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Circulating Marangoni flows within droplets in smectic films
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We present a theoretical study and numerical simulation of Marangoni convection within ellipsoidal isotropic
droplets embedded in free-standing smectic films (FSSFs). The thermocapillary flows are analyzed for both
isotropic droplets spontaneously formed in FSSF overheated above the bulk smectic-isotropic transition and
oil lenses deposited on the surface of the smectic film. The realistic model for which the upper drop interface
is free from the smectic layers, while at the lower drop surface the smectic layering persists is considered in
detail. For isotropic droplets and oil lenses this leads effectively to a sticking of fluid motion at the border with a
smectic shell. The above mentioned asymmetric configuration is realized experimentally when the temperature
of the upper side of the film is higher than at the lower one. The full set of stationary solutions for Stokes
stream functions describing the Marangoni convection flows within the ellipsoidal drops are derived analytically.
The temperature distribution in the ellipsoidal drop and the surrounding air is determined in the frame of
the perturbation theory. As a result, the analytical solutions for the stationary thermocapillary convection are
obtained for different droplet ellipticity ratios and the heat conductivity of the liquid crystal and air. In parallel,
the numerical hydrodynamic calculations of the thermocapillary motion in drops are made. Both analytical and
numerical simulations predict the axially symmetric circulatory convection motion determined by the Marangoni
effect at the droplet-free surface. Due to a curvature of the drop interface a temperature gradient along its free
surface always exists. Thus, the thermocapillary convection within the ellipsoidal droplets in overheated FSSF is
possible for the arbitrarily small Marangoni numbers. Possible experimental observations enabling the checking
of our predictions are proposed.
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I. INTRODUCTION

A fluid flow within a drop caused by the temperature-
dependent surface tension is called Marangoni convection and
was first observed in its classical form by Bénard in a pro-
cess of formation of the characteristic hexagonal convection
patterns in flat fluid films [1]. The onset of thermocapil-
lary convection is determined by a dimensionless Marangoni
number, Ma, expressing the ratio of surface tension to vis-
cous forces, which has to reach a certain minimum critical
value for instability to occur. The arising convective cells are
characterized by a unique critical wave number kc, which
determines the scale of the nonuniformity in the plane of
the film. In general, the formation of different cellular flow
regimes, including rolls, hexagonal patterns, hydrothermal
waves, etc., have been reported for fluid films of different size
and geometry [2–6]. An extensive literature on thermocapil-
lary driven flows in fluid films exists and both experimental
and theoretical studies are thoroughly reviewed; see, for ex-
ample, [7–10]. The Marangoni phenomenon is important not
only for development of fundamental physics of capillar-
ity and wetting; it is frequently encountered in industrial

applications, including chemical engineering, food and cos-
metic processing, thermal management of microfluidic and
electronic devices, and evaporation-related technology [6,10–
12]. Marangoni convection is especially important for thermal
processing of electronic and rheological devices in micrograv-
ity conditions where buoyancy effects are negligible [13–15].

The past two decades were marked by significant advance-
ments in experimental and theoretical studies of the symmetry
and dynamics of Marangoni cellular flows in fluid films of
various confinements [6,10,11,16–19]. However, the above
mentioned progress largely concerned the Marangoni con-
vection in systems with a variable flat geometry. In spite of
its practical and theoretical significance, thermocapillarity at
curved fluid interfaces has not caught the proper attention due
to its complexity. The convection inside a droplet of a spheri-
cal shape [20–27] appears to be principally different from the
conventional Marangoni flows in plane films. This is due to
the inhomogeneity which is imposed on the interface temper-
ature by the curved shape of the drop. Moreover, the spherical
geometry of the drop modifies flow patterns, thus affecting the
heat and mass transport within the fluid. The thermocapillary
flow within the spherical droplet is usually considered as a
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concomitant process in respect of the main physical phenom-
ena occurring in it; a clear example is the evaporation of a
sessile liquid drop with a pinning contact line in an ambient air
[20–27]. In such a drop the fluid may undergo either outward
movement produced by the evaporation-driven flow or a circu-
latory motion related to the Marangoni effect. One of the few
works that carefully analyze the effects of Marangoni flows in
evaporating sessile drops with the spherical interface is the
classical study by Hu and Larson [21,22]. In their papers,
the authors model a convection in a flattened droplet on a
partially wetting substrate using both a lubrication analysis
and a finite element model (FEM). They found that convective
axially symmetric circulatory motions are occurred driven by
a nonuniform temperature distribution at the surface of the
droplet which arises from evaporative cooling. In the paper
by Tam et al. [24] a small droplet of water sitting on top of
a heated superhydrophobic surface was considered. Similarly
to Hu and Larson, the axially symmetric (toroidal) convec-
tion patterns were observed in a spherical drop in which the
fluid raised along its surface and accelerated downwards in
the interior towards the liquid-solid contact point due to the
presence of a vertical temperature gradient. The effect of
Marangoni forces on the evaporation dynamics of the sessile
drops was studied in the theoretical paper by Barash et al.
[25]. The authors identified various dynamic stages of the
thermocapillary convection associated with the generation of
the array of convective vortices near the drop surface and their
transformation into the single convection vortex over time.

While the fundamentals of Marangoni convection are well
established in systems with a simple flat geometry, an ana-
lytical description of the thermocapillary flow in fluid drops
of ellipsoidal shape is not available yet. In this work we
undertake a step in this direction presenting a quantitative
description enabling us to account for all relevant aspects
of the Marangoni flows in ellipsoidal droplets, namely, the
analytical stationary and critical solutions for the Stokes
stream functions, the spatial temperature and the velocity
distributions for initial stage of the convection. The shape
and the axial symmetry of the fluid droplets possessing two
spherical interfaces were approximated by an oblate spheroid.
Accordingly, elliptical coordinate systems were chosen for
the analytical derivations. In addition, the numerical hydro-
dynamic experiment that models the thermocapillary motion
in ellipsoidal drops was conducted. Both the analytical deriva-
tions and numerical simulations predict the axially symmetric
circulatory convection motion within the droplet determined
by the Marangoni effect at the droplet-free surface. The
convection patterns represent either individual toroidal-like
vortices or series of vortices distributed within the plane of the
drop.

Although the developed approach is quite general and
thus applies to a wide variety of the Marangoni convec-
tion problems in ellipsoidal fluid droplets and bubbles, here
we focus on two specific cases. First, we consider isotropic
droplets spontaneously generated in free-standing smectic
films (FSSFs) heated above the temperature of the bulk
smectic-isotropic transition [Fig. 1(a)]. As a second case we
consider the droplets of insoluble fluids (of the type of oil
or glycerol) which can be deposited on overheated FSSFs in
various ways [28–30]. For example, oil vapor can condense at

FIG. 1. Schematic view of fluid droplets in free-standing smectic
films (FSSFs): (a) isotropic drops formed in overheated FSSFs. The
drop is connected with the FSSF of uniform thickness by a menis-
cus. The drop has a lenslike shape and is symmetric relative to the
horizontal plane. The height of the drop and the base radius of the
cap are designated as H , Rcap, respectively. (b) Oil lenses deposited
on the surface of FSSFs. In all cases the film thickness h is much
smaller than the droplet height.

one of the sides of the smectic film thus forming the lenslike
oil drops with the lateral diameter of the order of mm [29,30]
[Fig. 1(b)]. The FSSFs are usually made from the smectic A
(Sm-A) and smectic C (Sm-C) liquid crystal materials. The
Sm-A phase consists of a stack of parallel molecular layers,
in which elongated molecules are oriented on average along
the layer normal and exhibit the short-range positional order
within the layers. The Sm-C phase differs from the Sm-A
phase by a tilt of the long molecular axes with respect to
the layer normal. Being stretched on a frame, these materials
due to their layered structure form free-standing films [31–33]
in which the smectic layers align parallel to the two air-film
interfaces. The FSSFs can also be prepared as bubbles, ei-
ther connected with an inflation tube or floating freely under
microgravity conditions [34–36]. In many cases the free-
standing smectic films can be heated above the bulk smectic
disordering temperature without rupturing, and instead show
a tendency for the spontaneous nucleation and growth of the
isotropic droplets [37–39]. The isotropic droplets have a shape
of spherical segments (circular flat lenses), the height of which
(of the order up to tens of microns) is about one order of
magnitude less than the drop lateral dimension [Fig. 1(a)]. As
the FSSF thickness is about a few molecular layers (approx-
imately 100 nanometers), the height of the isotropic droplet
is much larger than the film thickness. Thus, such oblate
droplets can be viewed as 3D fluid objects embedded into a
quasi-2D smectic film which serves as a frame (substrate) for
them.

The occurrence of the thermocapillary-driven macroscopic
material transport has been previously reported in FSSFs of
certain materials [40–43]. The linear temperature gradient in
these experiments was applied in the plane of the film, i.e.,
in the plane of the smectic layers which have a fluid nature.
The application of the temperature gradient in the direction
along the layer normal in FSSFs, possessing the solidlike
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elastic response, has not been taken into consideration for
realization of Marangoni transport due to a weak permeation
in smectic, where molecules are unable to flow through the
smectic layers [44–46]. In our preceding paper [47] we have
analyzed the possibility of thermocapillary convection within
isotropic droplets spontaneously formed in FSSFs. The hor-
izontal smectic film with isotropic droplets formed in it was
expected to be heated either from the bottom, or from the
top, thus creating the vertical temperature gradient along the
FSSF normal. To calculate the Marangoni number for a fluid
drop, a formal similarity between a drop of height H and a flat
layer of the same thickness was used. The relevance of this
approximation was justified by a small aspect ratio of lens-
like isotropic droplets in FSSFs. It was shown that about six
convection cells (rolls) can be formed along the lateral drop
dimension. However, the real shape of the drop interface was
not taken into account, in spite of the fact that a curvature of
the drop interface inevitably imposes a temperature gradient
along its free surface.

There is another aspect of the Marangoni convection within
ellipsoidal drops which refers to isotropic droplets formed in
overheated FSSFs. It is well documented that the surface of
the isotropic samples heated above the bulk smectic-isotropic
temperature is covered by the smectic layers, the amount of
which depends on the degree of overheating [48–50]. The
similar situation occurs at the interfaces of isotropic droplets
in smectic films. Actually, each droplet is connected with the
FSSF of uniform thickness via a meniscus, the profile and
height of which are determined by the set of edge dislocation
loops located in the film midplane [51,52] [Fig. 1(a)]. In
general, a smectic shell covering the drop interface should
hinder the development of the Marangoni instability within
a fluid drop, the so-called sticking effect. This problem is
discussed in more detail below in Sec. II B. This is especially
important for isotropic droplets formed in overheated FSSFs,
where we deal with the smectic layering at both drop inter-
faces [Fig 1(a)]. Concerning the lenslike oil drops deposited
on FSSFs, their upper surface is directly connected with the
air [Fig. 1(b)]. Thus, there are no restrictions for the devel-
opment of the Marangoni instability in oil drops initiated by
the surface tension temperature variations at the upper drop
interface. The similar situation with the asymmetric boundary
conditions can also be created for the isotropic drops sponta-
neously formed in FSSFs.

The paper is organized as follows. In Sec. II we present the
quantitative description of the equilibrium shape of ellipsoidal
drops under study. Section II B is devoted to the description of
the thermal stability of the smectic shell covering isotropic
droplets and to the analysis of the possibility for thermo-
capillary motion at the fluid-smectic boundary. The main
focus of the remaining sections is a theoretical description
of Marangoni flows within the ellipsoidal drop. In Sec. III
we present the basic equations and formulate the boundary
conditions for ellipsoidal droplets. Section IV contains the
main analytical results for Stokes stream functions describ-
ing thermocapillary flows in ellipsoidal drops in FSSFs with
asymmetric boundary conditions. Section IV E presents the
results of numerical simulations of the thermocapillary mo-
tion in drops in the frame of numerical experiment. Finally,
Sec. V gives a concluding discussion.

II. STATEMENT OF THE PROBLEM AND
BASIC EQUATIONS

A. Shape of isotropic droplet in FSSFs

Let us first discuss the shape of the isotropic droplets
spontaneously formed in overheated FSSFs. As was indicated
earlier, these droplets have the shape of the spherical segments
(caps) [Fig. 1(a)] [28,35,37,39]. Due to the prolate shape of
the drop the inequality H � Rcap usually holds (compare
with the designations shown in Fig. 1) [53]. The drop is
connected with the FSSF via a meniscus the shape of which
is determined by its dislocation structure. Initially the surface
of the droplet is covered by a certain amount of the smectic
layers. The parameters of the spherical segments of the drop
are determined from the condition of minimum of its surface
energy under assumption that the volume of the droplet is
fixed [37]. The minimization is usually made by a Lagrange
undetermined multipliers method [37,39] and provides the
following relation between the base radius of the cap, Rcap,
and the half-height of the drop, (H/2) [53]:

H

2
≈
√
h2 + γ − γA

γ + γA
R2

cap − h ≈
√

γ − γA

γ + γA
Rcap, (1)

where h is a half of the film thickness, h � H, Rcap and
γ and γA are the interfacial tensions between the drop-air
and the FSSF-air interfaces, respectively. In accordance with
the values of the interfacial tensions, the following inequality
holds: H/(2Rcap) � 1. The validity of Eq. (1) is confirmed by
numerous experimental observations carried out for different
smectic materials [28,35,37,38].

In that follows we replace the shape of isotropic droplet
in the form of two spherical segments by an ellipsoid (oblate
spheroid) characterized by the semiaxes ratio b/a � 1 (where
b and a are a small and large semiaxis of ellipsoid, respec-
tively) (Fig. 2). Doing that we set the b value equal to H/2,
while the large semiaxis of the ellipsoid attains a value a =
Rb = H

√
1 + ξ 2

0 /(2ξ0) (base radius of the ellipsoid drop).
The validity of the above approximation can be justified

by equating the volume of isotropic drop in the form of two
spherical segments with that of oblate spheroid. Indeed, the
volume of an oblate spheroid drop constitutes

Vel = (4π/3) a2 b = (4π/3) R2
b(H/2). (2)

On the other hand the volume of isotropic drop in the form
of two spherical segments can be written as

Vcap = π (H/2)
(
R2

cap + H2/12
)+ π 2 hR2

cap

≈ π (H/2) R2
cap = π (H/2) (Rb + δR)2, (3)

where the difference between Rcap and Rb is designated as
δR ((Rcap − Rb) = δR � Rb). The approximation for Vcap in
Eq. (3) is valid under assumption H/(2Rcap) � 1. From the
equation Vel = Vcap, we obtain the estimate for δR:

δR ≈ 0.15Rb � Rb. (4)

Thus, the above approximation of the lenslike isotropic
droplets in FSSF by the oblate spheroid works well due to
their small aspect ratio, H/(2Rcap) � 1 (Fig. 3). The small
deviations of the ellipsoidal cross section from the initial drop
profile can be seen only in the area close to the drop edge.
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FIG. 2. Representation of the frontal profile of the lenslike
isotropic droplet in the approximation of the oblate spheroid. The
parameters characterizing the ellipsoidal drop shape are designated
in Fig. 1. For convenience, we fixed the zero of the z-coordinate
axes in the center of the drop (in the middle plane of the FSSF).
The parameters: a, b are the semiaxes of ellipsoid, a = c

√
1 + ξ 2

0 ≡
Rb, b = c ξ0 ≡ H/2, ξ0/

√
1 + ξ 2

0 = b/a � 1 (the latter inequality is
possible only for ξ0 � 1), c is a focus distance (coordinate of the
focal point). Here eξ , eu are the unit vectors in the oblate spheroidal
coordinates in their meridional plane. Note that eξ is outward normal
vector to the oblate spheroidal surface of constant ξ = ξ0, unit vector
eϕ is the azimuthal unit vector, oriented beyond the page (sheet)
plane, eu lies in the tangent plane to the oblate spheroid surface and
completes the right-handed basis set {eu, eξ , eϕ}.

We note that the curvature at the end face is much larger
than in the upper drop point (their ratio is of the order of
a3/b3). However, this small area at the drop apex does not
affect the general pattern of the convection motion. The same
geometrical approach was applied to the lenslike oil drops
deposited on FSSFs [Fig. 1(b)]. Contrary to inclusions of the
isotropic phase, representing the different phase state of the
same liquid crystal material, oil is an individual substance and
has the value of surface tension γo between the drop-air inter-
face different from that of the isotropic material. Nevertheless,
the same Eq. (1) can be used to describe the shape of the oil
lenses.

In accordance with the validity of the approximation of the
lenslike drops in FSSFs by oblate spheroid, the corresponding
conventional orthogonal coordinates u, ξ , ϕ are consistently
employed in further elaborations. Every point of space is
described by a triple of numbers (u, ξ , ϕ ), corresponding to
a unique point in the Cartesian coordinates (x, y, z). The cor-
responding orthogonal system of surfaces consists of oblate
spheroids formed by surfaces of constant ξ (ξ = ξ0 is the

FIG. 3. Illustration of the quality of approximation of the shape
of isotropic drop in FSSF by an oblate spheroid.

spheroid of the given boundary), one-sheeted hyperboloids of
revolution of constant |u| (also known as a circular hyper-
boloid, the surface generated by a rotation of the hyperbola
around the z axis), and planes of ϕ = const (ϕ is an azimuthal
angle) [54–56] (Fig. 2). The parameter ξ0 determines the ellip-
ticity ratio, and under the reasonable assumption ξ0 � 1 can
be written as ξ0 = H/(2c) ≈ H/(2Rb). The above parameters
are related to the rectangular coordinates by the following
matrix representation [54–56]:⎛⎝x

y
z

⎞⎠ =
⎛⎝ c

√
1 + ξ 2

√
1 − u2 cos[ϕ]

c
√

1 + ξ 2
√

1 − u2 sin[ϕ]
c u ξ

⎞⎠ , (5)

where the focus distance c plays a role of a scale parameter
and

−1 � u � 1, 0 � ξ < ∞, 0 < ϕ � 2 π. (6)

In turn, the representation of the Lame coefficients (metric
coefficients) in the above variables reads

h2
u =

(
∂x

∂u

)2

+
(

∂y

∂u

)2

+
(

∂z

∂u

)2

,

h2
ξ =

(
∂x

∂ξ

)2

+
(

∂y

∂ξ

)2

+
(

∂z

∂ξ

)2

, (7)

h2
ϕ =

(
∂x

∂ϕ

)2

+
(

∂y

∂ϕ

)2

+
(

∂z

∂ϕ

)2

,

i.e., the metric coefficients are

hu = c

√
ξ 2 + u2

1 − u2
, hξ = c

√
ξ 2 + u2

1 + ξ 2
,

hϕ = c
√

1 + ξ 2
√

1 − u2. (8)

It is important to note that the values of the parameters u, ϕ

at ξ = 0 describe the points (z = 0, r = c
√

1 − u2) on the
mediated circle disk, for which r[ξ = 0, u] = r[ξ = 0,−u],
i.e., two points in the oblate spheroid coordinates correspond
to a single point in the real physical space. This means that
any real physical field must be even function of u at ξ = 0.
The same is true for a certain set of conditions for the spatial
derivatives of the various physical quantities, the velocity, for
example, at ξ = 0. On the other hand, if the physical field
f [ξ, u] splits into a product fξ [ξ ] fu[u], then only the single
condition appears: the functions fξ [ξ ] and fu[u] should have
an equal evenness.

B. Marangoni instability and the smectic layering
at isotropic drop interfaces

As we indicated earlier, the surface of isotropic droplets in
FSSFs heated above the bulk smectic-isotropic temperature
is covered by a certain amount of smectic layers. In this
connection, the natural question arises: what might be the
reaction of the smectic layering of the drop on the relatively
large positive temperature gradient across it (Tup > Tdn; see
Fig. 4). The second question, even more fundamental, is the
following: whether the Marangoni instability can develop at
the interface between the fluid and the smectic substrate. We
remind that smectic state combines a solidlike elasticity along
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FIG. 4. Sketch of the free-standing smectic film with isotropic
drop embedded in it. The upper surface of the droplet is free of the
smectic layers, while the lower interface is covered with a nonuni-
form smectic shell. The thermoelectric devices above and below the
drop are used to preset a vertical temperature gradient across the
drop, Tup > Tdn.

the layers normal and the liquid behavior in the plane of
layers, an absence of the resistance for an applied shear stress
[57]. The second question applies equally to isotropic droplets
formed in an overheated FSSF and to oil lenses deposited on
it [Fig. 1(b)].

Let us start with the stability of the smectic layering. The
amount of smectic layers on the surface of isotropic droplet
in FSSFs depends on the degree of overheating, initial film
thickness, energetics and probability of defect formation, etc.
[51,52]. As in any layered structure, discrete change of the
amount of smectic layers in the film can proceed only by ther-
mal generation of elementary edge dislocation loops [46,58].
This usually occurs in the middle plane of the film and corre-
sponds to the formation either of the surface depletion areas
(holes) or the surface bulge areas (islands). The dislocation
loops of the critical radius can be generated stochastically in
the film under favorable conditions, and then they are growing
at certain rate either in the direction of the meniscus producing
thinner films, or in the opposite direction, film thickening
[31,52,59–61].

The general approach allowing one to calculate the fre-
quency of thermal generation of any type of critical nucleus
of energetically favorable defects was proposed by Langer and
Fisher [62,64]. According to our previous findings [52,65], the
typical value of critical work Wc for nucleation of dislocation
loop of critical radius ∼10−8–10−7 m in the middle plane of
overheated smectic film is of the order Wc ∼ 10−20 J. This is
smaller than the threshold energy W ∗

c = 2.5 × 10−19 J, thus
indicating that if the temperature of the upper drop surface is
sufficiently higher than that at the bottom interface, a large
number of dislocation loops appears leading to the thinning
of the upper smectic shell of the drop. The role of the heating
protocol (the rate and the waiting period) is essential for the
thinning of the smectic layering to proceed. Applying the
slow preliminary heating [51] it is possible to generate one
dislocation loop after another in the smectic shell on the top
of a drop, and in such layer by layer fashion move away the
smectic layers from the hot half of the drop (see also [66]).

The situation at the bottom side of the drop is different. In
the presence of the positive temperature gradient (Tup > Tdn)
the temperature of the meniscus connecting the isotropic drop
with FSSF is higher than that at the bottom side of the drop.

For relatively large temperature difference the energy gain
associated with nucleation and growth of dislocation loops of
excess smectic layers becomes energetically favorable [52].
The material necessary for the smectic shell at the bottom side
of the film to thicken flows from the meniscus surrounding
the isotropic drop, thus producing the sequence of islands
(bulge areas in the shell) (Fig. 4). This corresponds to the
disappearance of the whole set of dislocation loops from the
meniscus. At a certain stage of this process, the activation
energy for the formation of such dislocation loops becomes
larger than the threshold energy, and the process of formation
of islands at the bottom shell of the drop terminates. The simi-
lar behavior related to the formation and movement of islands
on the surface of smectic bubble subjected to a temperature
gradient was observed in microgravity experiments on the
International Space Station [43].

Now, we turn to the analysis of the possibility of
Marangoni convection in the fluid, which is bounded by a
smectic shell (substrate). This configuration applies equally
to isotropic droplets formed in overheated FSSFs and to oil
lenses embedded in FSSFs (Figs. 1 and 4). The Marangoni
forces act tangentially at the curved fluid-smectic interface,
thus inducing the axially symmetric flow of a smectic material
in the plane of smectic layers from the meniscus (hot area)
downwards in the direction of the bottom point of the smec-
tic shell (cold area). These fluid motions interfere with each
other in the bottom area of the smectic shell, thus producing
smectic islands and steps in the film. As a consequence of this
process, the lamellar structure in the smectic film is strongly
destructured in this area, producing the domains in which the
orientation of the layer normals is inclined relative to the ini-
tial fluid-smectic interface. This situation is somewhat similar
to a process of collapse of a smectic bubble inflated at the end
of a capillary tube [67]. In both cases the lamellar structure in
the area close to the meniscus is strongly destroyed. Below
we show that in this case the tangential component of the
smectic elastic force compensates the Marangoni forces at
the fluid-smectic interface, thus terminating the flow of the
smectic material. This means that at the border between the
smectic and fluid its tangential velocity turns to zero, which
corresponds to the sticking (no-slip) condition.

Indeed, in the invariant form the smectic elastic tensor can
be written as (see, for example, [45,68])

σ
(el )
ik = B (∇nusm)nink, (9)

where B is the smectic elastic modulus, corresponding to
compression (dilatation) of the smectic layers, usm is the
displacement field of the smectic layers, n is the normal
to the surface of smectic domains, (∇nusm) = (n∇usm). The
k component of the force f , acting on the bottom (internal)
drop interface reads

fk = B (∇nusm) (l n) nk − δp lk, (10)

where δp is the pressure difference, l is the normal to the
bottom interface, and (l n) is their scalar product. Using the
condition of balance of the normal forces at the internal inter-
face between the smectic and fluid

B (∇nusm) (l n) nklk − δp lklk = 0, (11)
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one can obtain the pressure difference acting at the interface

δp = B (∇nusm) (l n)2. (12)

After substitution of the expression for δp into Eq. (10)
the condition of equilibrium of the tangential forces takes the
form

B (∇nusm) (l n) (n m) − δp (l m) = B (∇nusm) (l n) (n m),

(13)

where m is the unit vector, tangent to the internal interface
((l m) = 0). Thus, the projection of the force f on the unit
vector m is able to compensate the Marangoni tangential
force, that corresponds to the condition of sticking of the fluid
at this interface.

In that follows we consider the situation, when the top of
the drop is free from the smectic layers, i.e., it has the free
boundary, while the bottom half of the drop is in contact with
the static smectic substrate (compare with [43]). This asym-
metric geometry applies equally to isotropic drops formed in
an overheated FSSF and to oil lenses embedded in it.

III. GOVERNING EQUATIONS AND
BOUNDARY CONDITIONS

Normally, surface tension of a liquid is a decreasing func-
tion of temperature

γ = γ0 − ς T ′, (14)

where T ′ = (Tdr − T̄ ), Tdr is a current drop temperature, T̄ is
some constant temperature (far from the drop at z = 0), and ς

is the tension temperature coefficient (ς > 0). Below we omit
the prime symbol for simplification of the further derivations.
We recall that only for the sufficient temperature gradient
across the flat fluid film, the small temperature variations
along the surface initiate change of the surface tension, which
in turn cause the fluid to flow and thereby tend to maintain the
initial temperature disturbances. Because of viscosity of the
liquid the moving surface gives rise to a shear stress, which
drives a flow in the film interior [4,8,9]. As a result the flat
fluid film loses its mechanical stability and the Marangoni
convective patterns are developed, as have been shown the-
oretically by Pearson [69] using the linear instability analysis.

In this work we present a quantitative description of the
Marangoni flows in ellipsoidal isotropic droplets formed in
FSSFs based on the formalism of the Stokes stream functions.
Contrary to the flat fluid films, the mechanical equilibrium
within such drops is absent due to their curved shape. Because
of the nonuniform temperature distribution the tangential
thermocapillary force always exists at the free drop surface
(Marangoni force). This leads to a fluid flow along its curved
interface, making the thermocapillary flow within the drop
thresholdless.

Consider the horizontal FSSF with the fluid isotropic
droplets in it, which is placed between two thermoelectric
devices. The film is parallel to the x-y plane, with the layer
normal directed along the z axis. The origin of the coordi-
nate frame along z is taken in the center of the drop. The
construction of setup allows the heat transfer from the hot
plate to the cold plate placed at the bottom side of the drop.

This corresponds to the positive direction of the temperature
gradient ∂T/∂z (Tdn < Tup) (Fig. 4) and ensures the absence
of the Rayleigh convection in the surrounding air.

The flow is governed by set of equations, namely, the
Navier-Stokes equation, the thermal energy transport equa-
tion, the continuity equation for the incompressible fluid, and
the equation for thermal conduction in the surrounding air
[from (15) to (18)] [5,8,9,70,73]:

∂v
∂t

= − 1

ρ0
(∇p) + ν ∇2v − β T gez, (15)

∂T

∂t
+ (v ∇) T = χ �T, (16)

(∇ v) = 0, (17)

∂Ta

∂t
= χair �Ta, (18)

which correspond to the Boussinesq approximation (i.e.,
|α p| � |β T | � 1, where t is the time, T = T0 + T1, and
pressure P = p0 + p, ∇p0 = ρ0g, g is gravitational acceler-
ation). Ta = (Tair − T̄ ), Tair is a current temperature in the
surrounding air. In above equations β and α are the coeffi-
cients of thermal expansion and isothermal compressibility,
respectively, ρ0 = ρ[P̄, T̄ ] is some constant density of fluid,
ν = η/ρ0 is the kinematic viscosity, η is a dynamical vis-
cosity coefficient, and v is the flow velocity. The coefficient
of temperature conductivity is designated as χ = κ (ρ0cp)−1,
where κ is the thermal conductivity, cp is a specific heat.
In above equations the quadratic over perturbations inertial
terms were omitted. Below we apply a conventional linear
perturbation theory to describe the small deviations of the
solutions in the considered system from the zero stationary
approximation, where ∂T0/∂z = A > 0, |T1| � T0 [8,70].

The term −β T gez in Eq. (15) corresponds to the con-
vective buoyancy force in the drop. Bearing in mind that
Marangoni convection at small length scales (i.e., in small
size drops we deal with) prevails over the buoyant convec-
tion, we can neglect this term in Navier-Stokes equation in
comparison with the viscous term due to the small Rayleigh
number R = gβ A H4/(ν χ ) [8]. The relative role of two types
of convection can be evaluated from the comparison of the
Rayleigh and Marangoni

Ma = ςH2A

χη
(19)

numbers [8]; therefore, the Marangoni convection is dominat-
ing at drop heights

H � Hc =
√

ς

ρ gβ
∼ 104 μm, (20)

where the typical values of the liquid crystal parameters [72]
are used. For the ordinary fluids the transition to buoyancy-
dominated convection occurs around a 1 cm, which is many
orders of magnitude larger than the droplets size considered in
our theory [8,45,70]. Thus, in our case we deal with the pure
Marangoni convection initiated by the gradients of the surface
tension at the drop interfaces.
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At this point it is relevant to summarize the main assump-
tions made to develop the presented analytical model:.

h � H

2
� Rcap → ξ0 � 1, (21)

ς > 0, (22)

|α p| � |β T1| � 1, (23)

|T1| � T0, (24)

Ma � R, (25)

δγ /γ � 1. (26)

The condition (21) indicates that highly anisometric oblate
spheroids should be considered within our model. As regards
the inequalities (23) and (24), they correspond to the fulfill-
ment of the Boussinesq approximation. The condition (25) is
fulfilled in view of Eq. (20).

Because all the coefficients in Eqs. (15)–18) are not de-
pendent on time, we can find the stationary solutions of
our thermocapillary problem. In this case the left parts of
Eqs. (15)–(18), containing terms with the time derivatives,
vanish. Equations (15)–(18) are written in a general view with
conjunction to the conventional rectangular coordinate z. To
solve the problem of Marangoni convection in ellipsoidal fluid
drops it is convenient to rewrite all governing Eqs. (15)–(18)
and boundary conditions using the orthogonal oblate spheroid
coordinates (see Sec. II A and Fig. 2).

Let us start with the formulation of the boundary condi-
tions for our problem. At the surface of the oblate spheroidal
drop (ξ = ξ0) the boundary conditions for the fluid velocity
components can be written as

vξ = 0 (at ξ = ξ0), (27)

that is, the condition of an absence of flow of the material
through the boundary surface of the drop; additionally

vu = 0 (at ξ = ξ0, u ∈ [−1, u0]), (28)

which determines the condition of sticking of a fluid at the
bottom boundary surface of the drop (in a contact with the
smectic shell). The value of u0 determines an extension of the
boundary with the no-slip condition along the drop interface:
u = 0 corresponds to its termination at the circular edges of
the drop, while the positive u indicates the partial overlap
of the upper drop interface by the region with the sticking
conditions. The later is due to a presence of the meniscus con-
necting the drop with the FSSF (see Figs. 1 and 4). Next, we
turn to the boundary conditions for the temperature deviations
and the heat fluxes

Ta|ξ=ξ0 = T |ξ=ξ0 , (29)

Ta|ξ→∞ = Cair c u ξ , (30)

κ
1

hξ

∂T

∂ξ

∣∣∣∣
ξ=ξ0

= κair
1

hξ

∂Ta

∂ξ

∣∣∣∣
ξ=ξ0

, (31)

that are the boundary conditions of the equality of the tem-
perature deviations and the normal heat flux at the air-drop

interface. It is important that for the system under consid-
eration κ = κfluid � 0.25 W(m K)−1 � κair � 0.026 W(m
K)−1 [41], which means an almost instant thermal flow inside
the drop comparatively to the surrounding air.

Another class of the boundary conditions for our problem
corresponds to a stress balance at the surface of the droplet
projected both in the normal and tangential directions. The
boundary condition for the balance of tangential viscous and
Marangoni (GMa) forces on the free top boundary of the ellip-
soidal drop is given by the expressions

σuξ eξ = η

(
∂uvξ

hu
+ ∂ξvu

hξ

− vu

hξ

ξ

ξ 2 + u2

)
= GMa = ∂uγ

hu
(at ξ = ξ0, u ∈ [u0, 1]), (32)

σϕξ = 0, (33)

obtained by substitution of the variables ξ, u to Eqs. (A7) and
(A8) (see Appendix A). Equation (32) reflects the nonuni-
formity of the surface tension γ at the upper drop surface,
thus introducing the thermocapillary force, which drives the
convection process [70]. At this point it is appropriate to note
that the zero approximation of the system of Eqs. (15)–(18)
coincides with the zero approximation over the tempera-
ture coefficient of surface tension ς [i.e., when ς = 0; see
Eq. (14)]. The detail analysis of these boundary conditions is
given in Appendix A.

As to the normal stress balance, it is replaced in our case
by the assumption that the ellipsoidal form of a droplet prac-
tically does not change in the process of convection (compare
with [24]). This assumption is valid because the pressure
deviation due to the nonhomogeneity of the temperature
across the drop boundary is negligibly small: δp/p ∼ δγ /γ ∼
10−4–10−3 � 1 (see [66,72]), in accordance with Eq. (26).

It is convenient to solve the hydrodynamic equations of
Marangoni convection for the axially symmetric ellipsoidal
drops in terms of 2D Stokes stream functions ψ[u,ξ ] [56].
By definition, this function determines the instant fluid flow
rate divided by 2π (the half of the total spatial angle). The
stream function ψ is scaled by χc2/H , and thus used in the
dimensionless form below. According to [56], the velocity
field is related to the stream function by the following equa-
tion written in oblate spheroidal coordinates

v = 1

hϕ

[eϕ × ∇ψ]. (34)

After substitution of Eq. (8) into Eq. (34) one obtains

v = − eu

hξ hϕ

∂ξψ + eξ

huhϕ

∂uψ, (35)

where eξ and eu are the unit vectors along ξ and u axes,
respectively.

To obtain the dynamic equation for the Stokes stream func-
tion it is convenient to introduce the vorticity

�� = [∇ × v]. (36)

After substitution of Eqs. (35) to (36) one arrives at

�� = eϕ

hϕ

Ê
2
ψ, (37)
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where

Ê
2
ψ = 1

c2 (u2 + ξ 2)

[
(1 + ξ 2)

∂2ψ

∂ξ 2
+ (1 − u2)

∂2ψ

∂u2

]
. (38)

Then, applying the rotor operation to the vorticity �� twice,
one obtains

[∇ × [∇ × �� ] ] = − eϕ

hϕ

Ê
2

(Ê
2
ψ ) = − eϕ

hϕ

Ê
4
ψ. (39)

Applying the rotor operation to both sides of Eq. (15),
one excludes the pressure p, and using the continuity equa-
tion (17), Eqs. (36), (37), and (39), and taking the equality
[∇ × ∇2v] = − [∇ × [∇ × �� ] ]) into account, expresses
the resulting equation through the single variable ψ [56]. The
convective buoyancy force in Eq. (15) was disregarded, as we
argued above. In such a way the Navier-Stokes equation in
the Boussinesq approximation (15) for the stationary regime
is replaced by the following equation for the stream function:

Ê
2

(Ê
2
ψ ) = 0. (40)

We note that the boundary condition represented by
Eq. (27) with account to Eq. (35) takes the form

ψ[ξ0, u] = 0. (41)

It is important to check the obtained solutions on the absence
of singularities; see Sec. II A. In the first place this applies to
the components of the velocity field vx, vz and the vorticity �� ,
which should be continuously differentiable functions.

IV. RESULTS

A. Stokes stream functions and velocity fields

In this section we generalize the formalism developed by
Happel and Brenner [56] to solve Eq. (40) for the stream
function ψ . In doing so we first obtain the solutions of equa-
tion Ê2 ψ = 0. According to definition of the stream function,
ψ = 0 along the z axis, i.e., for u = 1 or u = −1. The so-
lutions for ψ can be either symmetrical, or asymmetrical
with respect to the variable u. This means that all solutions
of Eq. (40) should be proportional either to (1 − u2) , or to
u (1 − u2) , respectively. In turn, in accordance with the prop-
erties of the Legendre polynomials, Pn[u], the solutions of the
equation Ê2 ψ = 0 are proportional to the integrals from the
Legendre polynomials [see Appendix B, where the straight
method of derivation of the solutions of Eq. (40) is presented].
This allowed us to obtain the full set (the linear space) of
solutions of Eq. (40), satisfying all of the above mentioned
requirements.

However, the above mentioned straight method of deriva-
tion of the solutions of Eq. (40) is too complicated, especially
if we extend it for the large number of the accounted ba-
sic functions. We note that the full solution for the stream
function represents the sum over the limited amount of the
basic functions {ψn[ξ, u]}, which is determined by the number
Nr . Instead that, we developed the operator method of the
solution of Eq. (40) based on the introduction of a set of the
recursive operators, and the special algebraic technique which
allows the stream functions of different order to interconnect
with each other (see Appendixes C, D, and E). The general

FIG. 5. Streamlines corresponding to the basic stream function
ψ3 for ξ0 = 0.1; the ξ0 value determines the ellipticity ratio of the
droplet and is equal to H/(2c) ≈ H/(2Rb) (see Sec. II A). All lengths
are shown in the dimensionless form.

expression for the n-th basic stream function ψn can be written
as

ψn[ξ, u] = Fn

(
X (1)

n−2 − X (1)
n−2[ξ0]

X (1)
n [ξ0]

X (1)
n

)
+ Fn−2

(
X (1)

n − X (1)
n [ξ0]

X (1)
n−2[ξ0]

X (1)
n−2

)
, (42)

where the function

Fn[u] =
∫ u

−1
Pn[u′]) du′ = Pn+1[u] − Pn−1[u]

2n + 1
(43)

is expressed via the Legendre polynomials Pn[u] of the order
n, and

X (1)
n [ξ ] = �

(1)
n+1[ξ ] − �

(1)
n−1[ξ ])

2n + 1
, (44)

where �(1)
n [ξ ] is the solution of Eq. (C2), i.e., �(1)

n [ξ ] is
the ξ -dependent function multiplier in the solution of the
Laplace equation �φn = 0 in the ellipsoidal coordinates (see
Appendixes C, D, and E). The above formalism is applied
for n > 2. The streamlines for the first four stream functions
ψn, corresponding to ellipticity ratios ξ0 = 0.1, ξ0 = 0.2, are
presented in Figs. 5–8. The lengths x and z are shown in the di-

mensionless form, being scaled by c = H/2
ξ0

= a (
√

1 + ξ 2
0 )−1.

The number of vortices along the long drop semiaxis a for
each ψn increases with the increase of n. It is readily seen
that with increasing of the ellipticity ratio ξ0 the flow pattern
remains the same, only the scale is changed. The basic stream
functions described by Eq. (42) satisfy the symmetry of the
problem and the condition of the absence of fluid flow through
the external drop boundary (see Sec. III).

Provided that the stream functions describing the ther-
mocapillary motion are known, the velocity components,
satisfying the corresponding boundary conditions (28) and

FIG. 6. Streamlines corresponding to the basic stream function
ψ4 for ξ0 = 0.1.
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FIG. 7. Streamlines corresponding to the basic stream function
ψ5 for ξ0 = 0.1.

(32), can be obtained:

vξ [ξ, u] = 1

c2(
√

1 + ξ 2
√

u2 + ξ 2)

∂ψ[ξ, u]

∂u
,

vu[ξ, u] = − 1

(c2
√

1 − u2
√

u2 + ξ 2)

∂ψ[ξ, u]

∂ξ
. (45)

In turn, the velocity components vx, vz in oblate spheroid
coordinates in accordance with Eqs. (A3)–(A6) appear as

vx[ξ, u] = 1√
u2 + ξ 2

(ξ
√

1 − u2 vξ − u
√

1 + ξ 2 vu) cos ϕ,

(46)

vz[ξ, u] = 1

(u2 + ξ 2)1/2
(u
√

1 + ξ 2 vξ + ξ
√

1 − u2 vu).

(47)

Next, we aim to derive the basic set of the stream func-
tions {ψ j,st }, explicitly describing the convection flow for the
asymmetric boundary conditions, i.e., for the case of fluid
sticking at the bottom drop surface: ∂ξψ j,st [ξ = ξ0] = 0 for
u ∈ (−1, 0) (i.e., for u0 = 0), with designation ...st indicat-
ing this configuration. To solve this problem it is optimal
to represent the set of basic stream functions {ψ j[ξ, u]} [see
Eq. (43)] and corresponding tangential velocities vu, j as sets
of odd and even functions. This allows us to obtain the cor-
rect view of the new basic stream functions, satisfying the
nonsymmetric boundary conditions. Moreover, these stream
functions provide a continuous variation through the points of
contact between the free and bounded by the smectic layers
surfaces of the drop (for details of the calculation proce-
dure see Appendix F). The streamlines corresponding to the
three first stream functions ψ j,st [ξ, u], satisfying the boundary
conditions of sticking at the bottom interface, are shown in
Figs. 9–12. The number of vortices along the long drop semi-
axis a for each ψ j,st is equal to j. The above solutions were

FIG. 8. Streamlines corresponding to the basic stream function
ψ6 for ξ0 = 0.2.

FIG. 9. Streamlines corresponding to the first stream function
ψ1,st , for ξ0 = 0.1. The bold black line at the bottom part of the
drop indicates that the sticking (no slip) conditions are fulfilled at
this interface. The same symbol will be used in the following figures.
In contrast to this, the upper part of the drop is free (in contact with
the air).

obtained for the case of the strongly oblate spheroid, which is
in accordance with the condition ξ0 � 1 (21).

The comparative analysis of the solutions for the basic
stream functions for the cases of the free drop surface {ψn},
and for the asymmetric boundary conditions {ψ j,st }, indicates
the essentially different character of the corresponding con-
vection patterns (Figs. 5–8 and 9–12). For the case of the
drop with the free surface the thermocapillary convection with
two rows of vortices (top and bottom) is principally possible
under certain parameters of the problem (for example, for a
large temperature gradient across the drop). Contrary to this,
for the drops with the sticking boundary conditions at the
bottom drop interface, such a regime is forbidden because
there is no driving Marangony tangential force at the bound-
ary with smectic. Only the single row of convection patterns
is observed in this case (see Figs. 9–12). Moreover, in this
case a thin boundary region is formed close to the bottom
drop interface, where the flow is absent. Another interesting
observation is that in dependence on the parameters of the
problem the convection regimes with the different number of
vortices along the direction of the axial drop cross section can
be realized.

B. Temperature distribution

Now we can turn to the couple of governing equations of
Marangoni convection within ellipsoidal fluid drops describ-
ing the thermal energy transport inside the drop and the
thermal conduction in the surrounding air [Eqs. (16) and (18)].
We need to know the temperature distribution to obtain the
general stationary solution of the thermocapillary convection
inside the drop. The conventional linear perturbation theory
is applied again to solve the system of Eqs. (15)–(18) in the
stationary regime. In doing so the approximations T = T0 +
T1 and Ta = T0 air + T1 air are used, where T0 is the solution
for the case, the fluid motion is absent, and T1 is the small

FIG. 10. Streamlines corresponding to the first stream function
ψ2,st , for ξ0 = 0.1.
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FIG. 11. Streamlines corresponding to the first stream function
ψ3,st , for ξ0 = 0.1.

temperature deviation. This results in the following equa-
tions for the temperature deviations:

�T0 = 0, (48)

�T0 air = 0, (49)

χ�T1 = vz∂zT0, (50)

�T1 air = 0. (51)

The full set of solutions of the above Laplace equations in
oblate spheroid coordinates is given in Appendix C. As a first
step we calculate the temperature distribution T0. In accor-
dance with the symmetry of the problem the stationary heat
flux far away from the drop (in the surrounding air) is directed
along the z axis: T0 air → Cair c u ξ , where Cair is a uniform
temperature gradient across the air, z = c u ξ . According to
Appendix C the regular kernel of the Laplace operator can
be expressed as Pn[u]�(1)

n [ξ ]. The corresponding heat flow is
regular at the point u = ξ = 0. To find the temperature distri-
bution in the air it is convenient to use the linear combinations
of �(1,2)

n , damped at ξ → +∞, which are designated below as
�(a)

n . Thus, the solution in the air has the form

T0 air = Cair c u ξ︸︷︷︸
P1 �

(1)
1

+
∞∑

n=1

αn Pn[u] �(a)
n [ξ ]. (52)

The temperature distribution T0 inside the drop can be
written (with account for the regularity condition of the heat
flow at the point u = ξ = 0) as

T0 =
∞∑

n=1

βnPn[u]�(1)
n [ξ ]. (53)

The solutions of Eqs. (52) and (53) should satisfy the
boundary conditions (29) and (31) at ξ = ξ0; since Legendre’s
polynomials {Pn} form an orthogonal basis, these conditions

FIG. 12. Streamlines corresponding to the first stream function
ψ4,st , for ξ0 = 0.1.

have to hold for any value of the variable u:

n = 1 :

{
β1ξ0 = Cair ξ0 + α1 �

(a)
1

∣∣
ξ=ξ0

,

κ β1 = κair Cair c + κair α1 ∂ξ�
(a)
1

∣∣
ξ=ξ0

,
→

→ β1 = c Cair κ
1 − ξ0

(
ln �

(a)
1

)′∣∣
ξ=ξ0

1 − κξ0
(

ln �
(a)
1

)′∣∣
ξ=ξ0︸ ︷︷ ︸

A

= c A, (54)

α1 = −Cair
(1 − κ )(

�
(a)
1 /ξ0 − κ ∂ξ �

(a)
1

)∣∣
ξ=ξ0

, (55)

where κ = κair/κ is a relative heat conductivity.

n > 1 :

{
βnξ0 �(1)

n

∣∣
ξ=ξ0

= αn �(a)
n

∣∣
ξ=ξ0

,

κ βn ∂ξ�
(1)
n

∣∣
ξ=ξ0

= κair αn ∂ξ�
(a)
n

∣∣
ξ=ξ0

,
→

→ βn = 0, αn = 0 for n > 1.

In that follows we present all the variables in dimen-
sionless form, using appropriate scaling relations, symbol .̃..

designates the dimensionless variables, correspondingly. All
lengths are scaled by c = H/2

ξ0
= a√

1+ξ 2
0

, velocities by χ/H

(i.e., v = ṽ χ/H), time by c/v = H2/2
ξ0 χ

, and temperatures by

HA (i.e., T = T̃ A H) [2,8]. Then for the dimensionless tem-
perature distribution T̃0 we obtain

T̃0 = uξ

2ξ0
. (56)

Let us stress that the derivation of the temperature distribution
T̃0 is necessary to find the solution for the stream functions
describing the main contribution to the stationary thermocap-
illary convection within the drop.

In turn, the dimensionless equation for the temperature
distribution T̃1 reads

�̃T̃1 = c2

H2
ṽz = 1

4ξ 2
0

ṽz. (57)

Below we omit the symbol .̃.. for simplicity.
It is convenient to rewrite Eq. (57) for the distribution of

the temperature deviation T1 inside the drop in terms of the
stream function ψ :

[∂ξ (1 + ξ 2)∂ξ + ∂u(1 − u2)∂u] T1 = (u∂uψ − ξ∂ξψ )

4ξ 2
0

. (58)

The right side of Eq. (58) can be decomposed over the Leg-
endre’s polynomials in the form

∑
n fn[ξ ]Pn[u]. In such a way

we can find the temperature response to each fn[ξ ]Pn[u] in
view of Tn[ξ ]Pn[u]. Thus, for each functional coefficient Tn(ξ )
we obtain the following equation:

∂ξ (1 + ξ 2)∂ξ Tn − n(n + 1)Tn = fn[ξ ]. (59)

It is easy to check that the right part of Eq. (59) can be
presented as a linear combination fn =∑k W

(1)
n,k �

(1)
k , where

W (1)
n,k is the expansion coefficient. This allows us to write the
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response of the functional coefficient Tn(ξ ) to each �k as

Tn,k[ξ ] = W (1)
n,k

k(k + 1) − n(n + 1)︸ ︷︷ ︸
W (1)

n,k

�
(1)
k [ξ ], n �= k. (60)

The condition n �= k is always valid here due to the specific
form of the expression for the velocity component vz (see
Appendix F).

To derive the full solution for the temperature deviations
T1 within the drop it is necessary to add to a partial solu-
tion

∑
k W (1)

n,k �
(1)
k [ξ ] of Eq. (58) the homogeneous solution

�(1)
n �(1)

n [ξ ]:

T1 =
∑

n

{∑
k

W (1)
n,k �

(1)
k [ξ ] + �(1)

n �(1)
n [ξ ]

}
Pn[u]. (61)

In the next step it is necessary to take into account the
continuity of heat and the heat flux at the boundary of the drop
(ξ = ξ0), where the solution for the first-order temperature
correction outside the drop can be written as (see Appendix C)

T1 air =
∑

n

�(a)
n �a

n[ξ ] Pn[u]. (62)

In such a way we obtain the system of equations

�(a)
n �(a)

n

∣∣
ξ=ξ0

= {∑
k

W (1)
n,k �

(1)
k + �(1)

n �(1)
n

}
ξ=ξ0

,

κ�(a)
n ∂ξ�

(a)
n

∣∣
ξ=ξ0

= {∑
k

W (1)
n,k ∂ξ�

(1)
k + �(1)

n ∂ξ�
(1)
n

}
ξ=ξ0

,

(63)

from which we find

�(1)
n =

⎧⎪⎨⎪⎩
κ

∑
k W (1)

n,k �
(1)
k

�
(a)
n

−
∑

k W (1)
n,k ∂ξ �

(1)
k

∂ξ �
(a)
n

∂ξ �
(1)
n

∂ξ �
(a)
n

− κ �
(1)
n

�
(a)
n

⎫⎪⎬⎪⎭
ξ=ξ0

. (64)

Thus, we derived the distribution of the temperature devi-
ations T1 inside the drop. This allows us to find the general
stationary solution for the stream functions, and to analyze
its stability relative to the increase of the initial temperature
gradient.

C. General stationary solution

Now, having in hand the analytical expressions for the tem-
perature distribution within the ellipsoidal drops, we can solve
explicitly the Marangoni boundary conditions (32) and (33).
After substitution of the components vu, vξ from Eqs. (35)
and (45) to Eqs. (32) and taking into account that at the drop
boundary vξ = 0 (ξ = ξ0), we obtain the general expression
for Marangoni boundary condition at the free surface of the
drop

− hu

hξ

∂ξ

∂ξψ

hξ hϕhu
= −Ma

∂uT

hu
(at u ∈ [u0, 1]). (65)

In view of Eq. (65) the system of Eqs. (32) and (33) can be
rewritten in the form{

2ξ∂ξψ−(u2+ξ 2)∂2
ξ ψ = −Ma

(u2+ξ 2)3/2√
1 + ξ 2

(1 − u2)∂uT

}
ξ=ξ0

(at u ∈ [u0, 1]), (66)

∂ξψ = 0 (at ξ = ξ0, u ∈ [−1, u0]), (67)

where Ma is the Marangoni number, defined earlier in
Eq. (19). Estimating the contributions to the right part of
Eq. (66) and taking into account the solutions for (ψ, T0, T1),
we obtain that for the typical parameters of the system Ma �
103. In this case the contribution from the temperature de-
viation T1 in solving of the Marangoni boundary condition
is negligibly small comparatively to that from T0 and can
be omitted. This confirms the validity of the condition (24)
corresponding to Boussinesq approximation. The same is true
for the inequality (23) with account to the typical parameters
of the system [72]. Hence, the full stationary solution for the
stream function in the main approximation can be written
either as expansion over initial basic functions ψi,

ψ =
Nr∑

i=3

ci ψi, (68)

or over the basic functions ψi,st , satisfying to the condition of
sticking at the bottom surface,

ψ =
Nr∑

i=3

ci,st ψi,st , (69)

where Nr is the number of basic functions used in the sum-
mation. Now we have two ways to find the stream function
ψ .

The first one is straight: to substitute expansion (68) in the
system (66) and (67) and to find the set of ci, satisfying the
following system of equations:(

∂ξ − 1

2ξ0

(
ξ 2

0 + u2
)
∂2
ξ

)
ψ

∣∣∣∣
ξ=ξ0

=
∑

j

Ôfree
i j Fi[u]c j = −Ma

(
ξ 2

0 + u2
)3/2

2ξ0

√
1 + ξ 2

0

(1 − u2)

2

= r[u], (at u ∈ [u0, 1]), (70)∑
i, j

Ôstick
i j c jFi[u] = 0 (at u ∈ [−1, u0]), (71)

where we introduced an expansion of the left part of the
Marangoni condition (70) over the set of functions Fi[u] using
the matrix representation Ôfree

i j at the free boundary of a drop
for ξ = ξ0. To obtain the right part of Eq. (70) we substituted
expression (56) for the temperature distribution T0 to the right
part of the first equation in the system (66). The matrix Ôfree

i j

describes the action of the operator [∂ξ − 1
2ξ0

(ξ 2
0 + u2) ∂2

ξ ] on
the expansion (68) for the stream function ψ at ξ = ξ0. In
turn, the matrix Ôstick

i j describes the action of the operator ∂ξ

on the expansion (68) for the stream function ψ at ξ = ξ0. In
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Eq. (70) we introduced two new definitions (underlined as ...),
which are used to simplify the further derivations.

We note that the irrationality (ξ 2
0 + u2)3/2 is present in the

right part of Eq. (70), i.e., in the r[u], but this irrationality
is absent in the functions {Fi[u]} [see expression (43)], de-
termining the dependence of the left part of this equality on
u. This means that the full solution of the system (70) is
the infinite series. However, we able to obtain only the finite
approximation for this solution. The series is breaking once
the following convergence criterion is satisfied: the sum of the
norms E [{c j}]free, E [{c j}]stick of deviations of Eqs. (71) from
zero,

E [{c j}]free =
∫

free

du

1 − u2

(
Ôfree

i j c jFi[u] − r[u]
)2

= Ôfree
i j Ôfree

km c jcm

∫
free

du

1 − u2
FiFk︸ ︷︷ ︸

F free
ik

− 2Ôfree
i j c j

∫
free

du

1 − u2
r[u]Fi[u]︸ ︷︷ ︸

Ri

+
∫

free

(r[u])2

1 − u2
du,

E [{c j}]stick =
∫

stick

(
Ôstick

i j c jFi[u]
)2 du

1 − u2

= Ôstick
i j Ôstick

km c jcmF̂ stick
ik , (72)

should be minimal for the obtained Nr-measured set of ci,

∂cα
E [{c j}] = 2 Ôfree

kα F̂ free
ki Ôfree

i j︸ ︷︷ ︸
Mfree

α j

c j − 2 Ôfree
iα Ri︸ ︷︷ ︸
Vα

+ 2 Ôstick
kα F̂ stick

ki Ôstick
i j︸ ︷︷ ︸

Mstick
α j

c j

= 0 → (M̂stick + M̂free )|c〉 = |V 〉, (73)

where |c〉 and |V 〉 are designations of the corresponding
columns. The above expressions can be essentially simplified
with account to expression (D5).

Applying the above procedure the main approximation for
the stream functions with the given accuracy of determina-
tion are obtained (relative deviations of norms E [{c j}]free,
E [{c j}]stick from zero are about 10−3; see Figs. 13–15). The
deviations E [{c j}]free and E [{c j}]stick converge to zero when
the number of the basis functions Nr increases (Nr → ∞ ; see
Fig. 13). This fact confirms the regular convergence provided
by our procedure and correctness of our approach in derivation
of the general solution for the stream function.

Additionally, an improved representation of the velocities
and temperature distribution corresponding to the station-
ary thermocapillary convection within the ellipsoidal drop
in dependence on the values of ξ0, κ and u0 are calculated
(Figs. 16–19). It is instructive to analyze the differences in
the velocity distribution within Marangoni vortices between
the geometries with u0 = 0 and u0 �= 0, for which the drop
surface with the sticking boundary condition partly overlaps
the circular edge of a drop. This is a realistic scenario due to

FIG. 13. Illustration of the convergence of the expansion proce-
dure for the stream function in dependence on the number of the
basic functions. Dependence of the relative error ε in deviations of
norms E [{c j}]free, E [{c j}]stick from zero (Ma = 1, ξ0 = 0.1).

the presence of a bulky smectic meniscus connecting the drop
with smectic film (Figs. 1 and 4). Moreover, this is important
for understanding of the influence of the shape of the end face
of the drop on the thermocapillary convection within it. In
Figs. 16 and 17 the convection patterns correspond to the case
when the no-slip boundary conditions extend along the drop
surface towards its upper part (u0 = 0.25). Contrary to this, in
Figs. 18 and 19 the sticking boundary conditions at the bottom
drop surface terminate exactly at the circular edge of the drop.
It is readily seen that in the first case the convection vortices
are not able to penetrate in the end face of the ellipsoidal
drop (see Figs. 16 and 17). This indicates that the shape of
the butt end of the drop is not important for such a case.
The differences in the stream function patterns between the
geometries with u0 = 0 and u0 �= 0 are highlighted in Fig. 20.
One can see that these differences show up themselves only in
a butt end region of the drop, and do not affect the convection
motion in the main volume of the drop.

The second way to obtain the full stream function is to
use the set of functions ψi,st [see Eq. (69)]. It is possible for
u0 = 0. It is clear that the functions ψi,st automatically satisfy
the sticking boundary condition (∂ξψ = 0) at the bottom drop

FIG. 14. Coefficients in decomposition of the stream function
ψ for even and odd basic solutions (Ma = 1, ξ0 = 0.1, u0 = 0.1).
Illustration of the convergence of the expansion of the solution for ψ

over basic functions in dependence on their number i as a function
of a current integer number k. Both even and odd basic solutions are
shown; the convergence is reached for k values about 25.
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FIG. 15. Convergence of the coefficient c3 of the expansion of
the final stream function over the basic functions in dependence on
their number(Ma = 1, ξ0 = 0.1).

surface, the second equation in a system of Eqs. (67). There-
fore, the only thing we need is to resolve the first equation in
a system (67). The Marangoni boundary condition at the top
(free) surface reads[

∂ξ − 1

2ξ0

(
ξ 2

0 + u2
)
∂2
ξ

]
ψ

∣∣∣∣
ξ=ξ0

=
∑
i, j

Ôfree
i j Fic j,st = −Ma

(
ξ 2

0 + u2
)3/2

2ξ0

√
1 + ξ 2

0

(1 − u2)

2
= r[u].

(74)

Similarly to that was done earlier, we substituted expression
(56) for the temperature distribution T0 to the right part of the
first equation in the system (67). Again, we need to find the
constants ci,st of the expansion of the full stream function over
basic functions ψi,st . By analogy with the previous case we
find the finite approximation for this solution. The series is
broken once the following convergence criterion is satisfied:
the norm of deviation of the Eq. (74) from zero,

E [{c j,st }] =
∫ [∑

i, j

Ôfree
i j Fic j,st − r(u)

]2
du

1 − u2
, (75)

should be minimal for the Nr-measured set of ci,st , (details
of calculation of E [{c j,st }] are presented in Appendix F). The

FIG. 16. Streamlines and temperature distribution for the gen-
eralized thermocapillary convection within the drop (ξ0 = 0.1, κ =
0.2, u0 = 0.25, Ma = 1, Nr = 110; κ = κair/κ is a relative heat
conductivity); the color scale for the temperature is characterized by
a more saturated light-purple in a hot areas). The sticking boundary
conditions are extended above the circular edge of a drop (bold black
line).

FIG. 17. Modulus of velocity for the generalized thermoconvec-
tion flow within the drop (ξ0 = 0.1, u0 = 0.25, κ = 0.2, Ma = 1,
Nr = 110). The dimensional values of v can be deduced using the
corresponding scaling parameter χ/H = 4 × 10−3 m s−1. The circu-
lation period �t for certain velocities can be determined from the
integral over the closed trajectory of the motion as shown in the
Discussion. In dimensionless form �t values are 124, 151, 206, and
484 as counted off from the center of the vortex to its periphery,
respectively (from dark streamline to light one in Fig. 16). The
dimensional values of �t can be obtained using the correspond-
ing scaling parameter �t = ((H2/2)(ξ0 χ )−1) �̃t , (H 2/2)(ξ0 χ )−1,
which is about 0.0125 s for the typical geometrical and material
characteristics of the drop. In seconds they constitute 1.55 s, 1.89 s,
2.575 s, and 6.05 s, respectively.

above deviation E [{c j,st }] converges to zero when the number
of the basic functions Nr → ∞. The results obtained for the
stream functions and velocity distributions within the drop by
a second method of calculations are closely the same as shown
in Figs. 16–19.

D. Stability of the stationary solution. Crossover to the limit of
the plane fluid layer

After the stationary solutions for the thermocapillary flows
within isotropic fluid droplets in FSSFs are determined (ψ =
ψ1 + · · · , T = T0 + T1 + · · · ), the natural question about sta-
bility of these solutions relative to the increase of the initial
temperature gradient (i.e., increasing of the Marangoni num-
ber, Ma) arises. To answer this question let us imagine that the
hydrodynamic characteristics of the system in certain moment
slightly deviate from those of the stationary solution. Our aim
is to trace the evolution of these deviations with time.

The partial solutions of the Eqs. (15)–(18) can be written
in the form of normal pertubations which have exponential
dependence on time [2,8,45,70,73],

vμ ∝ exp[ λ t], (76)

T1 ∝ exp[ λ t], (77)

where exponent λ determines the time character of pertur-
bation evolution. The normal perturbations with the negative
sign of the real part of λ are decaying, while the perturbations
with the positive sign of the real part of λ correspond to

FIG. 18. Streamlines and temperature distribution (color map)
for the generalized movement of thermocapillary convection (ξ0 =
0.1, u0 = 0, κ = 0.2, Ma = 1, Nr = 110).
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FIG. 19. Modulus of velocity for the generalized thermoconvec-
tion flow within the drop (ξ0 = 0.1, u0 = 0, Ma = 1, Nr = 110). The
circulation period �t for certain velocities in dimensionless form is
135, 156, 206, and 489 as counted off from the center of the vortex
to its periphery (from dark streamline to light one in Fig. 18). The
dimensional values of �t constitute 1.69 s, 1.95 s, 2.58 s, and 6.11 s,
respectively.

the growing fluid motions. Then, the stationary solutions for
the thermocapillary motion are stable if the condition for all
solutions Re[λ] < 0 is fulfilled. However, the spectrum of
perturbations depends on the value of the Marangoni number,
Ma. While for a small Ma values all λi possess the negative
sign of the real part of lambda, starting from the some larger
Ma the perturbations with the positive Re[λ] arrive. Thus,
the margin of stability of thermocapillary flow is determined
by a minimal Marangoni number Mac for which the normal
perturbation (ψc, Tc) reaches the zero Re[λ] value for a first
time. To find the stability limit we introduce the general ex-
pansions (ψ� = ψ + ψc, T� = T + Tc) and substitute them
in Eqs. (15)–(18) in order to make a linearization procedure
over (ψc, Tc). We note that the equation Ê4ψc = 0 over ψ is
linear initially, thus, the basis of the solution for ψc remains
the same. This means that we use the same expansion ψc =∑

j cc jψ j,st over {ψ j,st }, which is a set of basic functions,
corresponding to the sticking conditions at the bottom surface
of a fluid drop (see Sec. IV A and Appendix F).

The equation �T� = c
H (v�∇) T� for the critical tempera-

ture distribution after linearization takes the form

�Tc = c

H
(vc∇) T0, (78)

where the terms c
H (vc∇) T1 and c

H (v1∇) Tc are omitted due
to a higher order of smallness. Thus, for the case Ma � 103,
Eq. (78) is coincides with Eq. (50) which allows the tem-
perature amendments of the first order to be calculated as
a response to a set {cc jψ j,st }; in such a way we obtain an
expansion Tc =∑ j cc jT1 j .

At the next step it is necessary to find the critical Mac

and corresponding vector {cc j}, in order to satisfy Marangoni

FIG. 20. Difference of streamlines ψ for the generalized thermo-
convection flow within the drop for u0 = 0 and u0 = 0.25, (ξ0 = 0.1,
κ = 0.2, Ma = 1, Nr = 110).

boundary condition (65) at ξ = ξ0:{
∂ξψc − 1

2ξ
(ξ 2 + u2) ∂2

ξ ψc

}
ξ=ξ0

= −Mac

{
(u2 + ξ 2)3/2

2 ξ
√

1 + ξ 2
(1 − u2) ∂uTc

}
ξ=ξ0

, (79)

where in accordance with expression (61) and with account to
equality (D6) each ∂uT1 j can be written as

∂uT1 j = −
∑

n

[∑
k

(
W (1)

n,k

)
j,st �

(1)
k + (�(1)

n

)
j,st �(1)

n

]

× n(n + 1)

1 − u2
Fn[u]. (80)

For simplification we designate the right part of the equality
(79) as Mac

∑
j r j[u] cc j . In such a way Eq. (79) can be

rewritten as(
∂ξ − 1

2ξ0

(
ξ 2

0 + u2
)
∂2
ξ

)
ψc

∣∣∣∣
ξ=ξ0

=
∑
i, j

Ôfree
i j Fi cc j

= Mac

∑
j

r j[u] cc j . (81)

Similarly to the previous section, we are searching for the
solutions for which the norm of deviation from Eq. (81) turns
to zero:

L=
∑

jm

cc jccm

{∑
i,l

∫
Ôfree

i j FiÔ
free
lm Fl

du

1 − u2︸ ︷︷ ︸
M̂ (0)

jm

−Mac

∫ [∑
i

Ôfree
i j Fi rm[u]+

∑
l

Ôfree
l j Fl r j[u]

]
du

1−u2︸ ︷︷ ︸
M̂ (1)

jm

+ Ma2
c

∫
r j[u]rm[u]

du

1 − u2︸ ︷︷ ︸
M̂ (2)

jm

}
= 0. (82)

The vector {cc j} and the corresponding minimal critical value
Mac can be determined from Eq. (82) for L. This equation can
be rewritten in the form(

M̂ (0) − Mac M̂ (1) + Ma2
c M̂ (2)

) |cc〉 = 0, (83)

where the components of matrices M̂ (0), M̂ (1), M̂ (2) are de-
termined in expression (82) as the interlinear (footnote)
designations. Thus, our problem is reduced to the quadratic
eigenvalue problem [74]. The standard method of its solution
is a reduction to the generalized eigenvalue problem (see
Appendix F). However, there is a certain complication in its
solution: the obtained Ma, are complex numbers, containing
real and imaginary parts, due to the irrationality in the left
part of Eq. (79). To overcome the above problem we used
one of the properties of our system, lying in the fact that an
increase of the number of the basic functions Nr leads to the
diminishing of the image part of Mac; it turns to zero when
Nr → ∞ . In practice, we search for the solution depending
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FIG. 21. Illustration that the image part of the Marangoni num-
ber, Ma, decreases with the increase of the number Nr of the
accounted basic functions (four lowest values of Ma spectrum for
each Nr are presented, ξ0 = 0.1, κ = 0.2).

on the number Nr of the basic functions, for which the im-
age part of Ma would be less than 10−3. The illustration of
the progress in these calculations is shown in Fig. 21. The
negative value of the critical Marangoni number Mac is not
accidental. This means that for the case under consideration
the temperature of the free drop surface is higher than that at
the bottom surface with the sticking (no-slip) conditions, the
stationary thermocapillary convection is stable.

As was mentioned in Introduction, the vast amount of
papers devoted to Marangoni convection is focused on a
rather simple case of a flat fluid films. Our previous paper
on thermocapillary convection within isotropic droplets in
FSSFs exploited the same approximation. The formalism of
the stream functions which we successfully applied to study
the Marangoni convection in ellipsoidal drops provides a
unique possibility to investigate a crossover from the lenslike
drop to a flat fluid layer. This is made by reducing of the
droplet ellipticity ratio ξ0 that leads in the limit ξ0 → 0 to
the case of a flat fluid film. The phase diagram for Mac as a
function of the ellipticity parameter ξ0 for different values of
the relative heat conductivity κ is shown in Fig. 22. The mod-
ulus of the obtained value Mac ≈ −50 for κ → 0 matches
well with the case Mac ∼ 50 described in the literature for

FIG. 22. Phase diagram for the critical Marangoni number Mac

as a function of the ellipticity ratio ξ0 for different values of the
relative heat conductivity κ .

FIG. 23. Critical Marangoni flows in the ellipsoidal drop (ξ0 =
0.1, κ = 0.2, Mac = −81.2). The dashed and solid lines indicate the
opposite direction of the fluid velocity in the neighboring vortices.

a flat fluid film placed on a heat-insulating hard substrate
with the sticking conditions [8]. The results of calculations
of streamlines and velocities for the negative Mac values are
presented in Figs. 23–25. According to our calculations with
diminishing of the ellipticity ratio ξ0 the amount of vortices
in the direction of the axial drop cross section progressively
increases (see Figs. 23–25). The number of basic functions,
which is necessary for an accurate convergence of the calcu-
lation procedure, is estimated as Nr ∼ ξ−1

0 . These calculations
are in good agreement with the results of our previous paper
[47], where the formation of about six convection cells (rolls)
along the lateral drop size was predicted.

E. Numerical experiment

To get further insight about Marangoni flows within ellip-
soidal isotropic droplets embedded in FSSFs we carried out
the numerical calculations, which took the real shape of the
drops and their material and transport properties into account.
The details of the numerical experiment are presented in Ap-
pendix G. In short, to simulate the thermocapillary flow within
the drops we used the cylindrical coordinates (r, φ, z). In the
problem under consideration, the transfer of mass and heat
does not depend on the angular coordinate φ. This allows us
to consider the hydrodynamic problem as a two-dimensional
and proceed with the numerical calculations in the coordinates
(r, z). In such formulation, the geometry of the lenslike droplet
is described by an ellipse with a semimajor axis a = Rb, and
a semiminor axis b = 0.5H (see Table I).

The hydrodynamic flows in the droplet are described as
follows. The Navier-Stokes and the continuity equations for
the incompressible fluid, as well as the heat transfer equa-
tion are written in the cylindrical coordinates. The stream
function ψ in this case satisfies the relations ∂ψ/∂z = ru
and ∂ψ/∂r = −rv, where u and v are the horizontal and the
vertical components of the liquid flow velocity, respectively.
The vorticity is introduced in cylindrical coordinates as ω =
∂u/∂z − ∂v/∂r. At the end, the mathematical model consists
of three equations, which are solved with respect to three

FIG. 24. Critical Marangoni flows in the ellipsoidal drop (ξ0 =
0.05, κ = 0.2, Mac = −75.9). The dashed and solid lines indi-
cate the opposite direction of the fluid velocity in the neighboring
vortices.
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FIG. 25. Streamlines and temperature distribution (the logarith-
mic color scale for the temperature is characterized by more saturated
light purple in hot areas) for the critical Marangoni flows in the
ellipsoidal drop (ξ0 = 0.05, κ = 0.2, Mac = −75.9). The dashed and
solid lines indicate the opposite direction of the fluid velocity in the
neighboring vortices.

variables: ω, ψ and temperature T . The above equations are
accompanied by a set of initial and boundary conditions, also
written in cylindrical coordinates.

To solve numerically the Marangoni convection prob-
lem the commercial package FlexPDE Professional Version
7.18/W64 3D was used [75]. The mathematical algorithm is
based on the Galerkin finite element method with application
of the modified iterative Newton-Raphson method [76]. The
time intervals in the program are generated automatically in
order to minimize the calculation error. To secure the solution
reliability the special attention to the mesh convergence was
paid (see Appendix G).

The calculations were performed for the time tmax = 20 trel,
Ma = 1 and correspond to the stationary regime (trel is the
heat relaxation time in the air due to the thermal conductiv-
ity; see Appendix G). This time is enough for the system to
reach the stationary state. The later is achieved due to a fact
that the thermal conductivity dominates over the convective
heat transfer for the considered values of the material and
geometric parameters, of the drops and their environment.
According to numerical calculations, the maximum velocity
of the convective transfer is vmax ≈ 10−5 m/s. Then the con-
vective transfer time can be evaluated as tconv = Rb/vmax ≈
10 s. To estimate the heat transfer time determined by thermal
conductivity we use the value of the fluid thermal conduc-
tivity χ ≈ 4 × 10−8 m2/s to obtain the corresponding time
tcond = RbH/χ ≈ 0.05 s. It is readily seen that tcond � tconv,
thus confirming our initial claim of predominance of the ther-

mal conductivity. The results of the numerical calculations
presented below are obtained for the time t = tmax.

In our numerical calculations we considered the case for
which the smectic shell (substrate) is in contact with the lower
surface of isotropic droplet, while the upper interface is free
(Figs. 1 and 4). This situation is realized for Tup > Tdn (see
Sec. II B), so the values Tup = 334 K and Tdn = 324 K were
chosen for further calculations. By default, the Marangoni
boundary condition (Appendix G) was used for the free (up-
per) surface of the droplet. Contrary to this, the boundary
no-slip (sticking) condition (Appendix G) was used for the
case the smectic shell (substrate) was in immediate contact
with the lower surface of a drop and for the cut end of the fluid
lens. The corresponding temperature distribution is shown in
Fig. 26. In accordance with our calculations the shape of the
droplet does not show any significant effect on the temperature
distribution in the droplet for the values of the parameters
used. In Fig. 27 the distribution of the fluid flow velocity in
droplets is shown for different types of droplet shapes.

According to Fig. 26, the temperature decreases along the
upper (hot) surface of the droplet and conversely increases
at its lower (cold) surface when going in the direction from
the symmetry axis to the edge of the droplet along the radial
coordinate r. Again, there are no noticeable quantitative dif-
ferences in the temperature distribution along the radius r for
the different shapes of the droplet.

The fluid flow circulating in the (r, z) plane is directed
clockwise in the case under consideration (Fig. 27). Because
Tup > Tdn, the Marangoni flow is directed along the free sur-
face of the droplet from the hot area to the cold area, (i.e.,
from the area of the low surface tension to the area of the high
surface tension). It is important that the no-slip (sticking) con-
dition at the boundary between the smectic and the isotropic
liquid slows down the thermocapillary flow.

The corresponding stream functions are presented in
Fig. 28 for several consecutive time points. There are no
qualitative differences in the plots of the stream function
ψ between different time periods. We observe one axially
symmetric vortex in the ellipsoidal drop that is in agreement
with our analytical results (Figs. 16–19). The quantitative
differences are due to a fact that the flow velocity gradually

TABLE I. Problem parameters.

Symbol Parameter Value [unit of measurement]

κ Thermal conductivity of liquid 0.12 [W/(mK)]
κa Thermal conductivity of air 0.026 [W/(mK)]
cp Specific heat capacity of liquid 2500 [J/(kg K)]
ca Specific heat capacity of air 1000 [J/(kg K)]
η Dynamic viscosity 1.4 × 10−2 [s Pa]
ρ Liquid density 1200 [kg/m3]
ρa Air density 1.2 [kg/m3]
ς Tension temperature coefficient 1.0 × 10−4 [N/(m K)]
H Droplet height 20 [μm]
Hout Domain height 1 [mm]
Rb Droplet radius 100 [μm]
Rout Domain radius 1 [mm]
Tdn Bottom plate temperature 324 [K]
Tup Top plate temperature 334 [K]
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FIG. 26. Temperature distribution within the isotropic droplets;
the smectic shell is in contact with the bottom surface of isotropic
droplet (a, b, c). The droplet shapes: ellipse (a), a biconvex lens (b),
and a lens with the cut end at the edge (c).

increases until it reaches a stationary state. We conclude that
numerical results for Marangoni convection within ellipsoidal
droplets in FSSFs are in good accordance with that obtained
by analytical methods in Sec. IV.

V. DISCUSSION

We have developed a hydrodynamic theory of the
Marangoni flow in the axially symmetric ellipsoidal fluid
droplets on the basis of the formalism of the Stokes stream
functions. This approach was applied to ellipsoidal isotropic
drops spontaneously formed in overheated FSSFs and to
droplets of insoluble fluids (of the type of oil or glycerol)
deposited on it. The asymmetric geometry for which the upper
drop interface is connected with the air, while its bottom sur-

FIG. 27. Distribution of the fluid flow velocity within the
isotropic droplets; the smectic shell is in contact with the bottom free
surface of isotropic droplet (a, b, c). The droplet shapes: ellipse (a),
biconvex lens (b), and a lens with the cut end at the edge (c).

face is in contact with the static smectic layering is considered.
This situation can be implemented experimentally when the
temperature of the upper side of the film is higher than the
lower one. Due to the nonuniform temperature distribution
the tangential Marangoni force always exists at the free drop
surface. This leads to a fluid flow along its curved interface
which is possible for the arbitrarily small Marangoni num-
bers. The thermocapillary flow occurs along the free surface
of the droplet from the hot area to the cold one, leading to
the formation of the individual torroidal-like vortices within
the drop. Our calculations indicate that the no-slip (sticking)
condition at the boundary between the smectic and isotropic
fluid slows down the circulatory Marangoni flow.

There is another item related to the implementation of no-
slip (sticking) boundary conditions at the interface between
the fluid and smectic substrate. In Sec. II B we have shown
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FIG. 28. Stream functions for the ellipsoidal drop with a smectic film on the bottom free surface: (a) t = 0.1trel, (b) t = 0.5trel, and (c) t =
20trel.

that for the model of a fluid drop and its environment used
in our theoretical analysis the tangential component of the
smectic elastic force compensates the Marangoni force at the
fluid-smectic interface. This effectively hinders the flow of
the smectic material and leads to sticking of fluid motion at
the border with a smectic shell. In principle, there is another
possibility for the smectic motion, so called, permeation, i.e.,
the flow of the material through the smectic layers [45,57],
which is usually disregarded due to its low velocity. Our
estimations actually indicate the case; in the limit of small
value of the permeation constant λp � 10−16 m2 Pa−1 s−1

the permeation velocity can be written as vperm ∼ DT A T −1

[45,57], where DT and A are the thermodiffusion coefficient
and the temperature gradient across the drop, respectively.
Using the typical values DT ∼ 10−10 m2s−1, A = 104 K m−1,
and T = 300 K we obtain vperm ∼ 10−9 m s−1. According to
our calculations, the maximum velocity of the convection flow
is vmax ∼ 10−5– 10−4 m s−1. Thus, vperm � vmax, confirming
our initial assertion that permeation process in smectics is
too slow. We conclude that permeation in smectics cannot
provide the Marangoni transport at the fluid-smectic interface
confirming our assumption of the sticking conditions at this
interface.

One of the lines of our research is to study the stability
of the stationary solutions for the thermocapillary convection
within ellipsoidal fluid droplets (Sec. IV D). According to
our results, the obtained stationary solutions for the fluid drop
with the sticking boundary conditions at the bottom interface
and Tdn < Tup are stable. This result remains valid upon a
crossover from the ellipsoidal droplets to a flat fluid layer.
Such a crossover can be made within the formalism of the

stream functions by reducing the droplet ellipticity ratio ξ0 to
zero value. However, the stability analysis indicates that the
system starts to behave differently for the opposite direction
of temperature gradient, Tdn > Tup. We reveal that the crit-
ical thermocapillary motion (with the positive Mac values)
develops both in the ellipsoidal drop and in a flat liquid layer
only when the hot fluid volume from the bottom surface with
the sticking properties flows in the direction of the cold free
surface (compare with [8,47]).

The predictions of our hydrodynamic theory can be
checked using various experimental set ups. The experiments
can be carried out both in the laboratory on the Earth and
under microgravity conditions on the International Space
Station. The geometry of the experiment with ellipsoidal fluid
drops embedded in smectic films with asymmetric boundary
conditions implies that the heat transfer occurs from the hot
plate positioned at the upper side of the drop to the cold one
placed at its bottom side. This corresponds to the positive
direction of the temperature gradient (Tup > Tdn) (Fig. 4) and
ensures that the buoyancy effects related to the convection in
the surrounding air are absent.

The most important quantitative characteristic of the cir-
culating Marangoni flow in the drops that can be directly
measured in experiment is time period, �t , i.e., the time
interval required for the movement along the closed stream
line. The time period can be defined as

�t =
∮

dl

v
, (84)

where v is a velocity modulus along the trajectory of the flow
and dl is a tangential element of the curved trajectory, which
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is determined as dli =
√

(xi+1 − xi )2 + (zi+1 − zi)2, where the
set of points {(xi, zi )} determines the velocity distribution
within the drops and, accordingly, the streamlines. The mag-
nitude of the circulation period �t crucially depends on the
values of Marangoni number, Ma, and the drop ellipticity
ratio. As the flow velocity increases upon the Ma increase,
the corresponding time period delta �t diminishes. On the
other hand, for the fixed values of Ma (i.e., of the temperature
gradient across the drop) the length of the flattened circular
trajectory increases upon the ellipticity ratio ξ0 decrease. This
leads to increase of the period of circulation �t . The calcu-
lated values of �t for the typical geometrical and material
[72] parameters of the fluid drop are shown in the captions to
Figs. 16 and 18. For example, for the velocity patterns shown
in Fig. 18 the periods of circulation constitute 1.69, 1.95,
2.575, and 6.11 s counted off, respectively, from the center
of vortex to its periphery. These time intervals are pretty large
and can be registered by tracking the circulatory movement of
the properly selected tracers within the drop.

VI. SUMMARY

In this work, we present a quantitative description of
Marangoni flows in ellipsoidal isotropic droplets of different
origin embedded in free-standing smectic films. The convec-
tion inside ellipsoidal fluid drops appears to be very different
from the classical Marangoni convection in the systems with a
simple flat geometry. In contrast to the flat fluid films, the me-
chanical equilibrium within drops is absent due to their curved
shape. Because of the nonuniform temperature distribution
the tangential Marangoni force activates a fluid flow along
its curved interface, making the thermocapillary flow within
the drop thresholdless. To describe the vortex formation in
ellipsoidal isotropic droplets we generalized the method of
the Stokes stream functions to the case of the curved fluid
interfaces. It was shown that the general solution for the
stream function can be represented as a sum over the limited
amount of the basic functions which satisfy the boundary
conditions of the problem and reflect the properties of the real
physical fields. Moreover, we developed the original operator
method for the solution of differential equations for the stream
functions.

In general, the basic stream functions satisfy the symme-
try of the problem and the condition of the absence of a
fluid flow through the external drop boundary. Formally, this
corresponds to the symmetrical case. As well we developed
the straight method of obtaining the basic set of the stream
functions describing thermocapillary flow in the drop for the
asymmetric boundary conditions. In this case, the upper drop
interface is connected with the air, while the bottom surface
is in contact with the static smectic layers, so-called sticking
or no-slip boundary conditions. To solve such a problem we
represented the stream functions and the corresponding veloc-
ity components as a set of odd and even functions. The idea
was to combine pairs of such functions to generate the basic
set of the stream functions satisfying the sticking conditions
at the bottom boundary of the drop. It is important that the
basic stream functions (velocities) derived in this way provide
a continuous variation through the points of contact between
free and bounded by smectic layers surfaces of the drop. Next,

we derived the distribution of temperature deviations inside
the drop and in the ambient air. This allowed us, first, to
resolve the Marangony boundary condition, and then to find
the general solution for the stream functions and flow ve-
locities, describing the stationary thermocapillary convection
inside the drop with the actual temperature field within it taken
into account. As a result, the general stream function and
velocity fields, as well as the temperature distribution within
ellipsoidal drops, were derived in the stationary regime for the
fixed Marangoni numbers as a function of the droplet elliptic-
ity ratio, and for the different values of the heat conductivity of
the liquid crystal and air. In addition, numerical hydrodynamic
calculations of the thermocapillary motion in ellipsoidal drops
with asymmetric boundary conditions were carried out. Both
the analytical and numerical simulations describe the axially
symmetric circulatory convection flow induced by the thermo-
capillary effect at the droplet-free surface.

Finally, we note that the developed theory of Marangoni
flow in droplets is quite general and, thus, can be applied to a
wide variety of thermocapillary convection problems in fluid
drops of the ellipsoidal form. As the first and foremost task we
consider the Marangoni flows in isotropic ellipsoidal droplets
suspended on the circular frame. The mechanical stability of
such drops is determined by the sticking conditions at the
solid bounding frame. The isotropic phase of various liquid
crystal compounds, as well as the simple liquids of the type
of glycerol or silicone oil can be considered for experimental
and theoretical investigations. These droplets have a shape
of the spherical segments (circular flat lenses), the height of
which can vary relative to their lateral dimension by chang-
ing the amount of the material. As the second problem we
indicate ellipsoidal nematic droplets spontaneously formed in
overheated FSSFs. In this case, the FSSF of the appropriate
material should be heated above the bulk smectic-nematic
transition. There are also examples of the formation of fluid
droplets of anisometric shape in various colloidal suspensions
and among anisotropic fluids placed on a substrate with an
ultra low wetting properties. Of special interest are also the
thermocapillary processes in phospholipid membranes with
various fluid inclusions, which can mimic the reaction of the
cell membranes to the small temperature gradients.

ACKNOWLEDGMENTS

We are grateful to Vladimir V. Lebedev, Efim I. Kats, Igor
V. Kolokolov, and Sergey S. Vergeles for fruitful discussions.
We acknowledge support from the Russian Science Founda-
tion (Grant No. 18-12-00108, general theory of Marangoni
convection in isotropic drops embedded in free-standing films
and corresponding numerical experiments). The work on the
derivation of the stress tensor and expressions for the tan-
gential forces in ellipsoidal coordinates and the elaboration
of thermocapillary experiments was supported by the Rus-
sian Ministry of Science and Higher Education within the
corresponding state assignments of FSRC “Crystallography
and Photonics” RAS. The work on the problem statement,
operator method and solving the problem of the tempera-
ture distribution within the ellipsoidal isotropic drops was
supported by the Russian Ministry of Science and Higher

055105-19



E. S. PIKINA et al. PHYSICAL REVIEW E 106, 055105 (2022)

Education within the corresponding state assignments No.
0029-2019-0003.

E.S.P.: conceived the presented idea, calculated the
Marangoni convection, solved the problem of the temperature
distribution, discussed the results, wrote the final manuscript.
M.A.S.: calculated the Marangoni convection, developed the
original operator method for calculation of the stream func-
tions, discussed the results. K.S.K.: made the numerical
experiments, discussed the results. B.I.O: conceived of the
presented idea, presentation of the results of the calculations,
and elaboration of the thermocapillary experiments, discussed
the results, and wrote the final manuscript. S.A.P.: conceived
of the presented idea, worked on the derivation of the stress
tensor and expressions for the tangential forces in ellipsoidal
coordinates, contributed to the calculations, discussed the re-
sults. All authors read and agreed on the final text of the paper.

APPENDIX A: ELLIPSOIDAL COORDINATES AND
DIFFERENTIATION OF UNIT VECTORS. BOUNDARY

CONDITIONS

There are various methods of introducing of the ellipsoidal
coordinates. The conventional approach consists in imple-
mentation of orthogonal coordinates α, β, ϕ which are useful
to solve certain problems. The every point of space is de-
scribed by a triple of numbers (α, β, ϕ ), which correspond to
an unique point in the Cartesian coordinates (x, y, z). The cor-
responding orthogonal system of surfaces consists of oblate
spheroids formed by the surfaces of constant α (α = α0 is the
spheroid of the given boundary), one-sheeted hyperboloids of
revolution of constant β, and planes of azimuthal angle ϕ =
const [54,56], (compare with Fig. 2).

To solve the differential equations for the stream func-
tions and to simplify the corresponding boundary conditions
we prefer to use somewhat different representation of the
orthogonal oblate spheroidal coordinates: ξ = sinh[α], u =
cos[β], dβ = −du/ sin[β], and ϕ. This corresponds to the
new oblate spheroidal coordinates u, ξ , ϕ and the new right-
hand triple of unit vectors (eu, eξ , eϕ ).

Let us define also the transformation relation for the differ-
ential operator ∇,

ei
μ∂i = 1

hμ
∂μ, (A1)

where indices i, μ correspond to Cartesian orthogonal coordi-
nates and to oblate spheroidal coordinates, respectively; ei

μ is
the μ component of the unit vector in Cartesian coordinates.

Following Happel and Brenner, [56], we write the compo-
nents of the unit vectors in oblate spheroidal coordinates and
define the rule of differentiation of these unit vectors:

eμ = 1

hμ
∂μxiei. (A2)

For certain derivations we need to know the projections of
the unit vectors on the z axis:

(ez, ξ̂ ) = 1

hξ

∂ξ z = c u

hξ

, (A3)

(ez, û) = 1

hu
∂uz = c ξ

hu
, (A4)

and on the radial axis:

(ex, ξ̂ ) = 1

hξ

∂ξ x = ξ
√

1 − u2√
ξ 2 + u2

cos[ϕ], (A5)

(ex, û) = 1

hu
∂ux = −u

√
1 + ξ 2√

ξ 2 + u2
cos[ϕ]. (A6)

The hybrid boundary conditions for the balance of tangen-
tial forces are given by the expressions

σ̂μα nα = ek
μei

ασ̂ik nα = η

[
ei
μ

∂α

hα

(
ei
νvν

)+ ek
α

∂μ

hμ

(
ek
νvν

)]
nα

= 1

hμ
∂μγ (top surface), (A7)

σ̂μα nα = 0 (bottom surface). (A8)

Because of ei
μei

α = δμα , ei
μek

μ = δik , and taking Eq. (A1) into
account, the components of the unit vectors ei

α in oblate
spheroidal coordinates can be calculated using Eq. (A2).

APPENDIX B: STRAIGHT DERIVATION
OF THE STREAM FUNCTIONS

In order to find the solution of Eq. (40) in ellipsoidal
coordinates in terms of the stream functions it is important to
know explicitly the properties of these functions. According
to the definition of the stream function, ψ = 0 along the z
axis, i.e., at u = 1 or u = −1. The solutions for ψ can be
either symmetrical or asymmetrical with respect to variable u.
This means that all solutions should be proportional either to
(1 − u2) or to u (1 − u2) .

Since ψ (u = ±1) = 0, any stream function can be ex-
panded over a set of functions F = ∫ u

−1 Pn[u′] du′ = (Pn+1 −
Pn−1) (2n + 1)−1, i.e., ψ =∑n Fn(u)gn(ξ ), where gn(ξ ) is
an unknown function of ψ . According to the properties of
Legendre polynomials, in order to find solutions for ψ with
the accuracy up to u4 or u5 we should combine the solutions
for stream function either symmetrical,

ψev =
∫ u

−1
duP3[u]g3[ξ ] +

∫ u

−1
duP1[u]g1[ξ ], (B1)

or asymmetrical with respect to u,

ψodd =
∫ u

−1
duP4[u]g4[ξ ] +

∫ u

−1
duP2[u]g2[ξ ]. (B2)

In order to find the solutions for ψ with the higher accuracy
up to u2m or u2m+1 for m > 2, we should write the solution in
the form of a sum of linearly independent terms proportional
to integrals over Legendre polynomials of the higher order.
For example, for symmetrical functions:

ψ (2m+1)
ev =

∫ u

−1
duP2m+1[u]g2m+1[ξ ]

+ · · · +
∫ u

−1
duP3[u]g3[ξ ] +

∫ u

−1
duP1[u]g1[ξ ].

(B3)

In accordance with Eqs. (B1)–(B3), the substitution for
the stream function ψ = f [u] g[ξ ], can be used. Then the
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equation �ψ = 0 takes the form

Ê
2
ψ = 1

c2 (u2 + ξ 2)

[
f (u) (1 + ξ 2) ∂2

ξ g(ξ )

+ g(ξ ) (1 − u2) ∂2
u f (u)

]
= 1

c2 (u2 + ξ 2)
Y [u, ξ ]. (B4)

Accordingly, Eq. (33) can be rewritten as

c4(ξ 2 + u2)2Ê
4
ψ

= (1 + ξ 2)

{[
8ξ 2

(u2 + ξ 2)2
− 2

(u2 + ξ 2)

]
Y

− 2
2ξ

(u2 + ξ 2)
∂ξ Y + ∂2

ξ Y

}
+ (1 − u2)

{[
8u2

(u2 + ξ 2)2

− 2

(u2 + ξ 2)

]
Y − 2

2u

(u2 + ξ 2)
∂uY + ∂2

u Y

}
. (B5)

It is instructive to find the solutions of Eq. (B4) for the case
(B2). For ψodd, Eq. (B4) takes the form

Ê
2
ψodd = u2 − 1

u2 + ξ 2

(
(ξ 2 + 1)g′′

1 − 2g1

2︸ ︷︷ ︸
G1[ξ ]

+ (1 + ξ 2)g′′
3 − 12g3

8︸ ︷︷ ︸
G3[ξ ]

(5u2 − 1)

)
. (B6)

In turn, Eq. (B5) can be written as

Ê
4
ψ = u2 − 1

(u2 + ξ 2)3
(u4 Ψ4 + u2Ψ2 + Ψ0) = 0, (B7)

where the functions Ψ2, Ψ4, and Ψ0 are conjugated with
{u4, u2, 1}, respectively, and can be represented as

Ψ4[ξ ] = 5(1 + ξ 2)∂2
ξ G3 − 10G3 = 0 , (B8)

Ψ2[ξ ] = (1 + ξ 2)
(− 20ξ 3∂ξ G3 − ∂2

ξ G3 + 5ξ 2∂2
ξ G3

)
− 30ξ 2G3 − 10G3 + (1 + ξ 2)∂2

ξ G1 = 0, (B9)

Ψ0[ξ ] = (1 + ξ 2)
[
ξ 2
(
∂2
ξ G1 − ∂2

ξ G3
)− 4ξ (∂ξ G1 − ∂ξ G3)

]
+ 4 (1 + ξ 2)G1 − 4G3 + 6ξ 2G3 = 0. (B10)

Each of expressions (B8)–(B10) is equal to zero since the
components of {u4, u2, 1} are linearly independent. This al-
lows us to obtain the triple set of corresponding differential
equations. After solving Eqs. (B8)–(B10) and subsequent sub-
stitution of all boundary and regularity conditions we obtain
the expression for ψodd.

APPENDIX C: DERIVATION OF THE BASIC FUNCTIONS
OF LAPLACE EQUATION

The Laplace equation for the temperature distribution T
within the drop in the oblate spheroid coordinates ξ, u, ϕ reads

�T = c

hξ huhϕ

[
∂ξ (1 + ξ 2)∂ξ + ∂u(1 − u2)∂u

+ (ξ 2 + u2)∂2
ϕ

]
T = 0. (C1)

To solve this equation the separation of the variables
is used: T [ξ, u, ϕ] = �[ξ ]U [u]�[ϕ] [54–56], where
�[ξ ],U [u],�[ϕ] are the functions of one single variable
ξ, u, or ϕ, respectively; � = eimϕ for m ∈ Z due to continuity
on ϕ ∈ T 1. Due to an axial symmetry of the system m = 0,
and for the function U we obtain the Legendre equation.
As a result, the constant of separation is n(n + 1) and
U = Un = Pn[u], where Pn[u] is a Legendre polynomial of
the first kind (the temperature T is supposed to be regular for
all u). In turn, for �, we obtain the equation

∂ξ (1 + ξ 2)∂ξ�n − n(n + 1)�n = 0, (C2)

the first solution of which, �(1)
n [ξ ], is the Legendre polynomial

of the first kind of the imaginary argument Pn[Iξ ] [54]. The
exclusion of the imaginary part leads to the simple transfor-
mation rules:

�
(1)
2n [ξ ] = P2n[iξ ], (C3)

�
(1)
2n+1[ξ ] = (−i)P2n+1[iξ ]. (C4)

On the basis of these rules, we can use for �(1)
n [ξ ] the trans-

formed recurrent relations for Legendre polynomials with the
argument z = iξ , in particular

(1 − z2)
dPn[z]

dz
= n Pn−1[z] − n z Pn[z]. (C5)

The latter can be transformed to

(1 + ξ 2)
d�

(1)
2n [ξ ]

dξ
= − 2 n �

(1)
2n−1[ξ ] + 2 n ξ �

(1)
2n [ξ ], (C6)

(1 + ξ 2)
d�

(1)
2n+1[ξ ]

dξ
= (2n + 1) �

(1)
2n [ξ ]

+ (2n + 1) ξ �
(1)
2n+1[ξ ]. (C7)

Equation (C7) is a certain representation of the Legendre
polynomial of the second kind. By disposing of the imaginary
unit, we obtain directly �

(1)
0 [ξ ] = 1, �

(2)
0 [ξ ] = arctan[ξ ],

�
(1)
1 [ξ ] = ξ, �

(2)
1 [ξ ] = ξ arctan[ξ ] + 1; other solutions for

�n (n > 2) are obtained via the recurrent relation

�n+1 = (−1)n 2n + 1

n + 1
ξ �n − n

n + 1
�n−1. (C8)

Using the recurrent relation (C8) we can write the succes-
sive expressions of �n[ξ ] for various n:

�
(1)
0 [ξ ] = 1, �

(2)
0 [ξ ] = arctan[ξ ],

�
(1)
1 [ξ ] = ξ, �

(2)
1 [ξ ] = ξ arctan[ξ ] + 1,

�
(1)
2 [ξ ] = −1

2
− 3ξ 2

2
,

�
(2)
2 [ξ ] = −arctan[ξ ]

2
− 3

2
ξ (1 + ξ arctan[ξ ]), (C9)

etc.
To find the temperature distribution in the air it is con-

venient to use the linear combinations of �(1,2)
n , damped at
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ξ → +∞, designated below as �(a)
n :

�
(a)
0 = − arctan[ξ ] + π

2
,

�
(a)
1 = ξ arctan[ξ ] − πξ

2
− 1, (C10)

�
(a)
2 = 3ξ (2ξ arctan[ξ ] − πξ + 2)

4
+ arctan[ξ ]

2
− π

4
,

etc.

APPENDIX D: SOME ALGEBRAIC RELATIONS

We derive here some algebraic relations which are useful
in calculation of the ψ functions.

Fn =
∫ u

−1
Pn[u′] du′ = Pn+1 − Pn−1

2n + 1
. (D1)

After multiplying of the both sides of Eq. (D1) by u we
obtain

uFn = n + 2

2n + 1
Fn+1 + n − 1

2n + 1
Fn−1. (D2)

After doing this for a second time we have

u2Fn = (n + 2)(n + 3)

(2n + 1)(2n + 3)
Fn+2 +

[
n(n + 2)

(2n + 1)(2n + 3)

+ (n − 1)(n + 1)

(2n + 1)(2n − 1)

]
Fn + (n − 1)(n − 2)

(2n + 1)(2n − 1)
Fn−2.

(D3)

For the derivation of the temperature distribution within a
drop it is useful to know the following equation:

u∂uFn = uPn = n + 1

2n + 1
Pn+1 + n

2n + 1
Pn−1. (D4)

To calculate the certain boundary conditions the following
equations might be useful:

Fik =
∫ 1

−1
FiFk

du

1 − u2
= δik

2

i(i + 1)(2i + 1)
, (D5)

∂uPn = n

1 − u2
(Pn−1 − uPn) = n

1 − u2

n + 1

2n + 1
(Pn−1 − Pn+1)

= −n(n + 1)

1 − u2
Fn. (D6)

APPENDIX E: DERIVATION OF STREAM FUNCTIONS

We introduce a number of operators which considerably
simplify the calculations of the stream functions:

P̂ = ∂u(1 − u2)∂u, P̂Pn = −n(n + 1)Pn, (E1)

F̂ = (1 − u2)∂2
u , F̂Fn = −n(n + 1)Fn, (E2)

�̂ = ∂ξ (1 + ξ 2)∂ξ , �̂�n = n(n + 1)�n, (E3)

X̂ = (1 + ξ 2)∂2
ξ , X̂Xn = n(n + 1)Xn, (E4)

where the functions Xn are introduced similarly to Fn,

Xn = �n+1 − �n−1

2n + 1
. (E5)

Since ψ (u = ±1) = 0, any stream function can be ex-
panded over a set of F , i.e. ψ =∑n Fn[u]gn[ξ ], where gn[ξ ]
is an unknown function of ψ . The operator Ê2 acts on the
monom Fngn as

Ê2Fngn = X̂ + F̂
ξ 2 + u2

(Fngn)

= 1

ξ 2 + u2
Fn [X̂gn − n(n + 1)gn]︸ ︷︷ ︸

Gn

, (E6)

where we define an unknown function Gn[ξ ]. Let us note that
the kernel of the operator Ê2 is {XnFn} [see Eqs. (E2) and
(E4)]. In turn, for the action of the operator Ê4 on the monom
Fngn we obtain

Ê4Fngn = Ê2 1

u2 + ξ 2
FnGn

= 1

ξ 2 + u2
(X̂ + F̂ )

1

u2 + ξ 2
FnGn. (E7)

Let us derive the commutator[
F̂ 1

ξ 2 + u2

]
=
[

(1 − u2)∂2
u ,

1

u2 + ξ 2

]
= (1 − u2)

[
∂2

u ,
1

ξ 2 + u2

]
= (1 − u2)

[−2(ξ 2 + u2) + 8u2

(ξ 2 + u2)3
+ −4u

(ξ 2 + u2)2
∂u

]
,

(E8)

with the help of which the required expression (E7) reads

Ê4Fngn = 1

(ξ 2 + u2)3
{6(ξ 2 − u2) + 4 − 4[(1 − u2)u∂u

+ (1 + ξ 2)ξ∂ξ ] + (ξ 2 + u2)[X̂ − n(n + 1)]}FnGn.

(E9)

In order to expand expression (E9) over Fm we should know
how the operator u(1 − u2)∂u acts on this function:

u(1 − u2)∂uFn

= − (n + 1)(n + 2)(n + 3)

(2n + 1)(2n + 3)
Fn+2

+
[
− n(n + 1)(n + 2)

(2n + 1)(2n + 3)
+ n(n + 1)(n − 1)

(2n + 1)(2n − 1)

]
Fn

+ n(n − 1)(n − 2)

(2n + 1)(2n − 1)
Fn−2. (E10)

Finally, we arrive at

(ξ 2 + u2)3Ê4Fngn = Fn+2 ÛnGn + Fn ŜnGn + Fn−2 D̂nGn,

(E11)

where

Ûn = (n + 2)(n + 3)

(2n + 1)(2n + 3)
[X̂ − (n − 2)(n − 1)], (E12)

Ŝn = 6ξ 2 + 4 − 4ξ (1 + ξ 2)∂ξ + ξ 2[X̂ − n(n + 1)]

+ n(n + 2)

(2n + 1)(2n + 3)
[X̂ − (n − 2)(n − 1)]
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+ (n − 1)(n + 1)

(2n + 1)(2n − 1)
[X̂ − (n + 2)(n + 3)], (E13)

D̂n = (n − 1)(n − 2)

(2n + 1)(2n − 1)
[X̂ − (n + 2)(n + 3)]. (E14)

Let us consider the representation ψ
(p)
N = FN gN +

FN−2gN−2, (N > 2), for the solutions of Eq. (40) for ψ , which
does not include the kernel of the operator Ê2. Then it follows
from Eqs. (E4) and (E12) that for the contribution propor-
tional to FN+2 in Eq. (E11) to be equal to zero, the following
equation should be fulfilled:

GN = XN−2. (E15)

In this case to obtain the zero coefficient at FN in Eq. (E11)
the following equality should hold:

−ÛN−2GN−2 = ŜNXN−2. (E16)

In turn, using Eqs. (C3)–(C8), (E4), and (E13), we find

ŜNXN−2=
{

6ξ 2 + 4 − 4ξ (1 + ξ 2)∂ξ + ξ 2[X̂ − N (N + 1)]

+ (N − 1)(N + 1)

(2N + 1)(2N − 1)
[X̂−(N + 2)(N + 3)]

}
XN−2

= 4 N (N + 1)

(2N − 1)
XN . (E17)

By means of simple algebra, we obtain from Eq. (E16),
using Eqs. (E12) and (E17) [X̂ − (N − 4)(N − 3)]GN−2 =
−4(2N − 3)XN , which leads to

ĜN−2 = −XN . (E18)

After substitution of the expressions for GN , GN−2 [(E15) and
(E18)] in Eqs. (E11)–(E14) one can see that multiplier at FN−2

is equal to zero, D̂N−2GN−2 = 0, and D̂N GN = −ŜN−2GN−2.
This means that these terms cancel out each other in Eq. (E11).

Thus the final representation of the partial solution for the
stream function ψ

(p)
N>2 (i.e., ψN>2 without the contribution of

the kernel of operator Ê2) is

ψ
(p)
N>2 = FNXN−2 + FN−2XN . (E19)

Let us consider the partial solutions for ψ
(p)
N�2 separately:

N = 1: In this case ψ
(p)
1 = F1g1, in turn, D̂1 = 0, and

for the equality Û1G1 = 0 to be satisfied, the fulfillment of the
equality X̂G1 = 0 is necessary; at the same time Ŝ1G1 = 0 ⇒
G1 ∝ ξ, (X̂ − 2)g1 = ξ , that leads to the relation g1 ∝ ξ .

N = 2: In this case ψ
(p)
2 = F2g2, D̂2 = 0, X̂G2 =

0, Ŝ2G2 = 0 ⇒ G2 ∝ 1, (X̂ − 3)g2 = 1, i.e., g2 ∝ 1.
As a result, we arrive to the full solution of Eq. (40) for

the stream function ψ , which is a combination of the stream
functions ψ

(p)
1,2 , ψ

(p)(1,2)
N and of the kernel of operator Ê2:

ψ = c1ξF1 + c2F2 +
∑
N>2

c(1)
N

(
FNX (1)

N−2 + FN−2X (1)
N

)
+ c(2)

N

(
FNX (2)

N−2 + FN−2X (2)
N

)
+
∑
N�1

c(1)
NoX

(1)
N FN + c(2)

NKX
(2)
N FN . (E20)

For the problem under consideration we are interested in the
continuously differentiable (smooth) solutions for the stream
function inside an oblate spheroid. In accordance with the
general rule, for such solutions the same evenness over u
and ξ should be fulfilled (in this case the solution is auto-
matically regular at ξ = u = 0; see Sec. I A). This leads to
{c1, c2, c(2)

N , c(2)
NK} = 0.

Finally, the necessary smooth solution of Eq. (40) for the
stream function has the form

ψ =
∑
N>2

cN ψN , (E21)

where basic functions ψN can be written as

ψN = FN
(
X (1)

N−2 + cNK X (1)
N

)+ FN−2
(
X (1)

N + c̃NK X (1)
N−2

)
.

(E22)

In turn, the constants cNK, c̃NK can be found from the condi-
tion ψ (ξ = ξ0) = 0:

cNK = −X (1)
N−2(ξ0)

X (1)
N (ξ0)

, c̃NK = − X (1)
N (ξ0)

X (1)
N−2(ξ0)

= 1

cNK
. (E23)

The expression (E22) is used in our analytical calculations
[see, for example, Eq. (42)].

APPENDIX F: DETAILS OF CALCULATIONS OF THE
BASIC STREAM FUNCTIONS. GENERAL STATIONARY

SOLUTIONS AND CRITICAL VALUES OF MA

1. Derivation of the basic set {ψ j,st}
Here we present the details of derivation of the basic set

of the stream functions {ψ j,st } for the case of the sticking
boundary conditions at the bottom drop surface. In doing
so we use the basic stream functions ψ j[ξ, u] and introduce
the corresponding tangential velocity component vu, j[ξ, u] for
odd and even functions over the variable u: ψodd

j , ψev
j , vodd

u, j ,
vev

u, j . To build up the new basic stream functions which satisfy
the sticking boundary condition we are using the following
mathematical trick. We start with the expansion of the partial
derivative ∂ξψ

odd
l [ξ = ξ0, |u|] at ξ = ξ0 over the set of func-

tions ∂ξψ j[ξ = ξ0, u],

∂ξψ
odd
l [ξ = ξ0, |u|] =

∑
jeven

cl j ∂ξψ j[ξ = ξ0, u], (F1)

which leads to the equality

∂ξ

(
ψodd

l +
∑
jeven

c jl ψ j

)
︸ ︷︷ ︸

ψl,st

[ξ = ξ0] = 0 for u < 0. (F2)

The above equations provide us with a set of functions ψodd
l

which allows us to generate the full basis {ψ j,st }.
The desired basis provides equation ∂ξψ

odd
l [|u|]|ξ=ξ0 =

Ôstick
il Fi[|u|], where the matrix Ôstick

il describes the action
of the operator ∂ξ on the expansion of the stream function
ψodd

l [ξ, u] at ξ = ξ0. For the implementation of the above
procedure it is necessary to obtain an expansion of the sym-
metrized function Fi[|u|] over a set of functions {Fm}:

Fi[|u|] = kimFm. (F3)
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The corresponding coefficients kim can be calculated by means
of Eq. (D6), taking the orthogonality of the functions Fm in
the interval [−1, 1] into account [see Eq. (D1)]:

kim = Pi[0](Pm+1[0] − Pm−1[0])
m(m + 1)

i(i + 1) − m(m + 1)
. (F4)

In order to calculate the coefficients c jl in the expansion
of the stream function ψodd

l over the function ψeven
j it is nec-

essary to invert the matrix Ôstick
m j which leads to the following

equation: ∑
jeven

Ôstick
m j c jl =

∑
i

kimÔstick
il . (F5)

Equation (F5) can be solved explicitly because in accordance
with expression (42) the matrix Ôstick

m j is a lower triangular
matrix [see Eq. (E22)].

2. Validation of the condition n �= k

The next point that should be clarified is a justification
of the condition n �= k in Eq. (60). Let us note, that for the
response to the right part of Eqs. (57)–(59) the condition n �= k
is valid due to the explicit form of the solution for vz, as
each ψn from the obtained set {ψ j} has contributions of the
form FnXn and FnXn−2 + Fn−2Xn [see Eqs. (42)–(44) and
(C8)–(C10)]:

vz[ψ = FnXn] = − Pn+1�n−1 − Pn−1�n+1

2n + 1
, (F6)

vz[ψ =FnXn−2 + Fn−2Xn] = 2
Pn+1�n−1 − �n+1Pn−1

(2n − 3)(2n + 1)

− 2n − 1

(2n + 1)(2n − 3)
(Pn+1 �n−3 − Pn−3 �n+1)

− 2
Pn−1 �n−3 − Pn−3 �n−1

(2n + 1)(2n − 3)
. (F7)

In other words, in the right part of Eq. (59) the functions Pn(u)
are always multiplied by �

(1)
k with n �= k.

3. Derivation of the general stream function through
the basic set ψi,st

In order to derive the general stream function we need to
know the coefficients ci,st of the expansion of the full stream
function over basic functions ψi,st [see Eq. (69)] . We search
for the finite approximation of this solution. The series is
broken once the following convergence criterion is satisfied:
the norm of deviation from the required equation (74), given
by Eq. (75), should be minimal for the derived Nr-measured
set of ci,st ,

E [{c j,st }] = c j,st cm,st

∑
i,l

∫
Ôfree

i j FiÔ
free
lm Fl

du

1 − u2︸ ︷︷ ︸
M̂ jm

− 2 c j,st

∑
i

∫
Ôfree

i j Fi r[u]
du

1 − u2︸ ︷︷ ︸
R j

+
∫

(r[u])2 du

1 − u2
→ δE=0⇒M̂m jc

(opt)
j,st =Rm.

(F8)

In this way the optimal solution for a set {c j,st } can be calcu-
lated with the given accuracy.

4. Details of calculations of the critical Marangoni number Mac

In this subsection we present the details of finding of the
solution of Eq. (83). The standard method to obtain the solu-
tion of Eq. (83) is its reduction to the generalized eigenvalue
problem:

Â − MacB̂ =
(

M̂0 0
0 Î

)
− Mac

(
M̂1 −M̂2

Î 0

)
, (F9)

|V〉 =
( |cc〉

Mac|cc〉
)

→ (Â − MacB̂)|V〉 = 0, (F10)

where matrices M̂ (0), M̂ (1), M̂ (2) are determined in expression
(82) as interlinear (footnote) designations, and matrices Â, B̂
are obtained from Eq. (83) through M̂ (0), M̂ (1), M̂ (2), and |V〉
is the unknown eigenvector of the matrix (Â − MacB̂). Be-
cause the quadratic eigenvalue problem is well known, there
are reliable methods of its solution [74].

APPENDIX G: NUMERICAL SIMULATION

1. Formulation of the problem

An isotropic liquid droplet in the form of an oblate spheroid
formed in the free-standing smectic film (FSSF) is placed
inside a cylindrical chamber between two round plates with
different temperatures: Tup is the top plate temperature and Tdn

is the bottom plate temperature. The drop is in the ambient
air at the normal atmospheric pressure. A thin smectic film
of uniform thickness keeps the droplet in horizontal plane at
the same distance from each plate. The edges of the FSSF
are connected with a rigid frame which is attached to the side
wall of the cylindrical chamber. We assume that the geometry
of the droplet and film does not change over time. Since the
thickness of the smectic film is much less than the thickness of
the isotropic liquid drop, we do not take the thermal properties
of the FSSF into account.

The side wall of the chamber is made of the thermal insu-
lating material; therefore, we do not take into account the heat
exchange of our system with the environment. The transfer
of heat in the air occurs due to the thermal conductivity. The
convection and radiation are not taken into account. The heat
transfer in the droplet occurs due to the thermal conductivity
and convection. Since the thickness of the drop in the vertical
direction is much less than along the horizontal, we do not
take into account the flows in the bulk caused by the difference
in the density of the liquid due to the spatial inhomogeneity of
the temperature field. We consider only the thermocapillary
flow of liquid, which arises due to the dependence of the sur-
face tension of fluid on temperature. This type of convection
within the liquid is known as the Marangoni flow. The physi-
cal and geometric parameters of the problem are presented in
Table I. We take into account the linear dependence of the sur-
face tension of fluid on temperature, γ (T ) = γ0 − ς (T − T0),
where γ0 is the surface tension at the temperature T = T0.
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FIG. 29. Sketch for the problem statement: smectic film is at the
bottom drop surface.

2. Mathematical model

Let the z axis corresponds to the axis of symmetry of the
cylindrical chamber and of the droplet in the form of an oblate
spheroid (see Fig. 29). We use here the cylindrical coordinates
(r, ϕ, z). The zero of the z-coordinate axis is in the center of
the drop. The center of the droplet and the chamber in the
horizontal plane corresponds to the radial coordinate r = 0.
The maximum droplet radius in the horizontal plane and the
maximum droplet height in the vertical plane are Rb and
H , respectively. The height and the radius of the cylindrical
chamber are indicated as Hout and Rout (see Table I). In the
problem under consideration, the transfer of mass and heat
does not depend on the angular coordinate ϕ. This allows us
to consider our problem as a two-dimensional one in the coor-
dinates (r, z). In this formulation, the geometry of the droplet
is described by an ellipse with a semimajor axis a = Rb, and
a semiminor axis b = 0.5H .

The hydrodynamics within the droplet in the scheme un-
der discussion is described as follows. First, we introduce
the stream function ψ and the vorticity ω = ∂u/∂z − ∂v/∂r,
using the cylindrical coordinates [56]. Here u is the horizontal
component of the liquid flow velocity vector, and v is the
vertical component of this vector. Then, in accordance with
[25,56,70] the vorticity transfer equation can be written as
∂ω

∂t
+ u

∂ω

∂r
+ v

∂ω

∂z
− uω

r
=η

ρ

[
∂2ω

∂z2
+ 1

r

∂

∂r

(
r
∂ω

∂r

)
− ω

r2

]
,

(G1)
where u = (∂ψ/∂z)/r, v = −(∂ψ/∂r)/r. Rewriting the ex-
pression for the vortex ω = ∂u/∂z − ∂v/∂r and using the
stream function, the following equation is obtained [25,56]:

∂2ψ

∂r2
− 1

r

∂ψ

∂r
+ ∂2ψ

∂z2
= rω. (G2)

The temperature field T in the system is described by the
heat transfer equation

∂T

∂t
+ ε

(
u
∂T

∂r
+ v

∂T

∂z

)
= 1

c(g)
p ρ (g)

[
∂

∂z

(
κ

(g) ∂T

∂z

)
+ 1

r

∂

∂r

(
κ

(g) r
∂T

∂r

)]
, (G3)

where

ε, c(g)
p , ρ (g), κ

(g) =
{

1, cp, ρ, κ : h− < z < h+,

0, ca, ρa, κa : |z| > h+.

Here c(g)
p , ρ (g), κ

(g) are the general notations for the specific
heat capacity, density and thermal conductivity, respectively.
The index a indicates the relation of the material param-
eter to the air. The parameter ε allows us to turn off the
convective term in the air area. As a result, the heat trans-
fer equation (G3) becomes the heat equation at ε = 0. The
droplet surface shape h is determined using canonical equa-
tion of the ellipse, h± = ±b

√
1 − (r/a)2. For the case of a

droplet in the form of a lens, we use two spherical segments
attached to each other by their bases. From the canonical
equation of a circle, we obtain the shape of the droplet sur-
face h± = ±√

R2 − r2 ∓ (R − 0.5H ), where the circle radius
R = [R2

b + (0.5H )2]/H . We also consider the case when the
shape of the liquid corresponds to the lens with the truncated
ends at the point r = Rb − δr. For definiteness, let us take the
value δr = 0.1Rb.

Finally, we obtain the system of equations that includes
Eqs. (G1)–(G3). The model consists of the three equa-
tions with the three variables to be found: ω, ψ , and T .

3. Initial and boundary conditions

At the initial time, the temperature in the system is uniform,
T (r, z, t = 0) = Tup, and there are no liquid flows, ω(r, z, t =
0) = 0. The value of the top plate temperature is the constant,
T (r, z = 0.5Hout, t ) = Tup. The bottom plate cools down to its
stationary temperature Tdn in a relatively short period of time
trel, T (r, z = −0.5Hout, t ) = Tup + (Tdn − Tup)Ur (t ), where

Ur (t ) =
{

t/trel, t � trel,

1, t > trel.

The heat relaxation time in the air is due to thermal conduc-
tivity, trel = H2

outcaρa/κa. For the side wall of the chamber
we use the condition of the heat flux absence, ∂T (r =
Rout, z, t )/∂r = 0. At the liquid-air boundary, the condition of
equality of the temperatures and heat fluxes directed along
the normal to this boundary should be satisfied. As indi-
cated earlier, we do not take into account the thin smectic
film. At r = 0, due to the axial symmetry of the system,
the conditions ∂T/∂r = 0, ω = 0, ψ = 0 are held. At the
liquid-air boundary we use the condition ψ (r, z = h±, t ) = 0,
which follows from the impermeability condition. The nor-
mal vector n is directed outside the area with the liquid
phase. The tangent vector τ points to the right when viewed
along the normal direction. For Marangoni flow to occur,
it is necessary to fulfill the condition on the free surface
of the droplet ω = η−1dγ /dτ + 2vτ dθ/dτ, where dγ /dτ =
−ς∂T/∂τ is the derivative of the surface tension along the
tangent to the surface, vτ is the tangential flow velocity, and
θ is the angle between the tangent to the droplet surface
and abscissa [25]. We express the tangential velocity as vτ =
u cos θ − v sin θ , where cos θ = sgn[z]/

√
1 + (dh/dr)2 and

sin θ = |dh/dr|/
√

1 + (dh/dr)2. We use also the geometri-
cal relation dθ/dτ = |d2h/dr2|[1 + (dh/dr)2]−3/2 derived in
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[25]. The tangential derivative of the temperature is found as
∂T/∂τ = cos θ ∂T/∂r − sin θ ∂T/∂z.

In the case when the surface of the droplet is covered with
a layer of smectic, the no-slip condition is fulfilled, since the
smectic is assumed to be immobile. This results in vτ = 0.
The implementation of this condition at one of the drop inter-
faces is discussed in the next section.

4. Nondimensional formulation of the problem

Let us introduce the scaled quantities: characteristic length
lc = Hout, characteristic velocity vc = η/(ρlc), characteris-
tic temperature Tc = Tup, characteristic thermal conductivity
κc = κa, and characteristic time tc = lc/vc. Further we use
the relations r = r̃lc, z = z̃lc, t = t̃ tc, u = ũvc, v = ṽvc, ω =
ω̃vc/lc, T = T̃ Tc, κ = κ̃κc, κa = κ̃aκc, ψ = ψ̃vcl2

c . Here
the tilde symbol indicates a dimensionless quantity. In all for-
mulas, we use the dimensionless quantities and omit the tilde
symbol for the brevity sake. The heat transfer equation (G3)
in the dimensionless form reads

∂T

∂t
+ ε

(
u
∂T

∂r
+ v

∂T

∂z

)
= 1

Pe

[
∂

∂z

(
κ

(g) ∂T

∂z

)
+ 1

r

∂

∂r

(
κ

(g) r
∂T

∂r

)]
,

where the Péclet number is written as

Pe =
{

l2
c cpρ/(tcκc), h− < z < h+,

l2
c caρa/(tcκc), |z| > h+.

The boundary condition for the vorticity on the free liquid sur-
face is now written as ω = 2vτ dθ/dτ − Ma′ dT/dτ , where
the modified Marangoni number is Ma′ = ςTcρlc/η2 ≈ 200.
The use of the upper plate temperature as a characteristic scale
is a forced necessity associated with computational difficul-
ties. For comparison, the Marangoni number from the analyt-
ical part of the work is Ma = ςH2(�T/Hout )cpρ/(κη) ≈ 1,
where �T = |Tup − Tdn|. For this reason, it is more conve-
nient to make a comparison using the parameter �T/Hout =
104 K/m.

On the boundary where the surface of the droplet is covered
with a smectic, we use the condition ∂ω/∂n = −q̄ rotτψ ,
where the penalty parameter q̄ is some relatively large number.

FIG. 30. Discretization of the spatial domain (the mesh used).

The derivative with respect to the normal is recorded on the
left. This condition leads to the situation when vτ ≈ 0 with
a properly chosen value of the parameter q̄. This allows us
to mimic the no-slip condition. The dimensionless form of
Eqs. (G1) and (G2) and other conditions (see Appendix G 3)
does not differ from their dimensional form.

5. Numerical method

The problem, Eqs. (G1)–(G3) and conditions from Ap-
pendix G 3 in dimensionless forms, were solved using
the commercial package FlexPDE Professional Version
7.18/W64 3D [75], the algorithm of which was implemented
on the basis of the Galerkin finite element method. At each
time step the modified iterative Newton-Raphson method is
used [76]. The size of each time step in the program is
determined automatically in order to minimize the calcula-
tion error. The mesh convergence of the problem solution
is checked. The size of the mesh cells in the area of the
droplet periodically decreased until the maximum flow veloc-
ity ceased to change. We settled on the mesh that included
2844 nodes and 5550 cells (Fig. 30).
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