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Finite flame thickness effects on Kolmogorov-Petrovsky-Piskunov turbulent burning velocities
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KPP (Kolmogorov-Petrovsky-Piskunov) solutions of the reaction-diffusion equation have application in
various physical phenomena occurring in biology, ecology, and reacting flows. In particular, these solutions
are commonly used in turbulent combustion to scale turbulent burning velocities. Subject to certain conditions
on reaction rate profile through the flame brush and turbulent diffusivity, this theory relates the turbulent burning
velocity to the derivative of the reaction rate (ω̃) at the leading edge of the flame brush (dω̃/dc̃|c̃=0). Such waves
are often referred to as “pulled fronts.” However, turbulent flames never actually satisfy the KPP conditions for
a pulled front, as the turbulent flame brush, parametrized here by the thickness δt , consists of an ensemble of
laminar flamelets of thickness δ, where ε = δ/δt � 1 is very small, but nonzero, and dω̃/dc̃ tends to zero at
the brush leading edge for high activation energy, combustion-type kinetics. This paper analyzes these effects on
KPP wave solutions, parametrized by ε = δ/δt and Zeldovich number Ze focusing on whether turbulent flames
retain their pulled front character and what the correction to the KPP wave speed is. Variational solutions of the
reaction-diffusion equation show that the solution can be expanded in powers of 1/|ln ε|. Both numerical and
asymptotic results are presented, showing that the wave still exhibits pulled front solutions but with significant
corrections to the KPP result. The leading order correction is of the form |ln ε|−2 and independent of Ze. Higher
order corrections are function of both ε and Ze. However, the dominant factor influencing the wave speed
correction is due to the finite ε, with Ze exhibiting a weaker effect.
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I. INTRODUCTION

Kolmogorov, Petrovsky, and Piskunov analyzed traveling
wave solutions to the reaction-diffusion equation, generalizing
Fisher’s nonlinearity [1], to describe population dynamics [2].
These solutions have subsequently been used to model a host
of phenomenon, including applications in biology [3], com-
bustion [4], and plasma physics [5]. In this article, we focus
on its application to the turbulent flame speed and Arrhenius
modification to the Kolmogorov-Petrovsky-Piskunov (KPP)
type nonlinearities. Although we present the analysis using
turbulent combustion terminology, it can be applied in general
where similar functional forms occur for nonlinearities.

A fundamental observation of the turbulent burning ve-
locity is that it increases with increasing turbulence intensity
in the approach flow, at least over a range of turbulence in-
tensities. Formal mathematical analyses of this problem lead
to at least two approaches for addressing this causal rela-
tionship. Damköhler’s first hypothesis, which can be thought
of as a “global” description, emphasizes the augmentation
of flame surface area by turbulent disturbances, leading to a
higher turbulent velocity [6]. In contrast, a “local” descrip-
tion follows from the Kolmogorov-Petrovsky-Piskunov (KPP)
theorem [2], which relates the turbulent burning velocity to
conditions at the leading edge of the turbulent flame brush [7].
These two descriptions have fundamentally different answers
to questions around causality. In the global description, a
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flame area increase “causes” the increase in burning velocity,
whereas the flame area increase is an “effect” of increasing
burning velocity with the local description. Analyses of de-
terministic solutions of the G equation have shown that both
descriptions are the formally appropriate ones in different
limiting circumstances [8].

The objective of this study is to analyze KPP wave so-
lutions [2], specifically the steady state wave speeds of a
reaction diffusion equation. We specifically consider a statis-
tically stationary, one-dimensional front [9,10], given by

vdc̃/dζ = d2c̃/dζ 2 + ω̃(c̃), (1)

where c̃ and ω̃ are the Favre-averaged progress variable and
reaction rate respectively and v is the wave speed. Note
that we absorb DT (turbulent diffusion coefficient) into the
definition of the spatial coordinate by defining ζ − ζ0 =
∫x

x0
1/[ρ̄DT (x′)]dx′, v = ρ̄ST (where ST is the turbulent flame

speed and ρ̄ is the average unburned gas density) and ω̃ =
ρ̄2DT W (where W is the reaction rate. Note that c̃ = 0 and c̃ =
1 represent unburned and burned gases respectively. Reaction
rates are assumed to be zero at both limits, i.e., ω̃(c̃ = 0) =
ω̃(c̃ = 1) = 0.

Our interest in this paper is particularly around the de-
pendence of the solution upon the functional nature of the
reaction rate term. The reader is referred to work from Lipat-
nikov and Sabelnikov [11–13] on solution characteristics with
various diffusivity forms, including countergradient diffusion,
where DT < 0 in part of the flame. Consequently, we assume
that DT > 0 for this analysis. Two limiting forms of solution
exist to this equation (which turn out to closely approximate
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that found in a laminar and turbulent flame) depending upon
whether ω̃(c̃) is concave or not. If ω̃(c̃) is not concave, the so-
lution asymptotes to the following equation which, as shown
by Zeldovich and Frank-Kamenetskii [7,14], is valid when the
reaction rate is negligible except near (c̃ → 1), a profile that
approximates laminar premixed flames with high activation
rate kinetics [7,15]:

v =
√

2
∫ 1

0
ω̃(c̃)dc̃. (2)

In this case, note that v is controlled by the integral of the
reaction rate profile and is independent of any particular local
values. These are sometimes referred to as “pushed fronts.”

A completely different solution form exists when the reac-
tion rate profile is concave in [0, 1] or more precisely

ω̃(0 � c̃ � 1) � 0, (3a)

dω̃/dc̃|c̃→0 > max dω̃/dc̃|0<c̃�1, (3b)

then the reaction diffusion equation admits a family of uni-
formly traveling wave solutions for all flame speeds (v)
greater than a minimum speed, vKPP given by [2]

v � vKPP = 2
√

(dω̃/dc̃|c̃→0). (4)

The equality holds for sufficiently localized initial condi-
tions and for initial condition such that c̃(x < 0, t = 0) = 0
and c̃(x � 0, t = 0) = 1 [2,16]. These fronts are referred to
as “pulled fronts” since the flame speed depends only on the
leading edge of the turbulent flame brush (c̃ → 0).

Most turbulent flame reaction rate closure models in the
literature satisfy KPP constraints given by Eq. (3) [10]; e.g.,
the eddy break up model [17], Magnussen model [18], and
Bray-Moss-Libby model [19]. For example, the Bray-Moss-
Libby model in conjunction with the flamelet crossing model
[20] uses a reaction rate term of the form ω̃(c̃) ∼ c̃(1−c̃),
plotted in Fig. 2. For this reason, it is common in turbulent
combustion studies to use the KPP solution to approximate
the turbulent flame speed [4,21–23].

This study is motivated by the fact that no real turbulent
flame (with flame brush thickness δt ), which is composed of
finite thickness flamelets of thickness δ, satisfies the constraint
given by Eq. (3). First, due to Arrhenius kinetics, in the
region O(δ/δt ) close to the leading edge, i.e., near c̃ → 0,
dω/dc̃ → 0 [24–27]: this is sketched in Fig. 1. Second, it
is possible for the leading edge of the laminar flamelet to be
slightly endothermic, due to fuel decomposition. This leads
to the following asympotic problem: “What is the nature of
the solutions in the limit of δ/δt → 0, where ω̃(c̃) does not
formally satisfy Eq. (3), even while being asymptotically close
to it (e.g., see Fig. 2)?” For such source functions, it is not
clear whether the front is still a pulled front, perhaps with a
small correction, or exhibits completely different characteris-
tics altogether.

Some insight into this question was developed by Brunet
and Derrida [28] in the context of a Fisher-Kolmogorov
equation. In particular, they looked at finite size effects of
microscopic stochastic model of directed polymers. They sim-
ilarly considered a small deviation to the ω̃(c̃) function, in a
small region close to the leading edge (c̃ → 0) by multiplying

FIG. 1. Schematic of 1D statistically stationary flame indicating
progress variable and boundary conditions.

a leading-edge function �(ε) such that

� = 1 if c̃ � ε, (5a)

� = 0 if c̃ < ε, (5b)

where ε � 1 is a small parameter. They showed that this
deviation introduces a shift in the velocity of the front given
by

v ≈ v∗
KPP − π2/|ln ε|2, (6)

where v∗
KPP = 2 is the KPP wave speed for the ω̃(c̃) = c̃(1−c̃)

profile used.
Two key conclusions fall out of this expression: First, the

basic KPP wave speed scaling still holds, even though the ω̃(c̃)
function does not satisfy Eq. (3). Second, the wave speed has
a correction which is very strong even for very small ε, being
in the form of a logarithm. Furthermore, while this result was
developed for a Heaviside leading edge function, it turns out to

FIG. 2. Reaction rate function, ω̃(c̃), showing leading edge cor-
rection for increasing values of Ze for ε = 0.1.
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be independent of the functional nature of �(ε) to this order,
as shown by Dumortier et al. [29] and Benguria et al. [30].

Consider next the effects of slight endothermicity of the
leading edge of the flamelet, conceivable under certain con-
ditions where the fuel decomposes into intermediates. The
simplest of these source functions have been studied in the
literature in the context of response of a biological neu-
ron when excited by an external stimulus [31,32] and are
termed Fitzhugh-Nagumo source terms given by ω̃(c̃) =
c̃(1−c̃)(c̃ − γ ), where the parameter γ ∈ (0, 1/2) determines
the inflection point. There are fundamental differences in the
nature of the traveling wave solutions to reaction diffusion
equations with Fitzhugh-Nagumo source terms and the KPP
source terms satisfying Eq. (3). The KPP source term results
in a velocity spectrum with a lower bound [see Eq. (4)] above
which uniformly traveling wave solutions exist. On the other
hand, the Fitzhugh-Nagumo model results in a unique trav-
eling wave solution with the velocity uniquely given by [33]

v0 = 1√
2

− γ
√

2. (7)

Note that this correction reduces the wave speed, but in
a manner that is linearly dependent upon γ , as opposed to
the quadratic and logarithmic correction to the leading-edge
function in Eq. (6). Fitzhugh-Nagumo source functions, with
leading edge correction functions of the form used in Eq. (5),
have also been studied [34,35]. This deviation was shown to
introduce a shift in the velocity of the front given by [34]

v ≈ v0 + K (γ )ε1+2γ , (8)

where K (γ ) = 
(4)

(1+2γ ) 
(3−2γ )

√
2γ

(1+2γ )2γ is a positive constant.
Note that as ε → 0, the above equation limits to the solution
given by Eq. (7). However, as γ → 0, this does not limit to
Eq. (6) since the two source functions are different; i.e., ω̃ =
c̃(1−c̃) and ω̃ = c̃(1−c̃)(c̃ − γ ), respectively.

Given how strong these finite flame thickness corrections
can be to the KPP wave speed, the objective of this study
was to study the nature of this correction for leading edge
functions, �(ε), representative of those encountered in high
activation energy flames. While the leading order result in
Eq. (6) is independent of the functional form of �(ε), the gen-
eral form of the higher order correction terms is not addressed
in the literature, or its dependencies upon key combustion
parameters, such as activation energy. Addressing these cor-
rections is the focus of this paper.

II. PROBLEM FORMULATION AND METHODOLOGY

A. Problem formulation

Consider the balance equation for a Favre averaged
progress variable c̃ for a one-dimensional (1D) statistically
stationary flame given by Eq. (1). Figure 1 shows the
schematic of such a flame with the corresponding boundary
conditions, given by

ω̃(c̃ → 0) = ω̃(c̃ → 1) = 0. (9)

Following the asymptotic analysis of Williams [36], Buck-
master [37], and the simplified source function analyzed by

FIG. 3. Illustration of solution trajectory to Eq. (11) in phase
space (c̃, p) for two different values of wave speed.

Clavin et al. [38], we consider source functions of the form

ω̃(c̃) = A(Ze, ε)

{
c̃(1 − c̃)e−Ze(1−c̃/ε) c̃ < ε

c̃(1 − c̃) c̃ � ε
, (10)

where A(Ze, ε) is a normalizing factor such that
∫1

0 ω̃(c̃) dc̃ = 1, Ze is the Zeldovich number defined as
Ze = EA/R(TB − TU ), EA is the activation energy, R is the
gas constant, and TU and TB are the unburnt and burnt gas
temperatures. Note that the above source function satisfies
Eq. (3a), i.e., ω̃ � 0. Endothermicity effects at the brush
leading edge, suggested to be a much weaker effect from
the analysis presented in the previous section, will be briefly
discussed in Sec. III.

Figure 2 shows the variation of the resulting source func-
tion [Eq. (10)] with increasing values of Ze for ε = 0.1.
Notice that as Ze → ∞ the leading edge function limits to
the Heaviside step function discussed in the context of Eq. (5),
analyzed by Brunet and Derrida [28].

B. Computational methodology

Denoting p = −dc̃/dζ , Eq. (1) becomes

d p/dc̃ = [vp − ω̃(c̃)]/p, (11)

and the boundary conditions are given by

p(c̃ = 0) = p(c̃ = 1) = 0. (12)

Note that the singular points of Eq. (11) are (c̃ = 0, p = 0)
and (c̃ = 1, p = 0). Thus, in phase space (c̃, p), the solution
to Eq. (11) is a heteroclinic trajectory joining the two singular
points. The numerical solution for the equation is obtained us-
ing a shooting method in phase space [39,40]. Figure 3 shows
an illustration of such solution trajectories for two different
values of wave speed. There exists a minimum value of wave
speed above which the solution is restricted to the physically
meaningful region of 0 � c̃ � 1 [2,16]. This computed mini-
mum wave speed is discussed further in the next sections.

III. RESULTS AND DISCUSSION

A. Numerical solution: KPP case

Figure 4 plots the dependence of the wave speed upon
dimensionless flame thickness ε for several values of Ze. Also
plotted in the figure is the asymptotic result, Eq. (6). Starting
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FIG. 4. Numerically computed minimum wave speed (normal-
ized by KPP wave speed) dependence upon ε, as well as the
O(|ln ε|−2) correction from Eq. (6).

with the large Ze limit, notice that there is a significant cor-
rection introduced from the KPP result even for small values
of ε (∼10−3). Insights into this large sensitivity to small but
nonzero flame thickness is provided by Eq. (6), which shows
that the correction is of O(1/|ln ε|2).

Figure 5 plots these same results as a function of Ze for
different values of ε. Several observations are evident. The
wave speed decreases with increasing values of Ze for any
value of ε. This intuitively makes sense, because, as shown in
Fig. 2, an increase in Ze pulls the wave profile farther and far-
ther from its baseline. The rate of decrease, however, increases
with increasing ε. Further, as Ze → ∞, the value of wave
speed saturates and the saturated wave speed decreases with
increasing ε. We will address these limiting values further in
the next section.

FIG. 5. Variation of wave speed (normalized by KPP wave
speed) with parameter Ze for different values of ε.

B. Asymptotic result for Ze � 1 cases

This section derives higher order corrections to the KPP
wave speed, generalizing the result from Benguria et al. [41].
In the Ze → ∞ limit, the leading-edge function hence is given
by

ω̃(c̃) =
{

0 if c̃ < ε

c̃(1 − c̃) if c̃ � ε
. (13)

Following Benguria et al. [41], we can develop the follow-
ing expression for the wave speed from a variational principle
to arrive at

v2 � sup
φ(s)

(
F (1)

s0
+ ∫s0

0
F [φ(s)]

s2 ds

∫s0
0

( dφ

ds

)2
ds

)
, (14)

where F (φ) = ∫φ

0 ω̃(q)dq, s0 is an arbitrary parameter, and the
supremum is taken over all the positive increasing functions
φ(s) such that φ(0) = 0 and φ(s0) = 1 and for which all the
integrals in the above variational principle are finite [41].

The maximizing function φ̂(s) is given by the solution of
the Euler-Lagrange equation [41],

d2φ̂

ds2
+ λ

ω̃(φ̂)

s2
= 0. (15)

such that φ̂(0) = 0, φ̂(s0) = 1, and φ̂
′
(s0) = 0. Note that the

variational principle computes a lower bound with any “trial
function” chosen as φ(s).

For the considered leading function, the analytical solution
to Eq. (15) is not tractable, so we use a linear approxima-
tion for the source function [ω̃(c̃ � 1) ∼ c̃] to understand the
functional form of the higher order corrections. The resulting
trial function for the variational principle is given by

d2φ̂

ds2
= 0 0 � φ̂ < ε, (16a)

d2φ̂

ds2
+ λ

φ̂

s2
= 0 ε � φ̂ � 1. (16b)

The solution to the above Ordinary Differential Equation
which maximizes the variational principle is given by [41]

φ̂(s) =
{

s 0 � φ̂ < ε

α
√

s cos
[

1
2 cot (φ∗) ln

(
s
ε

) − φ∗
]

ε < φ̂ � s0
,

(17)
where = √

ε sec φ∗, s0 = 1
ε
, and φ∗ is the first positive solu-

tion of the equation φ∗ tan φ∗ = 1
2 |ln ε|.

Substituting the trial function [Eq. (17)] into the variational
principle [Eq. (14)], we obtain

vε/v
∗
KPP � 1 − π2

|ln ε|2 + 7π2

4

1

|ln ε|3 + O(|ln ε|−4). (18)

This higher order correction can also be used as a function
to fit the finite Ze results from the computations in order to
render the results as functions of Ze only; i.e., we determine
the dependence of the coefficients C1(Ze) and C2(Ze) upon Ze
in the expression from the computations:

vε = v∗
KPP{1 − π2[1/2|ln ε|2 + C1(Ze)/|ln ε|3

+ C2(Ze)/|ln ε|4]}. (19)
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FIG. 6. Coefficients C1 and C2 vs Ze as defined in Eq. (19)
obtained using least squares curve fit numerically. Overlaid in dotted
line is the value of C1 obtained from variational principle for Heavi-
side cutoff function explained in Sec. III B.

These values of C1 and C2 results are plotted in Fig. 6 as
functions of Ze. For reference, the limiting value of C1 = 7/4
in the Ze → ∞ from Eq. (18) is also shown. The figure shows
that C1 and C2 are both functions of Ze, but that the depen-
dence is rather weak, varying by about 25% and 15% over the
entire Ze range for C1 and C2. In other words, the dominant
factor influencing the correction of the KPP flame speed is
flame thickness, with the details of the reaction rate profile as
parametrized by Ze, exhibiting a nonzero, but weaker effect.
This also indicates that similar results should be observed for a
range of related leading-edge functions. The figure also shows
both the C1 and C2 values saturating for large Ze, with the C1

value converging to the dashed line [Eq. (18)].

Consider next the effects of weak endothermicity at the
flame brush leading edge. We analyzed corrections to the
leading-edge function of the Fitzhugh-Nagumo form. Al-
though the wave speed was a function of the parameter γ , the
effect was negligible for γ � 1 and so not plotted here. This
result was expected due to the linear nature of the correction
of the wave speed, presented in Sec. I.

IV. CONCLUSIONS

This study has considered the effects of a laminar flame-
type source function introduced to the Favre averaged
progress variable equation to account for the deviation in the
reaction rate from a concave shape. This deviation is attributed
to the Arrhenius kinetics coupled with the finite flamelet thick-
ness. Without this deviation, the flame speed can be computed
from KPP theory and depends only on the leading edge of
the flame (pulled fronts). With the deviation however, there
is a significant correction introduced to the KPP pulled front
wave speed. This correction is of the form |ln ε|−n and is
computed numerically. In the limit of high Zeldovich number,
the Arrhenius term is shown to behave as a Heaviside step
function and the corresponding coefficient of the O(|ln ε|−3)
is shown to be predicted by variational principle [41].
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[34] F. Dumortier, N. Popović, and T. J. Kaper, Phys. D (Amsterdam,

Neth.) 239, 1984 (2010).
[35] V. Méndez, D. Campos, and E. P. Zemskov, Phys. Rev. E 72,

056113 (2005).

[36] F. A. Williams, Combustion Theory, 2nd ed., Combustion
Science and Engineering Series (Benjamin/Cummings, Menlo
Park, 1985).

[37] J. Buckmaster, P. Clavin, A. Linan, M. Matalon, N. Peters, G.
Sivashinsky, and F. Williams, Proc. Combust. Inst. 30, 1 (2005).

[38] P. Clavin and A. Liñán, in Nonequilibrium Cooperative Phe-
nomena in Physics and Related Fields (Springer, New York,
1984), pp. 116–291.

[39] F. Sánchez-Garduño and P. K. Maini, J. Math. Biol. 33, 163
(1994).

[40] F. Sánchez-Garduño, P. K. Maini, and M. E. Kappos, IMA J.
Appl. Math. 57, 211 (1996).

[41] R. D. Benguria and M. C. Depassier, Commun. Math. Phys.
175, 221 (1996).

055107-6

https://doi.org/10.1103/PhysRevE.56.2597
https://doi.org/10.1088/0951-7715/20/4/004
https://doi.org/10.1063/1.4770248
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1016/j.physd.2010.07.008
https://doi.org/10.1103/PhysRevE.72.056113
https://doi.org/10.1016/j.proci.2004.08.280
https://doi.org/10.1007/BF00160178
https://doi.org/10.1093/imamat/57.3.211
https://doi.org/10.1007/BF02101631

