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Controlling fluid adhesion force with electric fields
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Developing adhesives whose bond strength can be externally manipulated is a topic of considerable interest
for practical and scientific purposes. In this work, we propose a method of controlling the adhesion force of
a regular fluid, such as water and/or glycerol, confined between two parallel plates by applying an external
electric field. Our results show the possibility of enhancing or diminishing the bond strength of the liquid sample
by appropriately tuning the intensity and direction of the electric current generated by the applied electric field.
Furthermore, we verify that, for a given direction of the electric current, the adhesion force can be reduced
enough for the fluid to lose its adhesive properties and begin exerting a force to move apart the confining plates.
In these circumstances, we obtain an analytical expression for the minimum electric current required to detach
the plates without requiring the action of an external force.
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I. INTRODUCTION

Many areas of science and technology, including chem-
istry, rheology, and hydrodynamics, are applied to the under-
standing and development of adhesive materials [1,2]. Even
though, strictly speaking, fluids are not “genuine”adhesives,
they have similar physical features and behaviors to regular
soft adhesive materials. Therefore, although fluid properties
are generally much simpler than the rheological character-
istics of conventional adhesives, the use of fluids helps to
gain insight into the adhesion features of these more complex
materials. For these reasons, the study of the bond strength of
fluids has been a theme of plenty of recent research [3–25].

The existing theoretical and experimental studies of fluid
adhesion forces include Newtonian, non-Newtonian (shear-
thinning, shear-thickening, viscoelastic, etc.), and magnetic
fluids (ferrofluids and magnetorheological fluids). The mea-
sure of the adhesive strength of spatially constrained, liquid
thin films is provided by the so-called probe-tack test [26,27].
A typical version of this procedure takes place with a fluid
sample confined between two closely spaced parallel flat
plates. While the upper plate is lifted at a constant velocity,
the applied force is measured. The behavior of this force as
a function of the upper plate displacement is used to quantify
the adhesive strength of the liquid sample.

An essential aspect of common interest, regardless of the
type of fluid involved, is the pursuit of controlling its bond
strength. In particular, the protocol proposed in Ref. [6] refers
to the adhesion energy of Newtonian and power-law fluids
required to separate the two plates of the probe-tack test. More
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specifically, given that one wishes to lift the apparatus’ upper
plate until a certain height in a fixed time interval, Ref. [6]
obtains the optimal time-dependent lifting drive function for
which the adhesion energy is minimized.

Another controlling mechanism, which is more related to
the approach presented in this work, is proposed in Refs. [7,8].
They provide an efficient and reversible way to either enhance
or reduce the adhesion force of magnetic liquids by varying
the intensity and the geometric configuration of an externally
applied magnetic field. In Ref. [7], the authors use ferrofluids,
which are colloidal suspensions of nanometer-sized magnetic
particles in a nonmagnetic carrier fluid. They show that for
perpendicular (out-of-plane) or azimuthal (in-plane) magnetic
fields, the adhesive force of the ferrofluid is always reduced.
On the other hand, if the applied magnetic field lies on the
plane of the plates but points radially outwards, the adhesive
strength can be either enhanced or reduced.

In Ref. [8], another type of magnetic liquid known as
magnetorheological (MR) fluid is utilized as an adhesive sam-
ple. MR fluids typically consist of micron-sized magnetized
particles dispersed in aqueous or organic carrier liquids. The
results presented in Ref. [8] show that the bond strength of
these fluids is hugely increased when a uniform perpendic-
ular (out-of-plane) or a nonuniform radial magnetic field is
utilized. Furthermore, it is verified that this enhancement is
due to the field-dependent nature of the yield stress.

In this work, we propose a method of controlling fluid
adhesive properties by exploiting an electro-osmotic flow
[28–32] generated in the probe-tack test by an applied electric
field. In contrast to the magnetic control of Refs. [7,8], our
strategy does not require any particular type of fluids, such as
ferrofluids and MR fluids. As a matter of fact, it can be imple-
mented by using regular fluids, e.g., water and/or glycerol.

Electro-osmotic flow arises over electrically charged sur-
faces due to the interaction of an externally applied electric
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FIG. 1. Representative sketch of the probe-tack apparatus, where
a Newtonian inner fluid of viscosity η is confined between parallel
plates. A surrounding fluid with negligible viscosity is added to con-
duct current to the inner fluid. In addition, the fluids are immiscible.
A radial electric current I , whose intensity and direction can be
manipulated, is applied by circular electrodes positioned at the center
and the outer edge of the apparatus.

field with the net charge in the electric double layer (EDL)
[33–35]. More specifically, when the liquid sample is brought
into contact with the probe-tack apparatus’ glass plates, their
surfaces become negatively charged due to the dissociation
of ionic surface groups. Consequently, a thin, diffuse cloud of
excess counterions in the liquid accumulates near the surfaces,
forming the so-called EDL. By applying an external electric
field, these mobile ions are subjected to a net electric force,
which drives an electro-osmotic flow, in addition to the flow
driven by the lifting process. Since the intensity and direc-
tion of the external electric field are easily manipulated, the
induced secondary electro-osmotic flow can either assist or
oppose the flow driven by the lifting process. As we will
verify in the following sections, these features enable the
development of adhesives whose bond strength is regulated
by electric means.

II. DERIVATION OF FLUID ADHESION FORCE UNDER
THE INFLUENCE OF ELECTRIC FIELDS

Figure 1 sketches the probe-tack apparatus subjected to
a radial electric field. An incompressible, Newtonian fluid
with viscosity η, permittivity ε, and (surface) potential ζ is
confined between two parallel glass plates of the apparatus.
Our goal is to control the adhesion force of this fluid by
applying an electric field that generates an electro-osmotic
flow, supplementing the flow driven by the lifting process.
To this end, we introduce circular electrodes positioned at
the center and the outer edge of the plates. In addition, we
add a surrounding fluid in contact with the external electrode
to conduct the electric current to the fluid of interest (see
Fig. 1). The outer fluid is immiscible with the inner one and
is appropriately chosen to have a much smaller viscosity than
η; hence, as will become clearer later, its contribution to the
adhesion force can be neglected. For this reason, from hereon
our discussion will be focused on the inner fluid.

The initial plate-plate spacing, which is the initial distance
from the lower plate (in contact with the fluid) to the bottom
surface of the upper plate, is represented by b0, and the initial

fluid radius is represented by R0. While the lower plate is
held fixed at z = 0, with the z-axis pointing in the upward
direction perpendicular to the plates, an external force F is
applied at the upper plate. Following Refs. [3–5,7], we as-
sume that the upper plate has a spring constant denoted by
k. The plate spacing evolves in time according to b = b(t ).
Considering d as the initial thickness of the upper plate, and
L̃ = L̃(t ) as the distance from the lower plate (in contact with
the fluid) to the top surface of the upper plate, L̃ − (b + d )
measures the deformation of the upper plate during the lifting
process. In this picture, defining L = L̃ − d [with L = L(t )],
the deformation can be written as L − b. Thus, the control
parameter that is set by the motors of the flexible apparatus in
real-world probe-tack experiments is L (or L̃), and not b. From
now on, our external control parameter will be L. For the rigid
apparatus case (a situation not considered here), there is no
deformation and hence L = b at all times. Here at t = 0, we
have that L0 = b0. Lastly, an external, in-plane radial electric
field E = −∇� (with � being the electric potential within
the fluid) is applied, yielding a radial electric current I = I (t )
parallel to the flow direction (see Fig. 1).

The goal of this section is to calculate the pulling force F
as a function of the displacement L, taking into account both
hydrodynamic and electric contributions. Following Ref. [4]
and many subsequent works, we derive F considering that the
interface between the fluids remains circular during the lifting
process, with a time-dependent radius R = R(t ). This ap-
proach is justified by the fact that experiments of Ref. [4] with
highly developed fingering structures are very well described
by theoretical force-distance curves, which assume a circular
interface. Nevertheless, we direct the interested readers to
Ref. [9] for situations in which viscous fingering development
is relevant to the adhesion problem. The conservation of fluid
volume leads to

π
(
R2 − R2

e

)
b = π

(
R2

0 − R2
e

)
b0, (1)

where Re is the radius of the inner electrode.
Since most experimental and theoretical studies in probe-

tack adhesion [3–5,7,8,10–18] deal with very small b,
relatively low lifting velocities, and highly viscous fluids, the
effects of fluid inertia can be safely neglected. For more details
about the circumstances in which the fluid inertia is relevant
in probe-tack adhesion, we refer the reader to Ref. [19]. In
addition, as we focus on a high aspect ratio R/b � 1, a situa-
tion traditionally considered (see, e.g., Ref. [13]) in probe-tack
tests, we adopt a Darcy-law-like approach, which involves the
dynamic of the gap-averaged velocity v.

As mentioned earlier, the contact of the fluids with the glass
plates of the probe-tack apparatus dissociates ionic surface
groups, which causes the glass surface to become negatively
charged. As a result, a thin, diffuse cloud of excess counteri-
ons in the liquids accumulates near the surface, forming the
EDL [33–35]. Therefore, in addition to the flow driven by
the lifting process, the external electric field E yields a net
electric force on the mobile ions, driving an electro-osmotic
flow. This electric-induced flow can be either in the same
(inward) or opposite (outward) direction of the lifting-driven
flow (hydraulic flow), depending on the direction of E.

Since in typical microfluidic setups the EDL thickness is of
the order of the Debye length (λD ∼ 10 nm), and the smallest

055109-2



CONTROLLING FLUID ADHESION FORCE WITH … PHYSICAL REVIEW E 106, 055109 (2022)

gap spacing b0 we use is 100 μm (i.e., λD � b0), we can
safely take the thin EDL limit [28–32,36]. In this scenario,
the free charges are constrained to move in a much narrower
region than b0. Besides, we consider that the surface con-
ductivity is negligible compared with the bulk conductivity.
As a result, we can disregard both spatial variation in the
electric field and bulk concentration gradients [36–40]. This
assumption, jointly with the thin EDL limit, makes the fluid
electrically neutral in the bulk [36,41], yielding ∇ · E = 0,
and hence ∇2� = 0.

Under such circumstances, for the quasi-two-dimensional
plate-plate geometry, the motion of the fluids, with a contri-
bution of electric forces, is described by the modified Darcy’s
law [28–30,34,36] for the z-averaged velocity,

v = −M∇p − K∇�, (2)

where M = b2/(12η) and K = −εζ/η (Helmholtz-
Smoluchowski relation [34]) are the hydraulic and
electro-osmotic mobilities, respectively, and p denotes
the pressure field. The first and second terms on the
right-hand side (RHS) of Eq. (2) represent, respectively,
the pressure-driven and the electro-osmotic contributions to
the flow. In addition, the total current density J is the sum
of streaming (pressure-induced) and Ohmic (driven by the
electric field) currents,

J = −K∇p − σ∇�, (3)

where σ is the fluid Ohmic conductivity. To conclude all
governing equations of our system, we have the z-average of
the three-dimensional incompressibility condition,

∇ · v = − ḃ

b
. (4)

Since there is neither injection nor withdrawal, the fluid
velocity v must vanish at the inner electrode, r = Re. Then,
as we have assumed an circular interface, i.e., the flow is
symmetric in the azimuthal direction, the solution of Eq. (4)
is

vr = − ḃ

2b

(
r − R2

e

r

)
. (5)

Notice that this expression can also be obtained by taking
the time derivative of the volume conservation (1) and setting
vr = Ṙ.

In typical probe-tack experiments, the apparatus inertia
is negligible [19], thus the external force F = Fez should
balance the fluid pressure force Fp = Fpez, where ez is the
upward unit vector. Thus, F can be calculated by integrating
the pressure field p over the region occupied by the fluid, i.e.,

F = −Fp = −
∫ R

Re

(p − p0)2πrdr, (6)

where p0 is the pressure of the outer fluid, which is approx-
imately constant since its viscosity is much smaller than η.
Hence, p0 is approximately equal to the atmospheric pressure.
At this point, it is worth mentioning that, for conventional
lifting processes without electro-osmotic flow, the pressure
difference p − p0 is negative, hence Fp < 0, and the fluid acts
as a sort of glue between the parallel plates. As a result, in

order to keep the lifting velocity constant, F must be positive
(a lifting force), being, therefore, a measure of the fluid’s
adhesive strength. Nevertheless, we will see that p − p0 (and
also Fp) may become positive due to the electro-osmotic flow,
meaning that the fluid ceases to be an adhesive and instead
acts to separate the plates. In this case, F < 0 measures the
separation force performed by the liquid.

Since we need the pressure field to compute the applied
force (6), we combine Eqs. (2) and (3) so as to eliminate the
dependence on ∇�, so that

∇p = − 1

σM − K2
(σv − KJ). (7)

From this equation, we verify that the fluid velocity vr , which
was obtained in Eq. (5), and the current density Jr are neces-
sary to calculate the pressure gradient. Furthermore, note that
by substituting M = b2/(12η) and K = −εζ/η into Eq. (7),
and making the fluid viscosity small enough, we have ∇p ≈ 0.
This is what we are assuming for the outer fluid.

To compute J, first we combine Eqs. (2) and (3) again, but
now we eliminate the dependence on ∇p, and we take the
divergence operator on both sides of the resulting expression.
Then, using ∇2� = 0, we obtain

∇ · J = K

M
∇ · v. (8)

Substituting the two-dimensional incompressibility condition
(4) into Eq. (8), the divergence of J can be written as

∇ · J = − K

M

ḃ

b
. (9)

Notice that the three-dimensional effect of the upper plate
lifting on the velocity v, illustrated on the RHS of Eq. (4),
is transferred to J, as shown on the RHS of Eq. (9). It is
worth mentioning that in previous studies concerning electro-
osmotic flows (see, for instance, Refs. [28,29,31]), ∇ · J = 0
as the plates are held fixed (ḃ = 0). Using the fact that the
current density at the inner electrode (r = Re) is given by
Jr (r = Re) = I/(2πbRe), the solution of Eq. (9) is

Jr = − K

M

ḃ

2b

(
r − R2

e

r

)
+ I

2πbr
. (10)

From the relation between Jr (r = Re) and I above, I > 0 (I <

0) means that the current is directed outward (inward), i.e.,
opposite (same) to the hydraulic flow. Substituting Eqs. (5)
and (10) into Eq. (7), and integrating the resulting expression
over r, we obtain

p = − ḃ

4bM

(
R2 − r2)

+
(

K

σM − K2

I

2πb
− ḃR2

e

2bM

)
ln

( r

R

)
+ p0, (11)

where we have used the boundary condition p(R) = p0. Fi-
nally, we can compute the force F under the influence of an
electric field by substituting Eq. (11) into Eq. (6). Using M =
b2/(12η), K = −εζ/η (where ζ < 0), and the conservation of
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TABLE I. Material parameters used throughout the paper for the confined fluid sample, as well as geometrical and elasticity parameters
of the probe-tack apparatus. The material properties of the fluid utilized here, including electrical characteristics, are consistent with the
experimental works in Refs. [4,13,29,42,43]. Additionally, the probe-tack parameters are based on existing adhesion tests with viscous fluids
[3–5,10,11].

η ε0 ε ζ σ R0 Re k
109 mPa s 8.8 × 10−12 F/m 49.1ε0 −150 mV 155 × 10−4 S/m 2.0 cm 1.0 mm 1.0 × 10−5 N/m

fluid volume shown in Eq. (1), F can be written as

F = 3ηb2
0(A0 − Ae)2ḃ

2πb5
+ 3η

πb

(
ε|ζ |I

ησb2 − 12ε2ζ 2
− Aeḃ

b2

)

×
[

(A0 − Ae)
b0

b
− Ae ln

(
1 + b0(A0 − Ae)

Aeb

)]
, (12)

where A0 = πR2
0 and Ae = πR2

e are the initial area of the
fluid and the cross-sectional area of the inner electrode, re-
spectively. In Eq. (12), let us call the first (second) term the
hydraulic (electro-osmotic) contribution to the applied force
F . Note that the time dependence of F in Eq. (12) is implicit
in b, ḃ, and can also be in I if one considers time-dependent
currents. Taking the limit where the radius of the electrode is
small, i.e., Re → 0, Eq. (12) simplifies significantly, becoming

F = 3ηb0A0

2πb2

(
b0A0ḃ

b3
+ 2ε|ζ |I

ησb2 − 12ε2ζ 2

)
. (13)

Furthermore, the traditional adhesion force of Newtonian flu-
ids [4] without the influence of an electric field is recovered if
one considers I = 0 in Eq. (13).

As mentioned before, due to the compliance of the
measurement apparatus, the actual plate spacing b is not
necessarily equivalent to L. The presence of the compliance
yields an interplay between viscous, electrohydrodynamic
force, as quantified by F = F (b, ḃ), and the spring restoring
force k(L − b), which results from the deflection of the appa-
ratus. Neglecting the apparatus inertia, the acceleration drops
out from this dynamic scenario. As a result, the dynamic is
determined by the nonlinear, first-order ordinary differential
equation (ODE) for b(t ) [3–5,10,11],

k(L − b) = F (b, ḃ). (14)

In the following section, using the full or simplified expres-
sion for the applied force [Eqs. (12) or (13), respectively], and
the force balance (14), we will compute F as a function of L
for a given set of physical and geometrical parameters. Then,
we will investigate how the coupling between the hydrody-
namic and electro-osmotic flows allows us to control the fluid
adhesive strength.

III. RESULTS

We proceed to investigate how the presence of the electric
field, and hence the electric current, modifies the viscous
adhesion force. The parameters used hereafter in this paper,
which are consistent with existing probe-tack setups and ex-
perimental works on electro-osmotic fluid flow [3–5,7,8,10–
19,29], are shown in Table I. Moreover, as conventionally
done in adhesion tests with viscous fluids [3–5,7,8,10–19],
all the analysis performed here considers that the upper plate

moves with constant speed V , such that L = b0 + V t . Before
describing our results, we would like to provide information
about the fluids one can use to study our control mechanism
experimentally. As stated in Sec. II, we consider the case
in which the liquids are immiscible and conductive. In ad-
dition, the outer liquid must be much less viscous than the
inner one. Such circumstances could be implemented in a
laboratory considering the inner fluid, for example, a mix-
ture of water/glycerol (60/40 w/w) (viscosity of the order
10−1 Pa s), with KCl in concentrations � 2 × 10−3 M. It
would generate the material and electrical properties informed
in Table I. On the other hand, any conductive liquid that is im-
miscible with water and has very low viscosity can be used as
the outer fluid. In particular, one can choose the oil 1-octanol
(viscosity of the order 10−3 Pa s) with tetrabutyl-ammonium
chloride.

To obtain F as a function of L, we first substitute the
expression (12) [or its simplified version, Eq. (13) for Re → 0]
into the force balance (14). The resulting ODE for the time
evolution of the gap b = b(t ) is solved numerically. Then, we
substitute this numerical outcome appropriately back into (12)
or (13). Thus, we finally obtain the force F as a function of L,
as well as in terms of the initial gap b0, the lifting velocity V ,
the electric current I , and the material and setup parameters
given in Table I.

We start investigating the behavior of F as a function of the
displacement L for a fixed initial gap b0 = 100 μm and lifting
velocity V = 0.8 μm/s. The results are depicted in Fig. 2 for
six constant values of electric current. Solid lines represent
the calculations using (12), while dashed lines are obtained

FIG. 2. Applied force F as a function of the displacement L =
b0 + V t for different values of the applied (constant) electric current
I . Solid lines represent the adhesion force obtained via Eq. (12),
while dashed curves are computed with (13), where Re → 0. For all
cases, the lifting velocity and initial gap are kept fixed and equal to
V = 0.8 μm/s and b0 = 100 μm, respectively.
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by considering Eq. (13) (Re → 0 limit). As in the traditional
situation of a probe-tack test with viscous fluids, i.e., I = 0,
when the elasticity of the apparatus is taken into account, the
adhesion force for I �= 0 does not peak at b = b0 [3]. Instead,
at t = 0, L = b and the force is zero. Soon after the test starts,
the gap between the plates, b, remains roughly constant, and
the motion is dominated by changes in L, which leads to
an approximately linear increase in F [see Eq. (14)]. Then,
during the lifting, force is transmitted to the gap b, and after
awhile its rate of change ḃ equates to the lifting velocity V so
that the force reaches its peak value. This peak is often called
the adhesive strength of the material in the case of positive
peaks. At long times, the spring deformation is quite small so
that b ≈ L and ḃ ≈ V , and thus F ∼ L−5.

By inspecting Fig. 2, we verify that for I > 0, hydraulic
and electro-osmotic contributions add up, resulting in an
overall increase of the adhesion force F (F > 0), as one
can observe by comparing the curves for I = 0 and 15 mA.
The physical reason for this enhancement in the adhesion
strength is similar to the one given in Ref. [29] to explain
the increase in the pressure gradient due to an electro-osmotic
effect on injection-driven flows. When I > 0, the applied
electric field acts on the positive ions in the EDL, driving an
electro-osmotic flow in the opposite direction to the (inward)
hydraulic flow. Thus, the pressure gradient must increase to
maintain the flow rate imposed by the volume conservation
(1) during the lifting process, compensating for the opposite
electro-osmotic flow. This compensation causes an apparent
viscosity enhancement, which Ref. [29] refers to as apparent
“electrokinetic thickening.”

The increase of the pressure gradient can be observed by
analyzing Eq. (7) and noticing that σM > K2 and Jr > 0
when I > 0 for the physical parameters of Table I and electric
currents we used. This augmented pressure gradient reduces
the fluid pressure and thus enhances the difference p0 − p in
Eq. (6), resulting in a larger applied force F . Lastly, in the
expression of F [Eqs. (12) and (13)], one can easily verify
this behavior by noticing that ησb2 � 12ε2ζ 2. Hence, similar
to the hydraulic contribution, I > 0 yields a positive influence
of the electro-osmotic term on F .

On the other hand, when I < 0, the term proportional to
the electric current in Eqs. (12) and (13) becomes negative,
creating a competition between the hydraulic and electric-
induced contributions. The consequence of this competition is
weakening the required force to pull the plates apart (e.g., I =
−7.5 mA in Fig. 2). A physical explanation for this situation
is analogous to the one for I > 0, but now with the electro-
osmotic flow being in the same direction as the hydraulic flow,
resulting in an apparent “electrokinetic thinning.”

If one increases the magnitude of I , with I < 0, such
that the electro-osmotic term is dominant in Eq. (6), the ap-
plied force becomes negative (e.g., I = −27 and −35 mA in
Fig. 2). In this situation, the flow of the mobile ions increases
the fluid pressure enough to create a net force that acts to
move the plates apart. As a consequence, in order to keep
the lifting velocity constant, one needs to exert a downward
(resistive) force (F < 0) on the upper plate of the probe-
tack apparatus. Also, it should be pointed out that the plates
would detach accelerating upwards if no resistive force were
applied.

As a last remark about Fig. 2, it is evident that the inner
electrode radius Re has a minor influence on the adhesion
force since there is almost no difference between solid and
dashed curves. In addition, taking the limit Re → 0 in Eq. (12)
is very useful for obtaining a simplified scenario [Eq. (13)]
where one can clearly understand the physical contribution
of each term to the adhesion force. Nevertheless, as we will
analyze F for other values of V and b0 in the following graphs
(Figs. 3 and 4), we will utilize only the full expression (12).

The influence of the driving velocity V and initial gap b0

on the adhesion force is investigated in Fig. 3. In panel (a), we
plot F as a function of L for different lifting velocities and two
different (constant) values of I . Once again, for I = 15 mA
(solid lines), electro-osmotic and hydraulic forces generate an
adhesive force qualitatively similar to the classical case when
I = 0. As expected, the force is overall larger as the lifting
velocity is increased. On the other hand, for I = −35 mA
(dashed lines), the scenario can change depending on the driv-
ing speed. If the imposed lifting velocity is sufficiently large,
e.g., V = 2.4 and 3.2 μm/s, F is dominated by the hydraulic
contribution, and hence it is positive. For lower velocities,
e.g., V = 0.8 and 1.6 μm/s, however, F is negative; thus, the
electro-osmotic flow overcomes the hydraulic term, and the
fluid exerts a repulsive force, which acts to separate the plates
spontaneously.

We move now to Fig. 3(b), where F is plotted against the
nondimensional displacement L/b0 for different values of b0

and two different applied currents: I = 15 mA (solid lines)
and I = −35 mA (dashed lines). First, we observe that for
all the curves associated with I = 15 mA, the force is always
positive with its maximum value being a decreasing function
of b0. In addition, in contrast to what we have seen in Fig. 3(a)
for different values of V , changes in the initial gap b0 can
only decrease the amplitude of the overall adhesive force, but
never switch its sign. The reason for this behavior is that since
ησb2 � 12ε2ζ 2, at leading order, b0 contributes equally to
the hydraulic and electro-osmotic terms [see, for simplicity,
Eq. (13)], so changing its value acts as a prefactor in the
force, and hence it does not change which term dominates the
dynamic.

Another interesting situation occurs for certain intensities
of the electric current in which the applied force F changes
its sign during the lifting process. Examples of this behavior
are illustrated in Fig. 4(a), where F is plotted as a function
of L for V = 0.80 μm, b0 = 100 μm, and for electric current
intensities varying in the range [−16,−5] mA. When I is neg-
ative and sufficiently large in magnitude, F is purely negative
during the whole lifting process. Nevertheless, as the electric
current decreases in magnitude (for instance, in the case of
I = −12.34 mA), the fluid initially works as an adhesive, with
F > 0 pointing upward. Then, after passing by its maximum
value, F decreases and eventually becomes negative. At this
moment, instead of acting as an adhesive, the fluid changes
its behavior by exerting a separation force on the plates, and
the associated curve displays a negative peak before relaxing
asymptotically to zero as L → ∞. Recall that these changes
in F during the lifting occur to keep the upper plate velocity
constant.

In Fig. 4(a), we denote both the positive and negative peaks
of the force by F
, which is calculated via dF/dL|L=L


= 0,
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FIG. 3. The applied force F as a function of the displacement L for two different electric currents, I = 15 mA (solid lines) and I = −35
mA (dashed lines). In panel (a), F is plotted as a function of the displacement L for different values of V and a fixed initial gap b0 = 100 μm.
On the other hand, in panel (b), F is plotted against L/b0 for different initial gaps b0 and a fixed lifting velocity V = 0.80 μm/s.

with F (L
) = F
. The behavior of F
 as a function of the
electric current for different lifting velocities is shown in
Fig. 4(b). In this panel, first we observe that the peak of F
increases approximately linearly with I . Besides, the situation
is qualitatively similar for all velocities we used, i.e., for high
enough negative currents the force has a nonzero negative
peak, and when the current changes towards positive values,
F displays a nonzero positive peak. In addition, between these
two ranges of currents, F has a positive and a negative peak
for fixed values of I and V . This intermediate range represents
the previously mentioned values of I , for which the force
changes its sign as the plate moves upwards [see the color bar
in Fig. 4(a)]. This situation can be seen in the zoomed-in inset
in panel (b), which displays the two peaks of F
: the positive
peak arising above a threshold current of I ≈ −13.5 mA and
the negative one vanishing above I ≈ −5 mA.

It is interesting to note that for a given value of the current,
F
 increases roughly linearly with V when F
 > 0. Neverthe-
less, for a fixed current, the modulus of F
 is a decreasing
function of the lifting velocity when F
 < 0. This behavior is
because ḃ only contributes to the hydraulic term of the force.
Hence, when the hydraulic contribution prevails in the applied
force (F
 > 0), one needs to apply a larger force in order to
increase the lifting speed. On the other hand, when I < 0 and

the force is dominated by the electric-driven flow (F
 < 0),
increasing V enhances the counterbalancing hydraulic term,
thus decreasing the negative peak of F .

So far, we have verified several situations in which one
needs to exert a downward force (F < 0) to keep the lifting
velocity constant. This behavior suggests that it is possible
to create a dynamical equilibrium between the hydraulic and
electro-osmotic contributions, such that the plates separate
spontaneously and no applied force is required. This equilib-
rium can be achieved by imposing a time-dependent electric
current I0(t ) such that the electro-osmotic term in Eq. (12)
balances the hydraulic term at all times, i.e., F (t ) = 0 for
I = I0(t ). Setting Eq. (12) to zero, and solving for I = I0(t ),
one obtains

I0(t ) = ḃ

b2

(
ησb2 − 12ε2ζ 2

ε|ζ |
){

Ae − b2
0(A0 − Ae)2

2b2

×
[

(A0 − Ae)
b0

b
− Ae ln

(
1 + b0(A0 − Ae)

Aeb

)]−1
}

.

(15)

Note that F = 0 implies that L = b [see Eq. (14)], and thus
we can use b = b(t ) = b0 + V t in Eq. (15). Furthermore, by

FIG. 4. (a) The applied force F as a function of the displacement L for I ∈ [−16, −5] mA in steps of 1.22 mA, V = 0.8 μm/s, and
b0 = 100 μm. Depending on the value of I , the peak(s) of F , denoted by F
, can be positive, negative, or both. In (b), F
 is plotted as a function
of the applied current for different velocities and b0 = 100 μm.
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FIG. 5. (a) Time-dependent electric current I0(t ) required to vanish the applied force F at all distances L, or equivalently at all times. Here,
I0(t ) is plotted as a function of L for different lifting velocities and b0 = 100 μm. Solid lines are obtained from (15), while dashed curves are
computed with (16). (b) The lowest value of I0(t ) (largest in magnitude), denoted by I∗

0 = I∗
0 (V ), is plotted as a function of the velocity V . In

panel (a), the arrow points to I∗
0 for V = 0.8 μm/s.

taking the limit Re → 0, a considerably simpler expression for
I0(t ) is obtained, namely

I0(t ) � − ηb0A0V

2ε|ζ |(b0 + V t )3

[
σ (b0 + V t )2 − 12ε2ζ 2

η

]
. (16)

In Fig. 5(a), we depict the evolution of I0(t ) with respect to
L for different lifting velocities. In addition, solid (dashed)
curves are plotted considering I0(t ) as given by Eq. (15)
[Eq. (16)], and we observe that the simpler expression (16) is
again a very good approximation. To understand the behavior
of I0(t ) shown in Fig. 5(a), first one should note that both
the hydraulic and electro-osmotic contributions decay as the
distance between the plates increases. However, by inspecting
Eq. (13), one verifies that the hydraulic term decreases faster
(∼b−5) than the electro-osmotic one (∼b−4). Therefore, dur-
ing the lifting process, for the electro-osmotic contribution to
reduce to the same magnitude as the hydraulic one, the current
I0(t ) required to counterbalance the hydraulic term should also
diminish as the plates separate. Finally, note that there is an
overall decrease in the magnitude of I0(t ) if one wants to lift
the upper plate at lower speeds. As a consequence, we verify
that even very small electric currents can lift the upper plate
when V goes to zero. Nevertheless, such a process would take
a considerably long time, becoming useless for any practical
purpose.

The largest magnitude of I0(t ) is |I∗
0 | = |I0(t = 0)|, which

is a linearly decreasing function of the lifting velocity V ,
as shown in Fig. 5(b). The relevance of I∗

0 comes in handy
when one wishes to lift the upper plate without applying an
external force and without imposing a constant velocity. Note
that at the very beginning of the lifting process, the upper
plate tends to move with velocity V since I∗

0 = I0(t = 0). But
because |I∗

0 | > |I0(t > 0)|, this velocity is not maintained, and
the plate accelerates to higher speeds. Therefore, we verify
that I∗

0 represents the smallest (in magnitude) electric current
to detach the plates with a minimum velocity V and without
applying an external force.

IV. CONCLUSION

In this work, we showed that the adhesive strength of a
regular liquid sample, such as water and/or glycerol, can be
conveniently manipulated by electric means. This electric-
tunable adhesive was proposed by taking advantage of the
electro-osmotic flow generated by an external electric field
along the surfaces that confine the fluid sample in a probe-tack
apparatus.

From a modified Darcy’s law that considers both hydraulic
and electro-osmotic contributions to the fluid flow, we derived
the applied force required to pull apart the confining plates
at a constant lifting velocity. By controlling the intensity and
direction of the applied electric current, we found that the liq-
uid’s adhesion force can be enhanced or diminished compared
to the traditional, purely viscous case in which no electric
current (zero electric fields) is applied.

In addition, when sufficiently large negative electric cur-
rents (in the same direction as the lifting-driven flow) are
applied, our findings showed that the traditional adhesive be-
havior of the liquid sample reverses, and the material passes
to push apart the probe-tack surfaces rather than holding them
together. All these reversibly controllable adhesive features
were possible only due to the presence of the electro-osmotic
flow, which assists (opposes) the purely viscous force when
positive (negative) electric currents are utilized, thus increas-
ing (decreasing) the adhesion force.

We also found that a dynamical equilibrium between vis-
cous and electro-osmotic forces is attained when a specific
time-dependent electric current I0(t ) is applied. Under these
circumstances, the plates of the probe-tack system separate
spontaneously with constant upward velocity without the
need to apply a force. Finally, we showed that the largest
value, in magnitude, of I0(t ), i.e., I0(t = 0) = I∗

0 , represents
the smallest electric current required to separate the plates
without an external force and with a minimum upper plate
velocity.

Our theoretical work makes specific predictions that have
not yet been subjected to experimental checks. In addition
to its technological relevance, we believe that an eventual
experimental verification of our control method would reveal
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foundational aspects of fluid dynamics related to the interplay
between adhesion and electrohydrodynamic phenomena. A
natural extension of the current work would be investigating
the influence of electric forces on the adhesive properties
of complex electric fluids, such as electrorheological fluids
suspensions [44], which exhibit an electric field-dependent
shear yield stress. Finally, we hope that this work will instigate
further theoretical and experimental studies on this rich topic.
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