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High-current space-charge-limited pulses using ultrashort laser pulses
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The maximum current that can be delivered by a 1-D vacuum diode is limited due to the space-charge reduction
of the accelerating field. For a steady-state operation, this is given by the Child-Langmuir space-charge limit.
However, for pulsed diode sources, the instantaneous current can be much higher than this limit, as long as the
pulse length is much less than the transit time across the diode gap. This enables the generation of high current
pulses with pulse durations of the order of tens of picoseconds using photocathodes driven by ultrashort laser
pulses. The generation of such short and powerful electromagnetic pulses is important for numerous applications
such as ultrawideband radar or as photocathode sources for accelerators. In this work, the limiting current pulse
is investigated in the case of a very short, square-top initial pulse and it is found that these pulses propagate
in a self-similar manner, remaining as a square-top charge cloud in space throughout their acceleration and
propagation. The resultant current and pulse duration turn out to be dependent on only three parameters, which
are the applied voltage, the vacuum transit time, and the fraction of the saturation charge density in the initial
charge cloud. The resultant scaling of the resultant peak current and pulse duration are calculated numerically
as a function of starting sheet-charge density, allowing the calculation of the resultant pulses for any ultrashort,
pulse-driven vacuum photodiode design.
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I. INTRODUCTION

The generation of short and powerful electromagnetic
pulses (EMPs) is a major requirement for many applications
such as ultrawideband (UWB) radar sensors. Such ultrashort
electron bunches are also useful in generating picosecond
x-ray pulses [1] in applications of ultrafast electron diffrac-
tion and microscopy [2,3] and as pulsed, high-brightness,
picosecond electron guns for scanning electron microscopes
[4]. Several techniques are employed for the design of
conventional UWB pulse generators [5]. One technique
for generating ultrashort electron pulses is to use a laser-
driven photocathode excited by means of picosecond- or
femtosecond-duration laser pulses. In this technique, the laser
pulse generates an initial charge sheet cloud of electrons that
are accelerated toward the anode under the application of an
electric field. The peak current and minimum pulse duration
that can be generated in such a system is limited by the space-
charge spreading of the electron bunch and shielding of the
applied field by the accelerating charge cloud, cutting off the
acceleration of the trailing electrons. As already reported in
previous publications [6,7], the peak current can significantly
exceed the classical steady-state Child-Langmuir current limit
[8] for such transient pulses with durations shorter than the
diode gap transit time. In addition, a number of studies have
focused on space charge effects on electron emission [9]. In
these previous studies, approximate models giving estimates
of the change in transit time and saturation currents are given.
However, a complete description of the pulse duration and
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peak current versus charge-cloud areal density has not been
given previously in the literature.

In this work, we derive the 1-D space-charge-limited tran-
sient current pulse for an instantaneous charge sheet slab
generated by an ultrashort laser pulse from a photocathode.
We demonstrate that for a flat-top charge sheet in the length di-
rection, the pulse shape remains flat in space as it accelerates,
and the acceleration and propagation of the pulse evolves in a
self-similar manner. Such a self-similar response, which only
depends on the scaled variables, is a well-known behavior for
many partial differential equation problems [10]. This allows a
prediction of the resultant peak current and pulse duration for
any 1-D vacuum diode configuration. As a result, it is possible
to design 1-D vacuum photo diodes driven with ultrashort
laser pulses as an effective technique to generate high-voltage,
ultrashort UWB pulses, which can be scaled to deliver pulses
required for UWB radar applications.

One can first assess the maximum current density, which
can be drawn for a planar vacuum diode. The Child-Langmuir
law provides the maximum steady current that can be trans-
ported across such a planar diode gap [11]. The maximum
current density derived by solving the steady-state 1D Poisson
equation ( d2�

dx2 = − ρ

εo
) is

JCL = 4
√

2

9
εO

√
e

m

V 3/2
o

d2
, (1)

where � is the electric potential, JCL is the maximum steady
current density, Vo is the diode voltage, d is the vacuum
gap separation, εO is the permittivity of free space, m is
the electron mass, and e is the elementary charge. Equation
(1) holds for a zero transverse magnetic field, single-species
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charged particles with zero initial velocity, and nonrelativistic
acceleration under the electrostatic approximation. Any devi-
ation from these conditions, such as changing to cylinder or
spherical geometries, relativistic acceleration, etc., will lead
to modified current density limits [6,7].

In this work, we will examine the scaling of pulse duration
in the case of simple planar gap acceleration for such transient
short-pulse current sources. The boundary condition of Eq. (1)
is � = 0 at x = 0 (cathode) and � = Vo at x = D (anode).
Equation (1) is independent of material properties. Regardless
of the cathode material or cathode temperature, Eq. (1) gives
the bound imposed by Poisson’s equation.

In the case of ultrashort laser pulse generation of electrons
from the photocathode, the bunch length of electrons is much
shorter than the anode–cathode gap. In this case the instanta-
neous current density can then be much higher than JCL [12].
This can be estimated in terms of a simple capacitor model
where the possible maximum charge in a planar gap is CV o,
where C is the capacitance of the starting vacuum gap. For a
planar gap, the capacitance is εoA/d , where A is plate area.
The limiting average current in the gap will be on the order of
CVo/TG, where

TG = [2 d2 me/(e �0)]
1/2

, (2)

where TG is the transit time of an electron across the vacuum
gap under the applied electric field.

The limiting steady-state current can be converted to
Eq. (1) after multiplying by numerical factor 8/9 [12]. For a
pulse length τ � TG, the maximum current density allowed
or critical current density, Jcritical, can be given approximately
by

Jcritical = CVo/τA = (8TG/9τ ) JCL, (3)

which is much higher than the JCL. If the current density
exceeds the Jcritical, the field at the cathode drops to zero and
no further emission of electrons is possible. However, pulse
spreading during transit will increase any short starting pulse
width and will lead to a final pulse duration, which is larger
and depends on the areal charge density present. To predict
the final pulse duration, a model must be developed for the
propagation of the charge density cloud across the diode gap
and the resultant spreading.

Present day ultrashort lasers can produce starting pho-
tocathode charge clouds of femtosecond to picosecond
durations, which is typically much shorter than the gap transit
time. Thus, the limiting pulse duration is given almost entirely
by the space charge spread of the short starting charge sheet as
it propagates across the gap. This is the case that is analyzed
next in both analytic calculations and particle-in-cell (PIC)
modeling. It is found that the solution is self-similar, and
scales with the vacuum transit time and fraction of space-
charge-limited sheet charge. These models will allow the
prediction of pulse duration for a given sheet-charge density
generated at the photocathode surface for any diode voltage
and gap.

The initial electron cloud is generated by a femtosecond-
to picosecond-duration optical pulse hitting the photocathode
surface. To generate large electron pulses, the efficiency of the
photocathode is important in order to minimize the required

FIG. 1. Transient charge sheet inside a vacuum diode gap.

laser pulse fluence. Different photocathodes made up of met-
als [1,8,13] and semiconductors can be used for this purpose.
Despite the low quantum efficiency of metals, their high
damage threshold, long lifetime, and ultrafast response often
make them advantageous. Standard high-quantum-efficiency
photocathode materials such as CsI, SbCs, and CsTe photo-
cathodes can also be employed, but may suffer damage when
very short high-current density pulses are extracted [14,15].
Thus, in order to obtain long-term stable operation, metal or
semiconductor photocathodes may be required.

II. PICOSECOND PULSE MODEL

A number of authors have previously considered the short-
pulse transient space-charge-limited diode response when
driven by an optical pulse [7,12]. Two situations have been
considered by past authors. The first is the limiting value of
an instantaneous thin-sheet charge generated by the optical
pulse at the photocathode. As shown in Fig. 1, this limiting
value is given by a charge sheet whose electric field jump,
E2–E1 = E0, where E0 = �0/d is the electric field of the
vacuum diode gap, with �0 the anode potential and d the
diode gap distance. Note that the electric fields are considered
positive in the direction indicated. This leads to a zero electric
extraction field on the cathode side of the charge sheet, cutting
off extraction of further electrons from the cathode just as
the charge sheet leaves the photocathode. We can define this
limiting saturation sheet charge as

σsat = ε0�0/d. (4)

This is equal to the areal charge density on the surface
of the vacuum diode when one considers its capacitance
given by

C = A ε0/d, (5)

where A and d are the area and plate separation respectively.
The charge on a capacitor is given by QC = �C, which leads
to the plate charge per unit area of QC/A = ε0�0/d , the same
as the saturation sheet charge density given by Eq. (4).

A second method of estimating the limiting sheet charge
for transient charge sheets of duration τ has been given by
Valfels et al. [12], where it is assumed that a Child-Langmuir
limiting current distribution is established from the diode
cathode toward the anode for the case of constant current-
density injection of Jo over a pulse duration of τ . This solution
assumes constant current injection over a period of time and
does not account for subsequent space-charge spreading of the
pulse as it then propagates across the gap to the anode.
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FIG. 2. Transient charge sheet in flight inside a vacuum diode
gap, where the charge density is given by ρe (x). The positions of
the front (2) and back (1) surfaces are given by x2 and x1, and the
velocities by v2 and v1, respectively. The electric field on front of the
charge sheet is E2 and the electric field behind the charge sheet is E1,
with directions as indicated.

III. MODEL ASSUMPTIONS

In the present case, we are interested in calculating the
exact pulse duration of the space-charge-limited pulses for a
vacuum diode excited by a very short laser pulse of a duration
of femtoseconds to picoseconds. We derive this model in
classical limits for millimeter-range anode-cathode gaps and
do not incorporate any quantum effects that generally arises in
nanometer diode gaps [16,17]. We will not consider the tran-
sient emission process, but rather assume that a charge cloud
of areal charge density σ has been produced by the optical
pulse at a distance of a few microns from the cathode surface.
For simplicity, we will assume that the charge cloud is flat
topped in shape, as shown in Fig. 2. We will show in the end
that a flat-top charge sheet accelerates in a self-similar manner
and remains flat topped throughout its flight across the diode
gap.

We now consider the equations of motion for acceleration
of the leading and trailing edges of the charge sheet with the
absolute value of the total areal charge density given by σ .
The electrons at the leading and trailing edges of the charge
sheet see electric fields of E1 and E2, respectively, and are
accelerated according to the equation

dv1,2/dt = E1,2/me. (6)

The electric fields on front and behind the charge sheet
evolve in time as the flat-topped space charge cloud propa-
gates across the gap from x = 0 to x = d . The jump in electric
field across the total charge sheet remains constant, given
by the absolute value of the integrated areal charge density
according to

�E = E2 − E1 = σ/ε0. (7)

The potential distribution across the diode gap also evolves
in time, having linear slopes in the vacuum regions in front of
and behind the space charge cloud, and a parabolic variation
through the space charge cloud, as shown schematically in
Fig. 3. The electric field is constant in the two vacuum regions
in front of and behind the charge cloud, and has a linear
dependence on position throughout the charge cloud due to
the uniform flat-top charge distribution.

The self-consistent electric fields and potential distribution
can be found for any position of the space charge cloud in
the gap as follows. Consider the charge cloud in flight with
positions of the leading edge X2, the trailing edge X1, and the
thickness �X = X2–X1. The midpoint of the charge cloud is

FIG. 3. Potential (solid line) and electric field (thick dashed line)
distribution across the diode gap.

given by X0 = (X1 + X2)/2. The areal density is given by ρe =
σ/�X . The electric field in the region of X1 to X2 is given by
Maxwell’s equations as

dE (x)/dx = ρe/ε0 = σ/(ε0 �X ) = �E/�X, (8)

giving

E (x) = E1 + �E (X − X1)/�X, (for X1 < x < X2). (9)

Integrating this electric field from X1 to X2 gives the poten-
tial jump from �1 to �2, giving

�2 = �1 + (E1 + �E/2)�X. (10)

Using the relations �1 = E1 X1 and �2 = �0–E2(d–X2),
one can write Eq. (9) in terms of electric fields and solve for
E1 and E2, which are then given by

E1 = E0[1 − fs (d − X0)/X0 (11)

and

E2 = E0(1 + fs X0/d ), (12)

where fs is the fractional charge saturation given by

fs = σ/σsat = �E/E0 (13)

and Eo = �0/d . The acceleration of the two end points, X1

and X2, can now be calculated using the fields at the two ends
of the charge cloud, E1 and E2. The equations of motion for
the two end points can then be integrated numerically in time
to give the trajectories of the two end points of the charge slab
and the resultant spread in time of the charge cloud. This can
be carried out numerically, noting that X0 is given at each time
step as the average of X1 and X2.

A. Self-similar behavior of current pulse

In order to show that the flat-top charge distribution re-
mains flat top, one can use the 1D divergence equation relating
time rate of change of density to divergence in the particle flux
given by

dρe/dt = −d (ρev)/dx. (14)

Assuming that ρe(x) is a constant in x over the charge
region, then the time rate of change in ρe(x) is given by

dρe/dt = −ρedv/dx (for X1 < x < X2). (15)
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FIG. 4. Potential (solid line) and electric field (thick dashed line)
distribution across the diode gap as the charge is being absorbed on
the positive anode.

The velocity distribution is given from the acceleration of
the charge species from t = 0, starting at rest. The accel-
eration, in turn, is given by the electric field at each point
in the slab, which varies linearly from X1 to X2, giving an
acceleration varying linearly in position from X1 to X2 given

a(x, t ) = a1(x, t ) + �a (x − X1)/�X (for X1 < x < X2),
(16)

where

�a = e �E/m (for X1 < x < X2), (17)

and e is the fundamental unit of charge and me is the mass of
an electron. Note that �a is a constant in time dependent on
the initial areal charge-sheet density, just as �E is a constant
in time. We can integrate Eq. (16) starting from zero velocity
at t = 0 for all positions in the charge slab, giving the velocity

v(x, t ) = v1(x, t ) + �a t (x − X1)/�X (for X1 < x < X2).
(18)

We can now evaluate the derivative of velocity with respect
to x by differentiating Eq. (18), giving

dv/dx = �a t/�X (for X1 < x < X2). (19)

This shows that dv/dx is a constant in space at any instant
in time, resulting in dρe/dt being uniform in space over the
whole charge slab at any instant in time. Thus, every point in
the charge slab decreases in density at the same rate in time,
resulting in a uniform charge slab decreasing uniformly in
density in time. This results in the density profile remaining
flat topped at every instant in time.

Indeed, one can show that the solution is self-similar,
with the self-similar scaling parameters given by the time
of flight for an electron across the vacuum gap, TG =
[2d2 me/(e �0)]1/2, and the saturation fraction of the charge
density, fs. Thus, the solution for the spread in the pulse for
any case can be calculated in terms of these two parameters.

A final correction is required as the pulse is absorbed on the
anode plate. The situation changes as shown in Fig. 4, where
only part of the charge remains in the gap. In this case the
charge σ is decreasing in time and the shielding effect starts
to decrease. However, at every instant in time, the situation is
identical to the initial solution, with a reducing charge in time
within the gap. The previous distribution of electric field and
potentials can be used with the reduced remaining charge. The

FIG. 5. Output pulse width versus slab charge scaled to the vac-
uum transit time and the saturation charge areal density, respectively.

arguments leading to the flat-top charge distribution remain-
ing as a flat top are still valid, and thus the rectangular shape of
the charge slab in space always remains rectangular still. This
then leads to a self-similar solution that also scales with the
vacuum transit time TG and the ratio of the initial charge-sheet
areal density to the saturation charge-sheet areal density fS ,
because the arrival velocity of the charges decreases with
time throughout the pulse. The actual temporal pulse shape
observed on the anode decreases in time with a characteris-
tic shape given by the ratio of starting charge to saturation
charge fS .

Based on the electric field at the front and back of the
charge sheet as given by Eqs. (11) and (12), the trajectories of
the front, X2, and back, X1, of the charge slab have been calcu-
lated numerically using a fourth-order Runge–Kutta solver to
an accuracy of better than 10–3. The corrections as the pulse
is absorbed into the anode are also included to give the com-
plete temporal profile of the pulse. The initial charge sheet is
positioned between 1 and 2 microns from the cathode surface
in these numerical calculations, for a diode gap of 3 mm. The
ratio of output pulse width, �τ , to the vacuum transit time, TG,
is plotted in Fig. 5 as a function of the ratio of slab charge to
saturation charge density. The pulse width refers to the total
time from the start to the end of the pulse arriving at the
anode, i.e., from the arrival of the first electron in the pulse
to the last electron in the pulse. In order to compare to a real
physical system, the pulse widths are calculated for the case of
a 3 mm diode gap, with various potentials ranging from 1 kV
to 5 kV applied to the anode. The resultant pulse widths are
plotted in Fig. 6. The resultant response curve can be fit by a

FIG. 6. Output full-pulse width versus fractional charge slab
charge for a 3-mm-gap vacuum diode.
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TABLE I. Coefficients for the fourth-order polynomial fit for
the self-similar pulse width versus charge density as shown in
Fig. 5, �τ/TG = ∑

ai × (σ/σsat )i, where �τ = τ1 − τ2, self-similar
arrival time of the leading edge of the pulse τ1 = t1/TG = ∑

bi ×
(σ/σsat )i, and self-similar end time of the pulse τ2 = t2/TG =∑

ci × (σ/σsat )i.

i = 0 1 2 3 4

ai 0.0000 0.4882 0.2582 –0.0853 0.2387
bi 1.0000 –0.0821 0.0541 –0.0135 0.0028
ci 1.0000 0.4061 0.3123 –0.0988 0.2415

fourth-order polynomial using the coefficients listed in Table I
to an accuracy on the order of 0.1%.

The output current-density pulse shape is also a self-similar
function of the saturation parameter fs, the self-similar scale
current density given by Jss = σsat/TG and the scaled time
τss = t/TG. Representative examples of the output current-
density pulse shape, i.e., time rate of change of charge entering
the anode, for various ratios of charge density to the saturation
charge density are given in Fig. 7(a) for the case of V0 = 3 kV
and d = 3 mm. The self-similar pulse shape in terms of the
Jss and τss is plotted in Fig. 7(b).

It can be seen that even though the pulse is flat topped in
space at all times as it propagates in the diode gap (even as
it is entering the anode), the pulse drops in time due to the
continuous spreading of the pulse in time as it propagates and
due to the reduction in space-charge shielding as the electrons
are absorbed at the anode.

FIG. 7. Output pulse shapes for a 1 cm2 diode with a 3 mm gap
and a 3 kV gap potential (a) for various values of σ/σsat and (b) the
self-similar pulse shape in terms of the self-similar current density
Jss and scaled time.

TABLE II. Coefficients for the functional fit for the self-similar
current density pulse shape versus normalized time as shown in Fig. 7
for decimal values of the normalized charge density. Jss(τ ) = dk0 +
dk1 × τ + dk2 × τ 2 + dk3 × τ 3 + dk4 × τ 4 for starting charge density
fraction fs = k/10.

i = 0 1 2 3 4

d1i 2.0354 –2.6206 –68.834 2572.4 –40149
d2i 2.0598 –2.8444 –25.273 480.31 –3648.9
d3i 2.083 –3.0581 –10.764 145.64 –720.28
d4i 2.1033 –3.216 –4.9323 59.269 –210.45
d5i 2.1206 –3.3703 –1.437 24.905 –69.421
d6i 2.1352 –3.5105 –0.7265 9.9558 –23.933
d7i 2.1463 –3.6308 2.0763 3.2031 –8.1603
d8i 2.1555 –3.7358 2.9504 0.0048 –2.399
d9i 2.1613 –3.822 3.5144 –1.5198 –0.2823
d10i 2.1659 –3.8938 3.8685 –2.2123 0.4528

B. Scaling law for temporal pulse profiles

In order to provide a simple way of calculating the
temporal response of the diode for any saturation value, a
least-squares fourth-order polynomial fit is carried out to the
self-similar current density, Jss(τ ), as a function of the self-
similar time variable τ = (t/TG)–τstr , where τstr is the arrival
time of the first electron. This is carried out for decimal values
of the normalized charge densities, fs,

Jss(τ ) = dk0 + dk1 × τ + dk2 × τ 2 + dk3 × τ 3 + dk4 × τ 4,

(20)
where k = 10 × fs, the scaled fractional charge density. Each
fit starts at τ = 0, corresponding to τstr , and ends at (τend–τstr )
for each value of normalized charge distribution fs. The fits
are carried out over the first 90% of the pulse duration and are
not fit to the falling end of the pulse. The coefficients for these
fits are given in Table II. The accuracy of the fits is better
within 0.4% in the first 90% of the pulse length. There is a
small discrepancy at the end of the pulse, where the model
calculation shows a drop in the pulse as it is absorbed into
the anode, which is not modeled with the curve fit here. In
reality, the detailed shape of the pulse once it starts to enter
the anode will be affected by the circuit parameters of the
anode and subsequent flow of current down the transmission
line used to extract the current pulse, which are not modeled
here. However, these fits should prove useful in modeling the
shape of the pulse generated over a variety of parameters.

A few calculated fits using the parameters from Table II are
compared to the numerical calculated profiles in Fig. 8.

IV. PARTICLE-IN-CELL MODELING

In order to verify the self-similar analytic solutions derived
earlier, numerical modeling of the transient pulse generation
was carried out using a 1D nonrelativistic electrostatic PIC
code [18]. This was used to predict the expected pulse shapes
as a function of electron charge created through the space-
charge-limit regime. The electrons are mobile along the x
direction. The electric field is directed along the x-axis. A
total of 3000 mesh points were chosen along the x-axis, with
each mesh point equal to 1 μm. The cathode is located at
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FIG. 8. Output self-similar pulse shape in terms of the self-
similar current density Jss and time τ from the start of the pulse for
a few fixed saturation fluxes. The numerical profiles are plotted as
solid lines and the calculated fits as dashed curves.

x = 0 with zero potential, and the anode is at x = 3 mm with
finite potential. The electron areal number density varies from
1.8 × 108 to 7 × 109/cm2, and potential from 1.2 kV to 5 kV
is varied for different cases to explore the current-density lim-
itation. The number of macroparticles used was 50 000. At the
initial time, all the particles are located at the 1 μm position
from the cathode surface, with the pulse width equal to zero.
The electrons have no initial velocity. The time-dependent
profile of potential, electric field, and positions for electrons
are written after every 40 fs. Figure 9 shows the spatial profile
of electrons for a 3 kV potential and 4.95 × 109 cm–2 areal
number density (σ/σsat = 0.9) at 175 ps [Fig. 9(a)] and a
temporal profile reaching at the anode [Fig. 9(b)]. It is seen
that indeed the pulse shape remains flat topped in space as
it propagates and, as expected, the current observed on the
anode decreases in time as the pulse arrives. The sharp spikes
observed at the start and end of the PIC simulation pulses are

FIG. 9. Particle-in-cell simulation results: (a) spatial profile of
electrons in flight at 175 ps and (b) temporal profile of the electron
pulse at the anode, for a 3 kV potential across the electrodes and
4.95 × 109 cm–2 areal number density of electrons (σ/σsat = 0.9).

FIG. 10. (a) Calculated full pulse width arriving at the anode
versus the fractional charge slab density for a 3 mm gap and a 3 kV
potential vacuum diode. Data for both the analytic solution and the
PIC simulations are shown. Pulse profiles for both PIC simulations
and the analytic solution are shown in (b) for σ/σsat = 0.8 and (c)
for σ/σsat = 0.4.

artifacts of the numerical solver routines at the sharp edges of
the pulse.

A. Comparison of analytic and PIC results

The full output pulse widths calculated by the self-similar
model and calculated from the PIC simulations are compared
in Fig. 10 for the case of a potential of 3 kV and a gap of
3 mm. In fact, the actual pulse shape will be nonuniform in
time, as shown in Fig. 7(b).

V. GENERATION OF 100 ps PULSES INTO A 50 � LOAD

One of the applications of diode-driven ultrashort pulses
is for the excitation of 100 ps broadband pulses for millime-
ter imaging radar. To assess the potential scaling of such
a source, the case of a practical diode with a 3 mm gap
and various anode potentials is used as a practical example
case. It is assumed that the photocathode is driven by an ul-
trashort femtosecond-to-picosecond-duration laser pulse. For
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FIG. 11. Predicted peak output voltage in a simple 100-ps
square-top shape after pulse shaping of the output versus the frac-
tional charge slab charge for a 3-mm-gap vacuum diode for a 1 cm2

photocathode area. Curves are plotted for each potential up to the
point where the pulse width exceeds 100 ps.

simplicity it is assumed that the photodiode is attached to a
pulse shaper and transmission line in order to form a 100 ps
output pulse. The peak voltage that can be generated is given
by the total charge times 50 � divided by the assumed 100 ps
output pulse width, and is plotted in Fig. 11 versus the diode
potential up to the point where the actual diode output pulse
duration would exceed 100 ps. Thus, the peak voltage repre-
sents the expected voltage that could be achieved assuming
a simple square-top pulse. It is seen that output pulses with a
peak of several hundred volts can be produced for a 1 cm2-area
diode, which would be of great practical importance for the
excitation of millimeter radar imaging systems. In reality, the
pulse would have a more complex pulse shape, depending
on the details of the subsequent transmission line and output
circuit, but this estimate should give a good indication of the
peak voltages achievable.

In order to excite such pulses, either high-efficiency pho-
tocathodes based on low work-function cathode materials
excited by visible pulses or simple metallic photocathodes
excited by UV laser pulses can be employed. For example,
to produce a 500 V pulse into 50 � in a 100 ps pulse du-
ration requires a charge of 1 nC. Using a standard bialkali
visible photocathode with a responsivity of around 50 mA/W
would require a laser pulse of 20 nJ energy. However, the
instantaneous current density in such a photocathode may
lead to damage, and thus the maximum voltages that can be
achieved in practical systems with standard low work-function
photocathodes will probably be less than this. In principle,
larger output voltages can also be achieved by using larger
photocathode areas, but this is also limited by the larger
effective pulse widths given by the extended spatial size of

the source, where the propagation distance across the source
region is limited by the speed of light to be less than 3 cm
to achieve a pulsewidth of less than 100 ps. The use of
high-damage-threshold metallic photocathodes would allow
operation up to the values calculated here. However, in this
case, UV pulses of around 260 nm or less in wavelength
are required for excitation, and the photocathode quantum
efficiencies are on the order of 10–3 at best [19]. Using fourth
harmonic output from a 1 μm laser would require an energy
per pulse at the fourth harmonic of approximately 5 μJ of
laser energy per pulse. Assuming a 10% conversion efficiency
from the fundamental to the fourth-harmonic wavelength in
the laser would require a laser with a pulse energy of 50 μJ per
pulse at the fundamental wavelength. Given the availability
of picosecond laser systems with output power on the order
of 1 W, one has the potential of generating 500 V, 100 ps
electrical pulses at a rate of 50 MHz if bialkali photocathodes
can be employed, or at 20 kHz using high-damage-threshold
metallic photocathodes.

VI. CONCLUSION

We have developed a self-similar analytic model to as-
sess quantitatively the generation of short EMPs using planar
vacuum photodiodes excited by ultrashort laser pulses. The
output pulse width, peak current, and pulse shape are given
by the model in terms of two scaling parameters—namely,
the vacuum transit time and the ratio of areal charge density
relative to the space charge saturation charge density. With
these parameters, one can predict the output of any planar
vacuum diode excited by an ultrashort laser pulse. These pulse
shapes can then be used as input pulses to the transmission
line, pulse shaping, and antenna circuits for the launching of
millimeter wave pulses for imaging applications.

The results indicate that by employing large applied po-
tentials, large-area photocathodes, and sufficient pulse energy,
electron pulses with a duration of 100 ps or less can be
generated into 50 � loads, achieving peak output voltages
of several hundred volts per pulse. In addition, the use of
high-efficiency photocathode materials would allow the gen-
eration of such pulses with repetition rates above 1 MHz with
currently available laser sources. Such sources would be of
interest for applications such as millimeter wave imaging.
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