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Stationary localized solutions in binary convection in slightly inclined rectangular cells
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We analyze numerically the effect of a slight inclination in the lowest part of the snaking branches of
convectons that are present in negative separation ratio binary mixtures in two-dimensional elongated rectangular
cells. The exploration reveals the existence of novel stationary localized solutions with striking spatial features
different from those of convectons. The numerical continuation of these solutions with respect to the inclination
of the cell unveils the existence of even further families of localized structures that can organize in closed
branches. A variety of localized solutions coexist for the same heating and inclination, depicting a highly
complex scenario for solutions in the lowest part of the snaking diagrams for moderate to high heating. The
different localized solutions obtained in the horizontal cell are discussed in detail.

DOI: 10.1103/PhysRevE.106.055106

I. INTRODUCTION

Thermal convection is an important problem with relevant
implications to many geophysical flows and a multitude of
technological applications. The flow patterns that are observed
for simple incompressible fluid convection are highly en-
riched by the consideration of binary fluid mixtures. Binary
fluid convection has indeed been used for many years as a
prototypical system for the study of the transition to chaos in a
fluid flow. In binary mixtures thermal convection promoted by
thermal gradients may be enhanced by concentration nonuni-
formities sustained by the Soret effect, i.e., the generation of
concentration fluxes by temperature gradients. The compo-
nents of miscible ordinary two-component mixtures tend to
separate in an imposed thermal gradient, and this separation,
in turn, alters the driving force for convection. The Soret
effect is quantified by the Soret coefficient (separation ratio,
in nondimensional form).

A relevant configuration for the study of pattern formation,
and the reference setup for our work, is that of a horizontal
closed rectangular box heated from below. When mixtures
with a negative Soret coefficient are used, i.e., mixtures in
which the heavier component of the fluid is driven into the
direction of higher temperature, the conduction state loses sta-
bility via a Hopf bifurcation that can lead to a rich dynamical
behavior near threshold. Experiments performed in the late
1980s [1–4] and subsequent detailed numerical studies [5–9]
showed that a variety of interesting spatially extended and
localized patterns arise in this configuration.

Among these localized structures, the so-called convectons
raised a lot of interest in the dynamical-systems commu-
nity in the recent past. Binary fluid convection is perhaps
the first fluid system where these states were observed
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experimentally, using horizontal annular containers heated
from below [10]. Convectons in binary mixtures consist
of regions of large-amplitude stationary convection coex-
isting with regions of quiescent fluid and were obtained
numerically a few years later [11]. In subsequent works in
two-dimensional horizontally extended domains convectons
were shown to be located in snakes-and-ladders branches of
solutions, which allow a large multiplicity of coexisting con-
vectons of different lengths and types [7–9,12]. Convectons
arranged in analogous snaking branches of solutions were
also computed in natural doubly diffusive convection in a
two-dimensional vertically extended cavity, with thermal and
concentration horizontal gradients allowing the existence of a
conduction state [13,14]. This phenomenology is essentially
captured by the bistable Swift-Hohenberg equation [12,15].
Significantly, three-dimensional doubly diffusive convectons
that now arrange in primary and secondary snaking branches
were obtained numerically in a closed vertically extended
domain [16].

Although most of the properties of convectons in two-
dimensional (2D) rectangular cells heated from below are now
well established, some features remain unexplored. In particu-
lar, it is well known that when the system possesses reflection
symmetry in the midplane (i.e., Boussinesq symmetry) the
two snaking branches correspond to two types of station-
ary convectons: even and odd convectons. The intertwined
branches of localized states with different symmetry are in-
terconnected by rung-like branches consisting of asymmetric
localized states. As one proceeds up the snaking branches
the localized states grow in length by nucleating new rolls
on either side in such a way that the symmetry of the state
is preserved. When the domain is almost filled, the snaking
must cease and the two snaking branches turn continuously
into large-amplitude domain-filling states. However, the study
of the lowest part of the snaking branches when the heating
(parametrized by the Rayleigh number) is increased has never
been addressed in binary mixtures and will be the focus of the
present study.
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The recent numerical study of Mercader et al. [17] ex-
plores the effect of slightly tilting rectangular elongated cells
for negative Soret mixtures and shows that bifurcation dia-
grams are significantly altered. With the small breaking of
symmetry induced by inclination, it might be expected be-
forehand that (i) the solution branch corresponding to the
large-scale base flow that replaces the conduction state in
the inclined system extends to large values of the Rayleigh
number without significant change and (ii) the inclination
splits the snaking branch of odd convectons into two branches
of states that inherit the symmetry of the odd convectons,
while the snaking branch of even convectons breaks up into
disconnected branches of asymmetric states. These changes
in the bifurcation diagram are only observed for very small
inclinations and both the behavior of the large-scale base flow
branch, and the organization of the large-amplitude localized
solutions in snaking branches, undergo a profound change
as the inclination increases. The snaking bifurcation diagram
present in the noninclined system is destroyed already at small
inclinations and for slightly larger but still small inclinations
new localized states lying on solution branches with very
complex behavior are obtained. Other examples in which the
snaking diagrams do not persist are discussed in the recent
works of Lo Jacono et al. [18] in doubly diffusive convection
in a vertical slot when changing the boundary condition at one
of the vertical walls and of Azimi and Schneider [19] in plane
Couette flow with wall-normal suction. The effect of adding a
slight inclination in extended layers of binary mixtures heated
from below was also studied in a shallow cylinder filled with
a positive Soret mixture [20,21]. The results on both tilted
problems suggest that even very small inclinations produce
substantial changes in the flow structure and result in new
phenomena.

Motivated by the evidence that very slight inclinations af-
fect substantially the dynamics, we aim to explore the lowest
part of the snaking branches for different inclinations of the
cell when the heating is increased. We will use numerical
continuation techniques and perform parametric continuation
in the Rayleigh number and inclination to elucidate the type
of solutions that arise in this region of the diagrams. The
study unveils the existence of localized solutions that are
also present in the noninclined cell and that exhibit striking
spatial features different from those of convectons. As we will
see, the depicted scenario in the lowest part of the snaking
diagrams for moderate to high heating is very complex.

The organization of the paper is as follows. In Sec. II, we
formulate the equations and boundary conditions, summarize
the symmetries of the system, and explain the numerical meth-
ods used. The main results are presented and discussed in
Sec. III. In particular, Sec. III A describes the solutions that
appear in the lowest part of the snaking branches when the
heating is increased for the horizontal α = 0 cell and for the
α = 0.01 and α = 0.03 inclined cells, and Sec. III B sum-
marizes the results obtained by numerical continuation with
respect to the inclination of the cell of some of the striking
small amplitude localized states previously identified. Finally,
a summary of the main results of the work is discussed in
Sec. IV.

FIG. 1. Sketch of the domain geometry.

II. FORMULATION OF THE PROBLEM: EQUATIONS,
SYMMETRIES, AND NUMERICAL METHODS

We consider two-dimensional Boussinesq binary fluid con-
vection in a rectangular cell of height H and length L, inclined
at a small angle α with respect to the horizontal. The cell is
heated from below, with �T being the temperature difference
between the bottom and the top. We choose coordinates whose
origin is located at the bottom left corner and oriented along
the bottom wall (the x direction) and the side wall (the z
direction). In terms of these coordinates the acceleration due
to gravity takes the form

g = −g sinα êx − gcosα êz.

A sketch of the domain geometry is shown in Fig. 1.
We split the temperature T and concentration of the heavier

molecular weight component Cheavy into a linear profile in z
and fluctuations �∗ and �∗ as follows:

T = T0 + �T (1/2 − z/H ) + �∗,

Cheavy = C0 − C0(1 − C0)ST �T (1/2 − z/H ) + �∗, (1)

where T0 and C0 are the values of the temperature and concen-
tration at midheight and ST is the Soret coefficient, hereafter
assumed to be negative so that the heavier component mi-
grates towards the lower boundary in response to the applied
temperature difference. Here H is the height of the cell. With
this decomposition the mass flux only depends on the gra-
dient of �∗ and �∗, the superscript ∗ indicates the unscaled
quantities.

Scaling lengths with H , time with the vertical thermal dif-
fusion time H2/κ , κ being the thermal diffusivity, temperature
with �T , and concentration with the induced concentra-
tion difference −C0(1 − C0)ST �T , we obtain the following
dimensionless equations describing inclined binary fluid
convection:

ut + (u · ∇ )u = −∇P + σ∇2u + Razσ [(1 + S)� + Sη]êz

+ Raxσ [(1 + S)� + Sη]êx

− Raxσ (1 + S)(z − 1/2)êx,

�t + (u · ∇ )� = w + ∇2�,

ηt + (u · ∇ )η = −∇2� + τ∇2η, (2)

together with the incompressibility condition

∇ · u = 0. (3)

Here u ≡ (u,w) denotes the nondimensional velocity field,
P is the nondimensional mechanical pressure that includes
parts of the buoyancy term that can be written as a gradient,
� is the nondimensional temperature fluctuation, and η ≡
� − �, where � represents the nondimensional concentration
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fluctuation. The variable η is defined such that its gradient is
proportional to the dimensionless mass flux.

The system is thus specified by the inclination angle α and
four dimensionless parameters: the Rayleigh number Ra that
provides a dimensionless measure of the imposed temperature
difference �T , the separation ratio S proportional to the Soret
coefficient ST that measures the concentration contribution to
the buoyancy force due to cross-diffusion, and the Prandtl and
Lewis numbers σ , τ , in addition to the aspect ratio 
 of the
rectangular cell. These parameters are defined as follows:

Ra = γ g�T H3

κν
, S = C0(1 − C0)

β

γ
ST , σ = ν

κ
,

τ = D

κ
, 
 = L

H
,

where γ and β are the thermal and concentration expansion
coefficients, D is the solute diffusivity, and ν is the kine-
matic viscosity. In these equations Rax = Ra sin α and Raz =
Ra cos α.

We consider here the boundary conditions correspond-
ing to impermeable, no-slip boundaries with fixed imposed
temperature at the top and bottom and thermally insulating
sidewalls. Thus

u = w = � = ηz = 0 on z = 0, 1, (4)

and

u = w = �x = ηx = 0 on x = 0, 
. (5)

We evaluate, as an estimate of the strength of the convec-
tion, the dimensionless velocity norm E defined by

E = 
−1
∫ z=1

z=0

∫ x=


x=0
u · u dx dz.

This quantity represents twice the kinetic energy per unit area
of the system. In the following we refer to E as the mean
kinetic energy.

When α �= 0 the equations, together with the boundary
conditions, are equivariant with respect to the symmetry group
Z2 = {I, R}, where I stands for the identity and R is a reflec-
tion with respect to the center of the cell. Specifically, the
reflection R acts on the fields u,w, the stream function �

(u = −�z, w = �x), �, and η as follows:

R : (x, z) → (
 − x, 1 − z),

(u,w, �,�, η) → (−u,−w, �,−�,−η). (6)

As a consequence, the equations admit solutions invariant
under R as well as solutions that break the symmetry R. In
the later case the application of R to a nonsymmetric solu-
tion generates a distinct but symmetry-related solution. When
α = 0, i.e., the layer is horizontal, the symmetry group is
enlarged and becomes the symmetry group D2 generated by
two separate reflections R1 and R2, where R1 corresponds to a
reflection in the vertical x = 
/2 plane and R2 to a reflection
in the horizontal z = 1/2 plane:.

R1 : (x, z) → (
 − x, z),

(u,w, �,�, η) → (−u,w,−�,�, η), (7)

R2 : (x, z) → (x, 1 − z),

(u,w, �,�, η) → (u,−w, �,−�,−η). (8)

Notice that the reflection R can be obtained as R = R1 ◦ R2.
For α �= 0, the system is no longer equivariant with re-

spect to the symmetry R1, but a solution of the system with
inclination α, transformed by R1, is a solution of the system
with inclination −α. We say that the system possesses the
following symmetry R1,α , related to the reversed inclination

R1,α : (α, x, z) → (−α, 
 − x, z),

(u,w, �,�, η) → (−u,w,−�,�, η). (9)

The system of Eqs. (2) and (3) and boundary conditions (4)
and (5) was solved numerically using the algorithm described
in [22], which can be summarized as follows. To integrate
the equations in time, we use the second-order time-splitting
method proposed by the authors of [23] combined with a
pseudospectral method for the spatial discretization, Cheby-
shev collocation in x and z. The Helmholtz equations obtained
as a result of the splitting are solved using a diagonalization
technique [24].

Steady solutions were computed with Newton’s method.
We used a first-order version of the time-stepping code de-
scribed above for the calculation of a Stokes preconditioner
that allows a matrix-free inversion of the preconditioned Jaco-
bian needed in each Newton iteration [25]. The corresponding
linear system is solved by an iterative technique using the
GMRES package [26]. The left-hand side of the preconditioned
linear system (Jacobian acting on the correction) corresponds
to one time step of the linearized equations and the right-
hand side corresponds to performing one time step of the full
nonlinear equations. In this way the Jacobian matrix is never
constructed or stored [25]. The convergence criterion for the
Newton method is 10−7.

In the results reported in the present paper we used a
resolution that ensures variations of the mean kinetic energy
E smaller than 0.1%. We used a grid of nx = 640 and nz = 32
points in the x and z directions, respectively.

III. RESULTS

We consider a negative separation ratio binary mixture of
nondimensional parameters S = −0.1, τ = 0.01, and σ = 7,
representative of water-ethanol mixtures and previously used
in earlier works [7–9]. The mixture fills a two-dimensional
rectangular 
 = 14 cell. Results for the horizontal α = 0 case
and for very small values of inclination are presented.

Previous studies of this system, for the set of parameter
values of interest in this work, show that the primary bifur-
cation of the α = 0 conduction state is a subcritical Hopf
bifurcation that takes place at RaHopf = 1947.5 [6]. With fur-
ther increase in the Rayleigh number, the system evolves
either to finite-amplitude oscillatory states (chevrons, blinking
states, and repeated transients [5]) or towards steady con-
vection. The steady convection can either fill the domain
or form localized time-independent convectons. The binary
mixture convectons are organized within a snaking region
Ra− < Ra < Ra+ in the Rayleigh number Ra. Within this re-
gion one finds even convectons, which are invariant under R1,
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FIG. 2. Snaking branches showing the splitting of the odd convecton branch for α = 0 (black curve) when α = 0.01 (blue and red curves).
The states on the blue or red curves correspond to states with a counterclockwise or clockwise central roll (CCW or CW branches, respectively).
The panels on the right show contour plots of temperature fluctuation �, streamfunction �, and concentration C for the two clockwise or
counterclockwise central roll states indicated by the solid dots on the solution branch (Ra = 1887 and Ra = 1973). Parameters: S = −0.1,
τ = 0.01, σ = 7, and 
 = 14.

and odd convectons, which are invariant under R = R1 ◦ R2.
Convectons lie on distinct solution branches that snake back
and forth across the snaking region. The snaking interval
contains a large multiplicity of coexisting odd and even con-
vectons of different lengths, many of which turn out to be
numerically stable [11,27]. In a bifurcation diagram showing
a global quantity, such as the kinetic energy, as a function
of the Rayleigh number, each point in the snaking branches
corresponds to two different solutions. These two solutions
with the same value of the global quantity are related by
the R1 symmetry if they lie on the odd convecton branch of
R-invariant states and are related by the R symmetry if they
lie on the even convecton branch of R1-invariant states [9].

When the cell is slightly inclined the character of the
problem changes dramatically because of the generation of
a large-scale flow (LSF) along the bottom and top walls. The
LSF is now the unique solution at very low Ra and its net ef-
fect is to generate isocontours of concentration with constant
slope, except very close to the sidewalls where the slope must
vanish. For very small inclinations, the LSF flow destabilizes
in a primary Hopf bifurcation that either respects or breaks its
R symmetry, giving rise to several time-dependent patterns re-
sembling those of the noninclined cell case. For larger but still
small inclinations, at α = 0.047, this bifurcation no longer
exists and the base flow undergoes a fold bifurcation at a low
value of Ra [17].

When α �= 0 the equations continue to admit R-invariant
solutions. We call these solutions odd states, in analogy
with the name used in the α = 0 case. Figure 2(a) shows
the snaking diagram (kinetic energy E as a function of the
Rayleigh number Ra) for the R-invariant states obtained for
α = 0.01. Since the symmetry R1 is broken, the odd branch
of the α = 0 cell necessarily splits into two for α �= 0, leading
to the blue and red R-symmetric snaking branches shown in
Fig. 2(a). This plot also includes the snaking diagram for the
odd states when α = 0 (black curve). Figure 2(b) shows the

concentration C, the stream function �, and temperature �

contour plots for states on the blue and red branches. Notice
that, to improve the visualization of the flow pattern, the
aspect ratio of the cell is not preserved in the contour-plot
diagrams. Unlike in Fig. 1, from now on, the aspect ratio in
the diagrams is smaller than 14, and this fact distorts slightly
the perception of the actual roll aspect ratio. States on the blue
branch are characterized by a counterclockwise central roll
in the convective region (solution obtained for Ra = 1973,
with a blue central roll in the � contour plot), while states
on the red branch have a clockwise central roll (solution ob-
tained for Ra = 1887, with a red central roll in the � contour
plot). Because of the pumping action associated with odd
states [7,11], the previous state entrains heavier fluid from
below on the right and lighter fluid from top on the left. The
result is a marked positive gradient in the contours of constant
concentration C. Similar pumping takes place in the later case,
but because of the reversed circulation of the outer rolls the
entrainment direction is reversed, resulting in a much starker
left-right asymmetry in the concentration profile. Hereinafter
we call the blue and red branches the counterclockwise central
roll (CCW) and clockwise central roll (CW) branches.

The results we present in this work focus on the behavior
of the lowest part of the snaking branches when the Rayleigh
number Ra is increased for the R-invariant solutions (odd
solutions). We aim at clarifying the role of small inclinations
of the cell on the small amplitude solutions arising in this part
of the snaking diagrams. To do this, as a first step, we will
perform parametric continuation in Rayleigh number Ra of
solutions in the lowest part of the snaking and, as a second
step, we will do a continuation in the inclination α of selected
localized solutions with outstanding features obtained previ-
ously. The results obtained when Ra is varied are presented in
Sec. III A and those obtained when α is varied are discussed
in Sec. III B. The disconnected branches of asymmetric states
that arise after the snaking branch of even convectons breaks
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FIG. 3. (a) Solution branch obtained by numerical continuation
of the lowest part of the snaking branch of odd states when the
Rayleigh number Ra is increased, for α = 0. The inset shows an
enlargement of part of the snaking zone. Contour plots of (b) concen-
tration C and (c) stream function � at the locations indicated in panel
(a). In the concentration contour plots the same color bar is used for
all states. Parameters: S = −0.1, τ = 0.01, σ = 7, and 
 = 14.

up when inclination is introduced are not considered in this
paper.

A. Numerical continuation of small-amplitude localized
solutions with respect to Ra

To begin the study of the lowest part of the snaking dia-
grams as the Rayleigh number Ra increases we consider first
the horizontal α = 0 cell and focus on the odd snaking branch
of solutions, which is the branch that persists when inclination
is introduced. Then we discuss the results for inclinations α =
0.01 and α = 0.03. With inclination, each value of α includes
the analysis of the two odd snaking branches resulting from
the splitting of the single α = 0 odd branch.

1. Horizontal α = 0 cell: Small-wavelength localized states

For α = 0, the numerical continuation of the odd snaking
branch for large values of Ra reveals that the lowest part
of the convecton snaking branch does not connect to the
base conductive state. Figure 3 shows the lowest part of the
branch of odd convectons when continued up to Ra ≈ 105.
Figure 3(a) shows the kinetic energy E as a function of
Ra, and Figs. 3(b) and 3(c) the contour plots of concen-
tration C and stream function � at the locations indicated

in Fig. 3(a). We appreciate a marked increase of the ki-
netic energy of the solutions in the low part of the diagram
for the largest values of Ra, associated to a slow growth
of the size of the convective region in the localized struc-
ture (the number of convection rolls increases). Still more
remarkable the wavelength of the rolls decreases consider-
ably, giving rise to a peculiar localized pattern in which
the convective rolls appear tightly packed one against each
other.

The behavior we observe for mixtures of sufficiently neg-
ative values of the separation ratio and parameter values
similar to those used in this paper is not specific of the two-
dimensional closed container. We computed the lowest part of
the snaking branch in the case of periodic boundary conditions
in the lateral walls of the container and the same behavior is
obtained.

2. Tilted α = 0.01 cell: Highly localized states
and two-pulse snaking

For α = 0.01, the numerical continuation with Ra of the
lowest part of the two odd snaking branches coming from
the splitting of the α = 0 case [CW and CCW branches in
Fig. 2(b)] shows that the branches do not necessarily increase
monotonically to large values of the Rayleigh number. In one
of the branches, the convective region of the pattern remains
rather small while the amplitude of the solution slowly grows;
in the other, the branch turns around in a fold and eventually
reenters the snaking region. We analyze the two cases in more
detail.

Figure 4 shows the results obtained when the lowest part of
the CCW odd branch of convectons (counterclockwise central
roll in the snaking region) is continued to large values of Ra
(up to Ra ≈ 105) for an inclination of α = 0.01. Figure 4(a)
shows the kinetic energy as a function of Ra, and Figs. 4(b)
and 4(c) the contour plots of concentration C and stream
function � at the locations indicated in Fig. 4(a). As can be
appreciated in the concentration contour plots, a background
concentration slope appears as a result of the large-scale flow
induced by inclination. The initial part of the curve and the
structure of patterns (1), (2), and (3) are quite similar to
that observed in the α = 0 case (the kinetic energy increases
initially with Ra). But sudden back and forth oscillations pro-
ducing two clearly visible peaks in the curve of kinetic energy
take place between Ra ∼ 2.793 × 104 and Ra ∼ 2.248 × 104,
and between Ra ∼ 3.857 × 104 and Ra ∼ 2.873 × 104. In the
first peak, the notable increase of the kinetic energy (4) is
followed by an abrupt decrease (5). Within this region, the
central roll of the solutions splits and a new solution with two
pairs of vertical stacked rolls is obtained. In the second peak,
a new increase and decrease of the kinetic energy takes place
again. The solutions within this region of the curve show a
separation of the stacked pairs of rolls (6), a generation of
a counterclockwise central roll between them (7), and the
disappearance of the clockwise rolls resulting in three much
smaller vertically staggered corotating rolls (8). From this
point, the branch extends to large values of Ra and was not
calculated. Interestingly, unlike in the α = 0 case, the size
of the convective region in the localized patterns (1) to (8)
remains roughly constant and quite small.
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FIG. 4. (a) Solution branch obtained by numerical continuation
of the lowest part of the CCW snaking odd branch of convec-
tons (counterclockwise central roll in the snaking region) when the
Rayleigh number Ra is increased for α = 0.01. The inset shows an
enlargement of part of the snaking zone. Contour plots of (b) con-
centration C and (c) stream function � at the locations indicated in
panel (a). In the concentration contours the same color bar is used for
all states. Parameters: S = −0.1, τ = 0.01, σ = 7, and 
 = 14.

Figure 5 shows the results obtained when the lowest part
of the CW odd branch of convectons (clockwise central roll
in the snaking region) is continued to large values of Ra
(up to Ra ≈ 104) for an inclination of α = 0.01. Figure 5(a)
shows the kinetic energy as a function of Ra, and Figs. 5(b)
and 5(c) the contour plots of concentration C and stream
function � at the locations indicated in Fig. 5(a). The CW
branch suddenly turns around at Ra ∼ 8200 and reenters the
snaking region. The contour plots corresponding to solution
(2) show that, right before the turning point, the convective
region of the localized pattern is quite small and consists of a
single-pulse state with a central clockwise roll surrounded by
a counterclockwise roll on each side. The curve of solutions
undergoes a subsequent back and forth between Ra ∼ 6020
and Ra ∼ 7180, where the central clockwise roll is swept
away and the lateral counterclockwise rolls are reinforced (3).
As Ra decreases, these two corotating rolls merge (4) and add
a clockwise roll on each side (5). In an additional back and
forth oscillation of the curve between Ra ∼ 2420 and Ra ∼
2720, the single pulse starts to split and turns into a two-pulse
state. Then the state undergoes two-pulse snaking within the
same snaking region as the single-pulse states, much as occurs

FIG. 5. (a) Solution branch obtained by numerical continuation
of the lowest part of the CW odd snaking branch of convectons
(clockwise central roll in the snaking region) when the Rayleigh
number Ra is increased for α = 0.01. Contour plots of (b) concentra-
tion C and (c) stream function � at the locations indicated in panel
(a). In the concentration contour plots the same color bar is used for
all states. Parameters: S = −0.1, τ = 0.01, σ = 7, and 
 = 14.

in the α = 0 case when the lateral boundary conditions are
nonperiodic [9].

3. Tilted α = 0.03 cell: Two-pulse snaking and corotating
localized patterns

For α = 0.03, the outcome of the numerical continuation
in Ra of the lowest part of the two odd snaking branches, with
clockwise and counterclockwise central rolls, respectively, is
completely different from that of the α = 0.01 case. As we
will see below, the behavior of the lowest part of the snaking
branches is, in fact, extremely sensitive to the precise value
of the small inclination α and to the type of branch which is
analyzed (clockwise or counterclockwise central rolls).

Figure 6 shows the results obtained when the lowest part of
the CCW branch of odd convectons (counterclockwise central
roll in the snaking region) is continued to large values of Ra
(up to Ra ≈ 104) for an inclination of α = 0.03. Figure 6(a)
shows the kinetic energy as a function of Ra, and Figs. 6(b)
and 6(c) the contour plots of concentration C and stream
function � at the locations indicated in Fig. 6(a). We can
appreciate in the contour plots that the CCW branch under-
goes a transition to the two-pulse states, as happened in the
CW branch for an inclination of α = 0.01. The solution in the
lowest part of the snaking branch consists of a single pulse
state, with a counterclockwise roll located in the center of
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FIG. 6. (a) Solution branch obtained by numerical continuation
of the lowest part of the CCW odd snaking branch of convec-
tons (counteclockwise central roll in the snaking region) when the
Rayleigh number Ra is increased for α = 0.03. Contour plots of
(b) concentration C and (c) stream function � at the locations indi-
cated in panel (a). In the concentration contour plots the same color
bar is used for all states. Parameters: S = −0.1, τ = 0.01, σ = 7,
and 
 = 14.

the domain (1). Following the branch as Ra increases, the
roll tilts and expands slightly [patterns (2) and (3)]. After a
fold at Ra = 9315, the roll nucleates (4) and splits into two
counterclockwise rolls (5) before the branch undergoes a back
and forth between Ra ∼ 5380 and Ra ∼ 5876. From this zone,
the two rolls move away towards the lateral boundaries (6).
When Ra decreases, the tilt of the lateral rolls disappears
(7), each of them adds a pair of rolls, so that the localized
patterns become two-pulse states (8) that undergo two-pulse
snaking within the same snaking region as the single pulse
states. Notice that the two-pulse states for α = 0.03 [(8) in
Fig. 6] and for α = 0.01 [(6) in Fig. 5], share the same spatial
structure even though they originate from different branches
(CCW and CW, respectively).

Figure 7 shows the results obtained when the lowest part
of the CW odd branch of convectons (clockwise central roll in
the snaking region) is continued to large values of Ra (up to
Ra ≈ 104) for an inclination of α = 0.03. Figure 7(a) shows
the kinetic energy as a function of Ra, and Figs. 7(b) and 7(c)
the contour plots of temperature � and stream function � at
the locations indicated in Fig. 7(a). We choose to represent
temperature rather than concentration contours to visualize

FIG. 7. (a) Solution branch obtained by numerical continuation
of the lowest part of the CW odd snaking branch of convectons
(clockwise central roll in the snaking region) when the Rayleigh
number Ra is increased, for α = 0.03. Contour plots of (b) deviation
of temperature � and (c) stream function � at the locations indicated
in panel (a). In the temperature contour plots the same color bar
is used for all states. Parameters: S = −0.1, τ = 0.01, σ = 7, and

 = 14.

better the features of the solutions in this branch. The be-
havior of the branch is completely different from that of the
previous branches discussed. The outcome of the numerical
continuation reveals a branch with subsequent forward regions
of increasing energy followed abruptly by backwards regions
in which the energy decreases.

Notice that the localized patterns at the early stages of the
continuation consist of two counterclockwise rolls located at
the center of the domain, the central clockwise roll has been
swept away since the beginning, as can be appreciated in (1),
the first solution represented in Fig. 7. The solutions near the
folds with lowest values of kinetic energy [solutions around
(1), (3), (5), and (7)] consist of localized counterclockwise
corotating rolls with an increasing even number of rolls, 2,
4, 6, and 8, respectively, and a concentration gradients inside
them (not shown here). A counterclockwise roll is added
on both sides in each excursion in which the kinetic energy
increases and decreases abruptly. Thus, the size of the convec-
tive region in these localized solutions increases progressively.
This type of localized solutions composed of counterclock-
wise corotating rolls was already observed in doubly diffusive
convection in vertical slots [28,29], but in the present case this
occurs for a very small inclination.
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FIG. 8. (a) Complex solution branch obtained by numerical continuation in α of the steady small amplitude odd localized state at Ra =
29 630 in Fig. 3. (b) Contour plots of the stream function � at the locations indicated in panel (a) and where the number of each solution
increases from bottom to top. Parameters: S = −0.1, τ = 0.01, σ = 7, and 
 = 14.

On the other hand, the solutions near the folds with higher
values of kinetic energy [solutions around (2), (4), (6), and
(8)] correspond to an interesting new type of localized so-
lution we never observed before. Essentially, these patterns
consist of a sequence of tightly packed counterclockwise
rolls, located in the central part of the cell, with a smaller
wavelength than that of the previous corotating-roll patterns
from which they derive. Their most remarkable feature is the
temperature field. Regardless of whether the fluid is ascending
or descending, the left-half part of the convective region cor-
responds to cold fluid, while the right-half part corresponds
to warm fluid, with the exception of a very small central
region where cold descending fluid and warm ascending fluid
is observed. A counterclockwise central circulation associated
to the inclination, i.e., a natural flow with ascendent warmer
fluid and descendent colder fluid, appears to be superposed
to the distribution of localized rolls. These type of solutions
are therefore expected to exist only in inclined containers,
as computations will confirm. The concentration field (not
showed here) is almost uniform within the sequence of rolls.
We followed this curve until a fold value of ∼7690. From this
point the branch has not been calculated.

B. Numerical continuation of small-amplitude localized
solutions with respect to α

In this section we want to investigate whether some of the
striking small amplitude localized states that we describe in
the previous section survive or not when the inclination α of
the cell is modified. To do this, we carried out a numerical
continuation of a choice of initial localized states, taking as

continuation parameter the inclination α of the cell and fixing
the value of Ra. Following this strategy, we are able to iden-
tify, on one hand, localized states existing in the noninclined
α = 0 cell that are completely different from those shown in
Fig. 3, and on the other, localized states that require incli-
nation of the cell to exist. We describe such localized states
hereafter.

The first localized solution that we continued is solution
(6) in Fig. 3, one of the small-wavelength localized states
obtained in the noninclined cell when the odd convecton
snaking branch is continued in its lowest part for large values
of the Rayleigh number. The value of Ra now is fixed to Ra =
29 630 and the inclination α is allowed to vary. The outcome
of the numerical continuation is summarized in Fig. 8, where
we represent the energy E of the different visited states as a
function of the value of α. Notice that, as a consequence of the
R1,α symmetry, the resulting plot is symmetric with respect to
α = 0. Figure 8(a) shows the solution branch and Fig. 8(b)
shows the countour plot of the stream function, numbered
from bottom to top, at the points indicated in Fig. 8(a), which
correspond to all the crossing points of the curve with the
α = 0 axis.

We observe that (i) the solution branch is closed, (ii) it
extends up to α = 0.013, and (iii) for some of the solutions
obtained for α = 0 [i.e., solutions (1) and (3)] the curve
crosses the α = 0 axis only once, while for other [i.e. solutions
(2), (4), (5), (6), and (7)], the curve crosses the α = 0 axis
twice. This last feature of the curve can be understood in
terms of the symmetries of the α = 0 system. Each of the
points in the α = 0 axis correspond to two solutions: the so-
lution plotted in Fig. 8(b), and their transformation by the
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FIG. 9. (a) Complex solution branch obtained by numerical continuation in α of the steady small amplitude odd localized state at Ra =
29 630 [state (4) in Fig. 4]. (b) Contour plots of the stream function � at the locations indicated in panel (a) and where the number of each
solution increases from bottom to top. Parameters: S = −0.1, τ = 0.01, σ = 7, and 
 = 14.

R1 symmetry. Compare, for example, solutions (6) in Fig. 3
and (2) in Fig. 8, they are related by the R1 symmetry. When
α varies each representation of the same solution follows a
different path since, for α �= 0, the R1 transformation is no
longer a symmetry of the problem. Thus, while at points
(2), (4), (5), (6), and (7) the curve crosses the α = 0 axis
twice, solutions (1) and (3), apart from being R invariant,
are also R1 invariant and the curve crosses these points only
once.

Performing a continuation with respect to α allows to ob-
tain alternative localized structures for a fixed value of the
Rayleigh number. Apart from the initial small-wavelength
localized state [solution (6) in Fig. 3, which corresponds to
(2) in Fig. 8], we obtain localized solutions in the form of
(i) several stacked pairs of rolls [three pairs of rolls in (1),
four pairs in (3)], (ii) misaligned pairs of rolls [solution (4)],
(iii) coexisting stacked and nonstacked pairs of rolls [solutions
(5) and (6)], and (iv) stacked clockwise and counterclockwise
rotating rolls [solution (7)]. Despite the different spatial struc-
ture of these patterns, the size of the convective region remains
approximately constant in these localized structures.

The second localized solution that we continued is located
in the extension of the lowest part of the snaking CCW curve
for α = 0.01, near solution (4) in Fig. 4, and consists of two
pairs of vertical stacked rolls. Again, the value of Ra is fixed
to Ra = 29 630 and the inclination α is allowed to vary. The
result of the numerical continuation is summarized in Fig. 9.
Figure 9(a) shows the solution branch and Fig. 9(b) shows the
countour plots of the stream function, numbered from bottom
to top, at the points indicated in Fig. 9(a), which correspond
to the crossing of the curve with the α = 0 axis.

Starting from the mentioned solution for α = 0.01 [solu-
tion near (4) in Fig. 4], and following the branch by decreasing
α, the first crossing with the α = 0 axis is solution (7) of
Fig. 9. Further advancing the continuation branch, we obtain a
closed symmetric curve that extends to α = 0.02, with double
crossing points [solutions (1) to (5) and (7)] and single cross-
ing points for R1-invariant solutions [solutions (6) and (8)].
This resulting closed curve is different from the previous one
and corresponds to localized solutions of completely different
spatial features.

Among the variety of localized solutions found throughout
the curve, we focus on those visited by the curve in the
crossing with the α = 0 axis, that is, we describe the localized
solutions arising in the horizontal cell. We can distinguish
clearly that, while in some of the localized solutions the con-
vective region is located in the center of the cell, in others,
the conductive regime fills the central part of the cell and
the convective motions take place near the lateral boundaries.
Solutions (6) and (7) consist of two stacked pairs of rolls in
the center of the domain. Whereas (6) is R1 invariant, the
weakening of the rotating clockwise rolls in (7) breaks the R1

invariance. Solution (3) is formed by two vertical staggered
pairs of rolls, which separate slightly away in (4), and move
notably towards the lateral walls in (2). Remarkably, in (2),
one of the two pairs of rolls remains attached to the bottom
part of the cell and the other to the top part. In solution (1),
the counterclockwise rotating rolls of every pair are swept
away and the remaining clockwise rotating rolls are attached
to the lateral walls. We observe that weak counterclockwise
rotating rolls reappear again besides the clockwise rotating
rolls in solution (5). Finally, the convective region in solutions
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FIG. 10. (a) Complex solution branch obtained by numerical
continuation in α of the steady small amplitude odd localized state
at Ra = 7500 [state (8) in Fig. 7]. Contour plots of (b) the deviation
of temperature field � and (c) stream function � at the locations
indicated in panel (a). In the temperature contours the same color bar
is used for all states. Parameters: S = −0.1, τ = 0.01, σ = 7, and

 = 14.

(8) and (9) continues to be attached to the lateral walls, but
while (9) is formed by two pairs of rolls at each side filling
the entire vertical space, convection in (8) is in the form of two
stacked pairs of rolls at each side, giving rise to an R1-invariant
solution. As can be appreciated, the size of the convective
region of the localized solutions in Fig. 9 is smaller than that
of the solutions previously described in Fig. 8.

The third and last localized solution that we continued is
obtained in the extension of the lowest part of the CW odd
snaking branch of convectons for α = 0.03, near solution (8)
in Fig. 7, and consists of counterclockwise tightened rolls. As
we discussed before, the clockwise rolls were swept in this
localized solution. This is a common feature of the solutions
when the inclination becomes relevant [17]. Now, the value of
Ra is fixed to Ra = 7500 and the inclination α is allowed to
vary. The outcome of the numerical continuation is summa-
rized in Fig. 10. Figure 10(a) shows the solution branch in a
E -α diagram and Figs. 10(b) and 10(c) show, for the points
indicated in Fig. 10(a), the countour plots of the deviation of
temperature field � and the stream function �, respectively.

In this case, the numerical continuation unveils a branch
with back and forth regions of increasing and decreasing ki-
netic energy organized around a vertex located at α ∼ 0.019.
The initial state for the numerical continuation is a solution
near (4) in Fig. 10. From this state, the numerical continuation

leads to subsequent increases and decreases of α. The behav-
ior of the solutions visited resembles that of solutions in Fig. 7.
Solutions (2), (3), and (5) have a low value of the kinetic
energy, and are standard localized counterclockwise corrotat-
ing rolls with a varying number of rolls and a concentration
gradient inside them. Solutions (4) and (7) have higher values
of the kinetic energy and are composed of counterclockwise
tightened rolls, with colder fluid inside the left-half rolls and
warmer fluid inside the right-half rolls, regardless of whether
the fluid is ascending or descending. The concentration field,
not shown here, is almost uniform inside the sequence of rolls.
Finally, solutions (1) and (6) have intermediate values of E
and appear to be transition patterns with mixed features of the
two types of patterns described previously.

This branch of solutions does not cross the α = 0 axis, in
agreement with the fact that inclination is responsible for the
existence of these peculiar patterns. In addition, the curve does
not appear to close itself, so the curve could be extended from
(7) and from a point near (1).

IV. SUMMARY AND CONCLUDING REMARKS

Binary mixture convection in two-dimensional elongated
and horizontal closed rectangular cells heated from below can
be in the form of steady roll-like localized structures called
convectons. These structures organize in the parameter space
(kinetic energy-Rayleigh number) in a pair of intertwined
snaking branches with different symmetries (even and odd
convectons). In this paper, we continued the lowest part of the
branch of odd convectons up to large values of the Rayleigh
number and it does not connect to the base conductive state.
Instead, a marked increase of the kinetic energy is observed,
associated to a slow growth of the size of the convective
region in the localized structure. Localized states in the form
of tightly packed convective rolls that progressively decrease
their wavelength are obtained. This behavior is also observed
in rectangular cells with periodic boundary conditions in the
lateral walls.

Previous studies in related laterally periodic systems that
also exhibit snaking reported a different behavior of the low-
est part of the snaking branches. These systems included
natural double diffusive convection in a vertical slot with
imposed competing temperature and concentration horizontal
gradients perpendicular to the buoyancy force and periodic
boundary conditions in the vertical direction, double diffusive
convection in a horizontal layer with imposed temperature
and concentration differences between the horizontal walls
and periodic boundary conditions in the horizontal direc-
tion and the subcritical Swift-Hohenberg equation [12,15]. In
these configurations the lowest part of the snaking branches
emerges from a branch of spatially periodic states in a
secondary Eckhauss instability at moderate values of the
Rayleigh number. This branch of periodic states bifurcates
from the conduction state. In contrast, in binary mixture
convection, with periodic boundary conditions and negative-
enough Soret coefficient (a critical value dependent on the
Lewis number) [30], the branch of periodic states extends
to infinity. Thus, for binary mixtures in rectangular con-
tainers with periodic lateral walls, the branch of spatially
periodic states neither bifurcates from the conduction state
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nor gives rise to the lowest part of the snaking branches.
The coupling between temperature and concentration through
the Soret effect, rather than the specific boundary condi-
tions considered or the symmetries of the problem, seems
to be responsible for the differences in the bifurcation
diagrams.

When a slight inclination of the cell α is introduced, the
numerical continuation with Ra of the lowest part of the two
odd snaking branches resulting from the splitting of the odd
snaking branch, reveals a behavior different from the hori-
zontal case. The energy of the branches no longer increases
monotonically when the Ra number is increased, as it occurs
for α = 0, and the behavior is very sensitive to the precise
value of α and to the type of branch. In some occasions, the
branches even turn around in a fold and eventually reenter the
snaking region in the form of two-pulse localized solutions. In
others, the convective region of the localized pattern remains
rather small while the amplitude of the solution slowly grows.
Finally, there are also new families of localized solutions,
with a larger convective region, and for which the temperature
field and the vertical velocity are out of phase. In all the
cases, their spatial properties differ considerably from those
of convectons.

In the search for the origin of these alternative localized
states obtained in slightly inclined cells, we performed a nu-
merical continuation with the inclination of the cell α. Starting
from the localized solutions at Ra values far from the snaking
zone, we obtain complex diagrams with intricate branches of
solutions. We observe qualitatively different behaviours when
the continuation is initiated from localized solutions belong-
ing to branches obtained for small values of α, α = 0, and
α = 0.01, or to branches obtained for slightly larger values
of α, α = 0.03.

The complex branches obtained by continuation of solu-
tions belonging to α = 0 and α = 0.01 turn out to be closed
symmetric with respect to the continuation parameter α, and
cross several times the α = 0 location. This means that, un-
expectedly, a variety of highly localized states coexist for
the same heating, not only in the inclined cell, but also
in the horizontal case. By simply computing two of these
closed branches, we are able to obtain 16 different local-
ized solutions coexisting for the same value of Ra for the
α = 0 cell. Some of these solutions have a central convective
region made up of several stacked pairs of rolls, misaligned

pairs of rolls, or a combination, but in other families of lo-
calized solutions the convective region is located out of the
central part of the cell and can even be attached to the lateral
walls. In some cases the solutions are invariant to both R1 and
R transformations. The existence of these localized solutions
is limited to a region of small values of α.

In contrast, when the continuation is initiated from lo-
calized solutions obtained for larger values of α, α = 0.03,
the branches of solutions exhibit complex back and forth
oscillations in α, with increasing and decreasing energy, but
never reach the α = 0 value. These branches do not close on
themselves and the spatial features that the solution exhibit are
intrinsic to inclination.

To sum up, we explored the lowest part of the snaking
branches for different inclinations of the cell. The exploration
reveals the existence of localized solutions with very different
characteristics from those of convectons. When numerical
continuation of these solutions with respect to the inclination
of the cell is carried out, we obtained localized solutions
organized in isolas or in open branches. Following this pro-
cedure, we were able to obtain a variety of localized solutions
coexisting for the same heating and inclinations, even in the
horizontal cell, that would have been extremely difficult to
obtain otherwise.

These localized solutions are highly unstable; when time
evolution runs at Ra ≈ 29 630 are carried out, taking as ini-
tial condition either localized solutions or small amplitude
random states, the system evolves quickly towards extended
states of pairs of rolls. Despite the fact that these extended
states do not exhibit spatial localization, the system remains a
long time in transient nonuniform wavelength states. In such
states, the patterns exhibit regions in which the wavelength
of the convective rolls is close to the critical wavelength and
regions with much narrower convective rolls. Very long inte-
gration times are needed before narrow rolls widen and almost
uniform wavelength states fill the cell.
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