g(ζ ) =
sech 4ζ . From this orthogonality condition, we obtain∫ +∞

−∞
sech 4ζM[ψ0]dζ = 0. (33)

This equation after integration and simplifications yields (with
τ1 = ετ )

N (τ )

N0
=

(
1 − τ

τcr

)4

, τcr = 9

5ε

√
b
√

N0

5
. (34)

Here N0 = N (τ = 0) is the initial amplitude. Thus the approx-
imated solution of Eq. (21) is obtained as

ψ (ξ, τ ) = N (τ )sech 4

[
�(τ )−1

(
ξ − 2b

5

∫ τ

0

√
Ndτ

)]
. (35)

The amplitude N (τ ) is given by Eq. (34), the width of the
solitary pulse �(τ ) is given by

�(τ ) = �0

(
1 − τ

τcr

)−1

, �0 =
√

20

b
√

N0
, (36)

and the energy [Eq. (23)] is given by

E (τ ) = E0

(
1 − τ

τcr

)7

, E0 = 64N0

7
√

5b
, (37)

where �0 and E0 are the initial width and energy of the solitary
pulse. It should be noted that for a solitary wave solution to
exist one must have � > 0 and E > 0; therefore, the above
solutions Eqs. (34), (36), and (37) are physically valid only
for τ � τcr. Thus the approximated solution presented here
clearly shows that the Lorentz force induced rotational effect
causes the solitary wave amplitude (width), energy, and con-
sequently velocity to decay (increase) algebraically with time
τ ∈ [0, τcr ) and at τ = τcr, the nonlinear wave collapses.

However, the value of τcr [Eq. (34)] provides a good es-
timation of a characteristic lifetime of an electrostatic ion
cyclotron (EIC) solitary wave. In terms of the actual parame-
ter, τcr can be written as

tcr = 7.2

�i

( ρsi

�0

)
. (38)

FIG. 1. (a) The time variations of amplitude for different values
of β with N0 = 1 and ε = 0.1. (b) Variation of critical time τcr with
respect to β for different values of ε.

Thus the lifetime of an EIC solitary wave increases with
the decrease (increase) of the strength of the magnetic field
(trapping parameter b as �0 ∝ b−1/2). As an illustration the
variations of N with time [τ ∈ (0, τcr)] for different b are
shown graphically in Fig. 1. The values of τcr for different
values of ε and β are shown in Table I.

IV. NUMERICAL SOLUTIONS

In this section, we numerically simulate the SOE [Eq. (21)]
with the help of a pseudospectral method in an interval
[−L, L]. In this method, aliasing errors appear when deal-
ing with a nonlinear term (ψ3/2), where the wave number
in the convolution exceeds the frequency range. Following
the recipe of Ref. [49] dealiasing is used and an additional
damping term

γ (ξ ) = (ν/2)[(1 + tanh μξ−) + (1 − tanh μξ+)] (39)

is inserted on the left-hand side of Eq. (21) in the form ∂ξγ

to prevent the radiated wave effects in the computation [44].
Here ξ± = ξ ± 7L/8 and ν, μ are some constants. For com-
putation, we take the number of grids (M) = 8192, spatial
width = 2L/M, temporal width = 10−4, ν = 0.1, μ = 24/L,
and L = 800 and observe bounded solutions.

First, we consider the initial pulse as

ψ (ξ, 0) = sech 4(
√

b/20 ξ ). (40)

The simulated results for different β (b) and ε are shown
graphically in Figs. 2–5.

The simulated results at lower time τ = 0.1 (<τcr) for
ε = 0.1 and 0.2 for different b are shown in Figs. 2 and 3, re-
spectively. The solutions presented in both Figs. 2(a) and 2(b)

TABLE I. Values of τcr for different values of ε and β.

B0(10−5T ) ε β b τcr

1.2 0.1 −1 1.13 8.48
1.2 0.1 −2 1.69 10.39
1.2 0.1 −3 2.25 12
2.2 0.3 −1 1.13 2.83
2.2 0.3 −2 1.69 3.46
2.2 0.3 −3 2.25 4
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ξ
-50 -25 0 2 0

ψ

-0.5

-0.25

0

0.25

0.5

0.75

1

ξ
-50 -25 0 2

5 5

5 50

ψ

-0.5
-0.25

0
0.25
0.5

0.75
1

(a)β = −1

(a)β = −3

FIG. 2. Decaying of initial solitary pulse for ε = 0.1 and τ =
0.1 (<τcr ).

and Figs. 2(c) and 2(d) clearly show the decrease (increase)
in amplitude (width) of the solitary pulses. The comparison
between the solutions in Figs. 2(a) and 2(b) [also in Figs. 3(a)
and 3(b)] reveals that with the increase of the trapped particle
represented through β (b), the decay rate is decreased. In a
similar way, the comparative studies between the solutions
in Figs. 2 and 3 show that with the increase of the strength
of the magnetic field represented through ε, the decay rate is
increased. All these results are in qualitative agreement with
the analytical results which predict τcr ∝ (

√
b, ε−1) [Eq. (34)

and Table I].
The asymptotic analytical solutions predict that at τ → τcr,

the nonlinear wave collapses. Thus to observe the complete
picture of the solutions at time close to τcr, we simulate
Eq. (21) with β = −1 (b = 1.13) for different ε at larger times
(<τcr) and the solutions are shown in Figs. 4(a) and 4(b).
These solutions clearly demonstrate the formation of oscil-

ξ
-50 -25 0 2 0

ψ

-0.5
-0.25

0
0.25
0.5

0.75
1

ξ
-50 -25 0 2

5 5

5 50

ψ

-0.5
-0.25

0
0.25
0.5

0.75
1

(b) β = −3

(a) β = −1

FIG. 3. Decaying of initial solitary pulse for ε = 0.3 and τ =
0.1 (<τcr ).

ξ
-100 -50 0 50

ψ

-0.5

0

0.5

1
τ = 0
τ = 5
τ = 7

ξ
-100 -50 0 50

ψ

-0.5

0

0.5

1
τ = 0
τ = 1
τ = 2

(a) ε = 0.1

(b) ε = 0.3

FIG. 4. Decaying of initial solitary pulse and generation of oscil-
latory trails for β = −1 in different time τ < τcr.

latory tails and this process is accelerated with the increase of
the magnetic field.

It is to be noted that the approximated analytical results
[Eq. (35)] do not provide any insight into the solutions be-
yond τcr (i.e., in the long time). To observe the long-time
behavior, we simulate Eq. (21) for τ = 25 and 50. The so-
lutions are shown graphically in Fig. 5. Interestingly, all the
solutions reveal the formation of a multiharmonic and EICW
packet in the downstream side as observed in Fig. 5 [curves
in Figs. 5(a)–5(d)]. These solutions also show that with the
increase of the number of trapped electrons (β), the nonlinear
wave amplitude increases. The formation of wave packets
in the large time is a clear indication of the EICW group
dynamics.

FIG. 5. Transition from initial solitary pulse to wave-packet
formation after critical time (τ � τcr) for different values of ε.
(a),(c) and (b),(d) correspond to β = −1 and β = −2, respectively.
The upper and lower panels show the evolution of solitary pulse at
τ = 25 and τ = 50, respectively.
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FIG. 6. Evolution of envelope initial profile in different time for
different β and ε.

Finally to confirm the wave-packet dynamics, we simulate
Eq. (21) with the initial profile

ψ (ξ, 0) = e−0.016ξ 2
sin(1.005ξ ). (41)

The solutions are presented graphically in Fig. 6 which con-
firm the formation of wave packets in the long time. The
solutions also reveal that the magnetic field increases the har-
monics and trapped electrons increase the amplitude. The
electric field E (= −∂ξψ ) structures corresponding to the po-
tential ψ (Fig. 5) for different time, trapping parameter, and
magnetic field are presented in Fig. 7. The E field profiles
are qualitatively similar with those of the observed struc-
tures [12].

V. DISCUSSIONS

In this work, we have investigated the nonlinear transport
dynamics of EICWs in the presence of Schamel distributed
trapped electrons under the influence of weak magnetic field
(�i � ωpi ) in collisionless and homogeneous plasmas. The
dynamics of the nonlinear wave is shown to be governed
by a Schamel-Ostrovsky type equation [Eq. (21)], which is

FIG. 7. The normalized electric field E (= −∂ξψ) profile in dif-
ferent time for different ε and β. (a),(c) and (b),(d) correspond to
β = −1 and β = −2, respectively. The upper and lower panels show
the evolution of solitary pulse at τ = 25 and τ = 50, respectively.

a Lorentz force induced rotation modified Schamel equa-
tion [35]. This equation is not exactly integrable (solvable) as
the energy of the nonlinear wave is not conserved [Eq. (23)]
and thereby the equation is analyzed analytically using the
KBM method [40]. The analytical solution predicts a critical
time τcr ≡ τcr(�i, b) [Eqs. (34) and (38)] below which the am-
plitude (width) of a localized (solitary) pulse decays (grows)
with time (τ ). The numerical solutions with the typical auroral
plasma parameters confirm the analytical results (see Figs. 2
and 3).

The computational results are noteworthy, which predict
the formation of oscillatory tails near τcr and then multi-
harmonic waves and finally the wave packets (wave group
dynamics) in the long time (τ � τcr) (see Figs. 4 and 5).
This wave group dynamics (at time beyond the critical time)
of nonlinear EICWs described through the derived SOE
[Eq. (21)] is confirmed by the simulation with the modulated
initial pulse [see Eq. (41) and Fig. 6].

The EICWs are observed in the auroral magnetosphere,
characterized by the typical plasma parameters: n0 ∼ 107m−3,
Tef ∼ (10 eV–10 keV) and B0 ∼ 10−5T [6,10,11,20,21].
These values estimate λD ∼ 2.35

√
Tef m ∼ (7.43–235)m and

the electric field amplitude (in dimensional form) Ẽ ∼
0.43

√
Tef E V m−1 (E is the normalized electric field). The

simulated results shown in Fig. 5 provide E ∼ 0.1 for β =
−2 (b = 1.69) and ε = 0.3 [Fig. 5(c)]. Thus Tef ∼ 400 eV
estimates Ẽ ∼ 103m V m−1, which well agrees with the FAST
satellite observations [10,13].

There have been many theoretical investigations [15–21]
to study the observed spiky electric field structures associated
to the EICWs in the absence of trapped electrons in auroral
plasmas. An attempt has also been made to study the effect of
trapped electrons on EICWs [39]. However, these approaches
cannot explain how an EIC solitary wave collapses and gen-
erates multiharmonic as well as wave-packet structures. The
present studies explain the mechanism of formation of mul-
tiharmonic and EICW packet structures and also estimate
the lifetime of an EIC solitary wave. The analytical results
reveal that the solitary wave energy completely vanishes at
τ ∼ τcr [Eq. (37)]. Since the total energy is conserved [see
Eq. (23)], in the large time (τ � τcr), the rate of change of
Lorentz force induced rotational energy (Erot ) increases. This
increment in (Erot ) generates the multiharmonics EICWs and
finally, self-interactions among these harmonics form EIC
wave packets. Thus the mechanism presented here could be
an alternative physical mechanism for the spiky electric field
structures of EICWs in auroral plasma. The wave collapse
time (τcr) increases (decreases) with the increase of electron
trapping (external magnetic field) (see Table I).

Finally, the low-frequency (0.1–5.0 Hz) electromagnetic
ion cyclotron wave (EMICW) is also believed to be one of the
dominant wave modes in the Earth’s magnetosphere [50–52].
These waves are generated by (10–100 keV) ion distributions
with temperature anisotropy [53]. The nonlinear behavior of
these EMICWs is our future focus of investigation.
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