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The Leidenfrost effect is a phenomenon in which a liquid, poured onto a glowing surface significantly hotter
than the liquid’s boiling point, produces a layer of vapor that prevents the liquid from rapid evaporation.
Rather than making physical contact, a drop of water levitates above the surface. The temperature above
which the phenomenon occurs is called the Leidenfrost temperature. The reason for the existence of the
Leidenfrost temperature, which is much higher than the boiling point of the liquid, is not fully understood and
predicted. For water we prove that the Leidenfrost temperature corresponds to a bifurcation in the solutions of
equations describing evaporation of a nonequilibrium liquid-vapor interface. For water, the theoretical values of
obtained Leidenfrost temperature, and that of the liquid-vapor interface which is smaller than the boiling point
of liquid, fit the experimental results found in the literature.
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I. INTRODUCTION

When water is projected onto a moderately heated metal
plate, it spreads out, starts to boil and evaporates very quickly.
Things are quite different when the metal is incandescent:
the water temperature remains below the boiling temperature,
divides into numerous droplets that roll, bounce and at the end
of their life they either take-off or explode. These phenomena
are well described in Refs. [1–10]. The observations also
show that the droplets perform translational and rotational
motions. These movements lead to geometrically beautiful
patterns. Photographic and stroboscopic tools were then used
to describe the experiments, but the effect can be seen with
the naked eye. Such a phenomenon is qualitatively very well
described in Refs. [11,12]. An analytical model of these fig-
ures and movements has been proposed in Ref. [13].

This Leidenfrost effect, also called the boiling crisis, was
carefully observed in 1756 by the German physician J. G.
Leidenfrost. Leidenfrost had well understood the cause of
the film boiling phenomenon: there is no contact between the
glowing solid and water, the liquid evaporates in the vicinity
of the solid and levitates on a cushion of steam [14].

In 1844, M. Boutigny had also experimented on himself
some curious facts related to the phenomenon such as plung-
ing his hand in a bath of molten iron without burning himself
[15]. Fiery coal can reach about 540 ◦C; candidates for walk-
ing on hot coals must moisten their feet to benefit from the
Leidenfrost effect. At the end of the 19th century, physicists
multiplied astonishing experiments like transforming water
into ice by pouring it into a crucible containing sulphurous
acid and heated to red hot [16].

Today, it is no longer these curiosities that are the subject
of in-depth studies, a lot of new activities are arising about the
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Leidenfrost phenomenon. Besides the industrial applications
involving high temperature processes, the Leidenfrost effect
offers new opportunities in self-propelling drops, in drag
reduction, in the frictionless transport, in chemical reactors
without borders, in heat engines, etc. [17–20]. The boiling
crisis is often the first step in an explosive process that is
generated by the contact of a hot surface and a liquid. If it is
well dominated by metallurgists for the hardening of metals,
it is not yet the case in other fields where it is the cause of
important accidents. For example, in the oil industry, at the
bottom of the distillation towers is oil at a temperature of
about 400 degrees Celsius. In these towers, very dry steam is
injected at the same temperature. When, due to a malfunction
in the installation, liquid water is injected, the explosion that
occurs is so violent that it destroys most of the distillation
plates [21]. In nuclear industry, several accidents were ini-
tiated by the phenomenon. In 1961, for the American SL–1
reactor at Idaho State Laboratory, an unexpected lifting of a
control bar caused water to be projected over the core onto the
vessel which, despite its weight of 13 tons, sheared the pipes
to which it was connected and rose about 3 meters. In 1986,
the boiling crisis phenomenon occurred in Chernobyl, and
in 2011 in Fukushima, creating major nuclear accidents. The
largest terrestrial explosion ever recorded, that of the Krakatoa
volcano (in 1883) corresponding to 200 megatons of TNT, is
also due to the contact of lava at high temperature with sea
water.

These events have given rise to a large number of studies
[22–26]. Of particular interest is the Leidenfrost temperature
i.e., the temperature above which the phenomenon occurs.
It depends on physicochemical and mechanical properties of
the heated surface, the liquid type and the ambient condi-
tions [27,28]. However, it cannot be said that a theory for
a satisfactory prediction of the Leidenfrost temperature has
been given. The Leidenfrost effect still retains an essential
mystery about the reason for a temperature above which there
is the creation of the vapor film. One may wonder why, under
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FIG. 1. Sketch of a quasi-one-dimensional transverse fluid flow.
Domain (a) is a thin liquid layer; (i) is the liquid-vapor discontinuity
interface which is a very thin region of few nanometers thickness of
vapor having the temperature Ti; domain (b) is the non-isothermal
part of the vapor flow; the temperature increases from Ti to Tw .
Region (c) is the part of the vapor region where the flow is not
one–dimensional: the vapor escapes along the solid surface. The
arrows show the flow direction.

normal atmospheric pressure, the creation of the film does
not occur at a temperature close to 100 degrees Celsius, the
boiling temperature of water, which creates a large quantity of
vapor.

In order to treat the problem as simply as possible, we
consider a thin layer of liquid water on a flat, infinite and
horizontal solid surface W at a uniform temperature Tw. The
surface is ideal: it has no additional physicochemical proper-
ties. Since the layer is thin, we can neglect the gravitational
forces. A schematic description of such a thought experiment
is shown in Fig. 1. The liquid water layer (a) is assumed to
be separated from the water vapor layer by a liquid-vapor
interface (i). We assume that the liquid water layer is under
atmospheric pressure p0, and that the liquid-vapor interface is
at temperature Ti. The vapor layer between the liquid-vapor
interface (i) and the heated surface W is decomposed into two
parts: an intermediate part (b) where the temperature varies
from Ti to Tw, and the part (c) at temperature Tw where the
vapor is evacuated along the solid surface W . It has been
observed that the boiling crisis is always accompanied by a
specific frequency regime called in the literature 1/ f − noise
(see Ref. [23] and references therein). We assume that the va-
por density oscillations immediately appear near the interface
and disappear at the end of the part (b). We only need to model
the phase transition at the interface (i) and nonisothermal and
nonhomogeneous one-dimensional vapor flow in (b). For (b),
we use a phase-field model [29,30]. It allows us to find the
bifurcation temperature below which the existence of such a
configuration is not possible. Without claiming that our model
will solve all the problems posed by the boiling crisis, we
believe that it can help to understand the phenomenon by
explaining for water the origin of the Leidenfrost temperature.

To simplify the presentation of the article, we have sep-
arated the paper into six sections and three appendices. In
Sec. II we present the classical van der Waals equation of
state and its adjustment to our problem. Section III studies
the thermomechanical van der Waals–Korteweg model across
the liquid-vapor interface and in the vapor part of the flow.
Sections IV and V study the dimensionless governing equa-
tions of one-dimensional flows. In Sec. VI the numerical
calculations of the governing equations are performed related
to experimental data to obtain the Leidenfrost temperature
value. A conclusion ends this presentation. Some technical
details are shown in Appendices A, B, and C.

II. THE VAN DER WAALS EQUATION OF STATE

We adapt to our problem the simplest model for the de-
scription of equilibrium liquid-vapor interfaces for water: the
van der Waals equation of state. Experimental values of physi-
cal quantities for water at the boiling temperature T0 = 373.15
Kelvin (corresponding to 100 ◦C) are presented in Interna-
tional System of Units (SI) (see [31]):

p0 ≈ 101325 Pa, vg ≈ 1.673 m3/kg, vl ≈ 0.001043 m3/kg,

where p0 is the atmospheric pressure, vg and vl are specific
volumes of vapor and liquid water at phase equilibrium, re-
spectively. Here and in what follows, we use the SI system.
The van der Waals equation of state is

p = R T

v − b
− a

v2
, (1)

where a, b, R are constant, v = 1/ρ is the specific volume,
and ρ is the density. When v is large, the van der Waals equa-
tion (1) yields the equation of state of perfect gas pv = R T .
At a given temperature T , one obtains the chemical potential
μ (defined up to an additive constant), where dμ = v d p:

μ(v, T ) = −R T Log(v − b) + R T b

v − b
− 2a

v
. (2)

The van der Waals equation of state depends on two co-
efficients a and b and is considered as a good qualitative
approximation for the description of equilibrium phase tran-
sitions. However, for a given temperature, Maxwell’s rule
cannot be satisfied because we have to solve three scalar
equations with two unknown scalars a and b. Instead of us-
ing a more complicated virial form of the equation of state
with a large number of temperature dependent coefficients
(cf. Refs. [32,33]), we adopt a different approach. Rather
than the perfect gas constant, we consider a new adaptable
parameter. This simplifies our theoretical approach. To avoid
confusion, we write R instead of R in Eqs. (1) and (2).

To adapt Eq. (1) to our problem, we calculate the values
of a, b, and R to satisfy the mechanical and chemical equi-
librium at atmospheric pressure p0. The equilibrium Maxwell
conditions of liquid-vapor interface are

R T0

vg − b
− a

v2
g

= R T0

vl − b
− a

v2
l

= p0,

μ(vg, T0) = μ(vl , T0). (3)

At T0 = 373.15 K (100 ◦C), we obtain

a ≈ 1.52×103 m5 s−2, b ≈ 9.2×10−4 m3 kg−1,

R ≈ 456 m2 s−2 K−1.

The obtained values of a and b are thus different from those
calculated for the thermodynamic critical point [33]. How-
ever, the value of R is close to that of the perfect gas constant
which is R = 462 m2s−2K−1. We define a characteristic spe-
cific volume v0 of the vapor phase as

p0 v0 = R T0,

which gives

v0 ≈ 1.68 m3 kg−1.
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Van der Waals’ model is a qualitatively realistic equilibrium
model even far from the boiling point. Indeed, when we
consider vapor and liquid water near 160 ◦C, we obtain from
system (3) other values of coefficients a, b and R:

a ≈ 1.40×103 m5 s−2, b ≈ 9.3×10−4 m3 kg−1,

R ≈ 447 m2 s−2 K−1.

Even the values of a, b vary with the temperature, their effect
on the pressure variation is smaller than 0.5%. The variation
of R gives an error in the pressure value smaller than 2%. For
the numerical calculations, we use

a ≈ 1.49×103 m5 s−2, b ≈ 9.2×10−4 m3 kg−1,

R ≈ 456 m2 s−2 K−1.

The coefficient a corresponding to the molecular attraction is
smaller than the one for classical equilibrium at 100 ◦C.

III. A CONTINUOUS THEORY OF CAPILLARITY

We now introduce the second gradient theory of flu-
ids where the internal energy depends on density gradients
[34,35]. In fact, such a model is a special case of the Cahn
and Hilliard phase field model [29]. It has been developed, in
particular, by Rowlinson and Widom [30].

The second gradient theory, conceptually more straight-
forward than the Laplace theory, can be used to construct a
continuous theory for fluid interfaces. Rowlinson and Widom
wrote: the view that the interfacial region may be treated as
matter in bulk, with a local free-energy density that is that
of hypothetically uniform fluid of composition equal to the
local composition, with an additional term arising from the
nonuniformity, and that the latter may be approximated by
a gradient expansion typically truncated in second order, is
then most likely to be successful and perhaps even quantita-
tively accurate. The essential difference compared to classical
compressible fluids is that the specific internal energy depends
not only on the density ρ = 1/v, specific entropy η, but also
of ∇ρ. The specific internal energy α characterizes both the
compressibility and capillarity properties of the fluid. Due to
fluid isotropy, this energy depends only on the norm of density
gradient. The simplest expression of the specific energy is

α = ε(ρ, η) + λ

2ρ
|∇ρ|2, λ = const > 0. (4)

Here ε(ρ, η) is the classical specific energy and λ is a
capillary coefficient which is related to the surface tension
coefficient:

The relation between the surface tension γ and coefficient
λ is given explicitly in Ref. [30] (chapter 3, pages 50–57).
In appropriate CGS units more adapted to capillary phe-
nomena, the value of λ is of order 10−5, its dimension is
[g]−1 [cm]7 [s]−2. It can be calculated as (formula (3.11) in
Ref. [30]):

γ =
∫ +∞

−∞
λ

(
dρ

dz

)2

dz =
∫ ρl

ρv

λ
dρ

dz
dρ,

where z is the distance in the direction normal to the interface.
It can be approximately written as:

λ ≈ γ h

(ρl − ρv )2
,

where h is the thickness of the interface, and ρl and ρv are the
densities of the liquid and vapor, respectively.

Such a gradient density dependent energy appears in the
case of large density fluctuations [36]. This is not classi-
cal equilibrium thermodynamics of homogeneous states, but
thermodynamics of nonhomogeneous states. Compared to the
classical Laplace theory, the second gradient theory reveals
a microstructure of the liquid-vapor interface. Experimental
studies of this microstructure have been carried out by the
schools of Derjaguin and de Gennes [37,38].

A. Conservative motion

For conservative motion, the van der Waals–Korteweg
equations of nonhomogeneous capillary fluids can be derived
from the Hamilton principle of stationary action by using the
well-known Lagrangian [39–42]:

L = ρ

( |u|2
2

− α − �

)
,

where u is the velocity, � is the specific potential of external
forces, and α is given by Eq. (4). The usual constraints are the
mass and entropy conservation laws:

∂ρ

∂t
+ div(ρ u) = 0, (5)

and

∂ρη

∂t
+ div(ρη u) = 0. (6)

We refer to calculations in Refs. [34,35,43] to directly write
the momentum equations in the form:

∂ρ u
∂t

+ div(ρ u ⊗ u − σ) + ρ ∇ � = 0, (7)

where

σ = −
(

p − λ

2
|∇ρ|2 − λ ρ 
ρ

)
I − λ ∇ ρ ⊗ ∇ ρ,

p = ρ2 ∂ε(ρ, η)

∂ρ
,

where I is the unit tensor. Due to a small thickness of the fluid
layer, gravitational forces are neglected. As a consequence of
Eqs. (5), (6), and (7), one obtains the energy equation :

∂e

∂t
+ div

(
e u − σu − λ

dρ

dt
∇ ρ

)
= 0, e = ρ

( |u|2
2

+ α

)
.

(8)
In the one-dimensional case, the x axis is drawn perpen-

dicular to the liquid layer and heated surface (see Fig. 1). The
governing Eq. (7) is written as

∂

∂t
(ρ u) + ∂

∂x
(ρ u2 + P) = 0, (9)
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where

P = p + k, with k = λ

2

(
∂ρ

∂x

)2

− λ ρ
∂2ρ

∂x2
. (10)

Here t denotes the time, x the space variable perpendicular
to the liquid layer and glowing surface, u is the correspond-
ing scalar velocity. Note that P can be considered as a total
pressure: it is the sum of the thermodynamic pressure p and
capillary pressure part k. If k is positive (negative), then
P > p (P < p). In the one-dimensional case, Eq. (7) writes

∂ (ρ u)

∂t
+ ∂

∂x

(
ρ u2 + p(ρ, T ) + λ

2

(
∂ρ

∂x

)2

− λ ρ
∂2ρ

∂x2

)
= 0.

At constant temperature T , the Gibbs relation becomes
d p/ρ = dμ. Then, using conservation of mass, one obtains

ρ

(
∂u

∂t
+ u

∂u

∂x

)
+ p′(ρ)

∂ρ

∂x
− λ ρ

∂3ρ

∂x3
= 0,

or

∂u

∂t
+ u

∂u

∂x
+ ∂μ

∂x
− λ

∂3ρ

∂x3
= 0.

Thus, at a given temperature T , Eq. (9) admits the conserva-
tion law:

∂u

∂t
+ ∂

∂x

(
u2

2
+ μ(ρ, T ) − λ

∂2ρ

∂x2

)
= 0 (11)

associated with chemical potential μ (a particular case of μ

from Eq. (2) is calculated for the van der Waals equation of
state).

Depending on other additional constraints (isothermal or
isobaric processes), we consider the chemical potential or the
specific enthalpy instead of the specific internal energy (the
details are further explained in Appendices B 1 and B 2).

B. One-dimensional stationary vapor motion

In the rest of the paper, one supposes that the consumed
liquid is fed by an external pump that allows the motion to be
steady. We assume one-dimensional flow in the x direction of
the domain (b) (see Fig. 1). The viscosity is negligible because
the evaporation process is very slow. In the one-dimensional
stationary case, Eq. (5) yields

ρ u = q, q = const, (12)

where q represents the constant flow rate of the fluid.
Equation (9) writes:

d

dx
(ρu2 + P) = 0, (13)

(1) Through the liquid-vapor interface, Eq. (9) implies the
jump condition:

[P + q2v] = 0,

i.e.,

Pi − p0 + q2(vgi − vli ) = 0, (14)

where the index i refers to the interface: vli = 1/ρli (vgi =
1/ρgi ) the liquid (vapor) specific volume at interface (i), Pi

is the total pressure in the vapor phase on the interface, and

p0 is the pressure in the liquid bulk on the interface, and the
square brackets mean the difference of values across interface
(i). Since the liquid layer is thin, the gravity is not taken into
account, thus the interface liquid thermodynamic pressure is
the atmospheric pressure p0.

(2) In domains (b), we obtain from Eq. (13):

Pi − pw + q2(vgi − vw ) = 0,

where the index w corresponds to the heated surface W . The
vapor on the boundary between (b) and (c) is assumed to
be homogeneous of specific volume vw and temperature Tw.
Thus, the total pressure is only the thermodynamic pressure
part pw. The difference with Eq. (14) yields

pw − p0 + q2(vw − vli ) = 0. (15)

(3) The conservation law (11) yields the jump relation
through the isothermal liquid–vapor interface:[

u2

2
+ μ(ρ, Ti ) − λ

d2ρ

dx2

]
= 0, (16)

where μ(ρ, Ti ) is defined by Eq. (2). Equation (16) can be con-
sidered as a dynamical Maxwell rule (see also Appendix B 1).

(4) The vapor motion in domain (b) is not isothermal. The
viscosity of the vapor phase is negligible, so the equation of
motion (13) is unchanged. The equation of the energy bal-
ance (8) in the vapor phase must take into account the heat
exchange in the vapor region. Such a balance equation is in
the form {

(e + P) u − λ

(
dρ

dx

)2

u

}∣∣∣∣
ρgi , Ti

−
{

(e + P) u − λ

(
dρ

dx

)2

u

}∣∣∣∣
ρw, Tw

= Q̇w − Q̇i. (17)

Compared to Eq. (8), we added in the total energy the balance
of heat fluxes Q̇w − Q̇i. Also, since the flow volume is fixed,
it changes the expression of e (for proof, see Appendix B 2):

e = ρ(u2/2 +H ) with H = H + λ

2ρ

(
dρ

dx

)2

,

H = ε + p0

ρ
.

Thus, H is the specific enthalpy of capillary fluid at pressure
p0, and H is the enthalpy of a homogeneous fluid at pressure
p0. The expression of P is given by Eq. (10). In the domain
(c) near the surface W the density becomes homogeneous and
the balance law (17) becomes

{
(e + P) u − λ

(
dρ

dx

)2

u

}
|ρgi , Ti

− {(e + P) u}
∣∣∣∣
ρw, Tw

= Q̇w − Q̇i. (18)

The vapor density strongly varies near and through the inter-
face.

At the interface, considered as a discontinuity, an extra
condition must be added on both sides of the interfacial
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discontinuity:

dρ

dx
= 0. (19)

The additional condition (19) called also Weierstrass-
Erdmann condition is fundamental in the rest of our paper.
It is recalled and explained in Appendix A. Also, condition
(19) is obtained and analyzed in Refs. [41,44,45]. Physically,
it means the absence of microenergy concentration at the
surface of discontinuity. Such a condition also appears when
a capillary fluid is in contact with a surface when the surface
is neither attractive or repulsive [37,46].

The density jump implies d2ρ/dx2 < 0, and consequently,
due to (10), k > 0 (this property is analyzed in Fig. 8 upper
diagram of Appendix C).

The vapor at temperature Tw is assumed to be homoge-
neous. Using relation (18) complemented by Eq. (19), we get

1

2

q3

ρ2
i

+ pi vgi q − λ
d2ρgi

dx2
q + Hi q + Q̇i

= 1

2

q3

ρ2
w

+ pw vw q + Hw q + Q̇w.

Here indices “i ′′ and “w ′′ mean values of variables at the
interface and surface, respectively. In the above relation the
second derivative of the density ρgi is, a priori, nonvanishing.

Since k = −λρgi

dρ2
gi

dx2
and Pi = pi + k, we get

1

2
q2v2

gi
+ Hi + Pivgi + Q̇i

q
= 1

2
q2v2

w + Hw + pwvw + Q̇w

q
.

(20)
Let us underline that

pi = p(vgi , Ti ), pw = p(vw, Tw ).

From Eq. (1), we have [33]

ε =
∫

cv (T ) dT − a

v
,

where cv (T ) is the specific heat of water vapor at constant
volume. Equation (20) implies

1

2
q2

(
v2

gi
− v2

w

) +
∫ Ti

Tw

cv (T )dT + 2 k vgi

+ 2

(
RTivgi

vgi − b
− RTwvw

vw − b

)
− a

vgi

+ a

vw

+ Q̇i

q
− Q̇w

q
= 0.

(21)
We approximate the vapor equation of state by pivgi ≈ RTi,
pwvw ≈ RTw, and introduce

cp(T ) = cv (T ) + R,

corresponding to the specific heat at constant pressure which
depends only on temperature T . We obtain from Eq. (21):

1

2
q2

(
v2

gi
− v2

w

) +
∫ Ti

Tw

cp(T ) dT + 2 k vgi

+R(Ti − Tw ) + Q̇i

q
− Q̇w

q
= 0. (22)

To transform a liquid into saturated vapor, we need to supply
latent heat L. At a given temperature, and for the van der
Waals equation of state, the energy of a saturated vapor is ap-
proximately independent of the pressure. Indeed, considering
the internal energy as a function of v and T , one has

ε(vg, T ) − ε(vgs , T ) = a

(
1

vsg
− 1

vg

)
,

where vsg is the specific volume of saturated vapor at pressure
ps (index s means saturated), and vg is the specific volume
of vapor at pressure p0. Compared to the latent heat value,
this variation is small even for a large variation of the specific
volume of the vapor and we can thus assume that ε(vg, T ) ≈
ε(vgs , T ). Let L(T ) be the specific heat of evaporation for
saturated vapor (specific latent heat). One has

L(Ti ) − L(Tw ) = (ε(vsgi , Ti ) + psivsgi )

− (ε(vsgw
, Tw ) + pswvsgw

).

The saturated vapor equation of state being approximated as

psivsgi ≈ RTi, and pswvsgw
≈ RTw.

Hence,

L(Ti ) − L(Tw ) ≈ ε(vsgi , Ti ) − ε(vsgw
, Tw ) + R(Ti − Tw ).

At atmospheric pressure, the water vapor equation of state can
also be approximated as

p0vgi ≈ RTi, and p0vgw
≈ RTw,

The specific latent heat is the amount of heat that must be
supplied to a pure liquid, in our case water, to produce the
phase transition. Thus

Q̇i

q
− Q̇w

q
= L(Ti ) − L(Tw ).

This is in agreement with Refs. [6,47]. Thus, Eq. (22) yields

1

2
q2(v2

gi
− v2

w

) +
∫ Ti

Tw

cp(T )dT + 2 k vgi

+R(Ti − Tw ) + L(Ti ) − L(Tw ) = 0, (23)

IV. DIMENSIONLESS EQUATIONS OF MOTION

We now consider the dimensionless form of the governing
equations. The dimensionless variables are denoted by the
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same letters but with an additive tilde sign. In particular, the
van der Waals equation of state (1) in dimensionless form is

p̃ = T̃

ṽ − b̃
− ã

ṽ2
(24)

with

ã = a

p0 v2
0

, b̃ = b

v0
, T̃ = T

T0
, p̃ = p

p0
, ṽ = v

v0
,

where p0, T0 are defined in Sec. II and v0 is defined from
p0 v0 = R T0. We also introduce the dimensionless variables
associated with capillary pressure term, specific volumes, and
flow rate:

P̃i = Pi

p0
, k̃ = k

p0
, ṽgi = vgi

v0
, ṽli = vli

v0
, q̃ = q

q0

with q0 =
√

p0

v0
.

The equation (14) takes the following form:

P̃i − 1 + q̃2 (ṽgi − ṽli ) = 0.

The dimensionless flow rate q̃ is very small. Indeed, when
the solid surface temperature is close to the Leidenfrost
temperature, the lifetime of liquid dramatically increases,
typically by a factor of 500 associated with the existence
of a vapor layer isolating the liquid bulk. For example, a
millimeter liquid layer on a duralumin surface at 200 ◦C is
observed to float for more than a whole minute [6,48,49].
So, the fluid velocity due to the liquid evaporation is about
1.7×10−5 m s−1, and the flow rate q ≈ 1.7×10−2 kg m s−1.

For q0 =
√

p0

v0
≈ 245 kg m s−1, one has q̃ ≈ 7×10−5 � 1.

Consequently, we can neglect q̃2 in the dimensionless gov-
erning equations.

The water vapor at pressure p0 can be considered as a gas
and we obtain from Eqs. (14) and (15):

pw ≈ Pi ≈ p0, p0 vw ≈ R Tw.

In dimensionless form we get

ṽw ≈ T̃w and P̃i ≈ p̃w ≈ 1.

The pressure in vapor at temperature Tw is also the atmo-
spheric pressure p0.

From pi vgi = R Ti, we obtain as a consequence of motion
equation in domain (i)

T̃i = p̃i ṽgi = (P̃i − k̃) ṽgi and P̃i ≈ 1. (25)

Property:
Since k > 0 (see Appendix C), we must have T̃i/ṽgi < 1. The

limit case corresponds to

T̃i = ṽgi . (26)

We hypothesize that the condition (26) defines the value
of the Leidenfrost temperature. Indeed, as we have already
mentioned, the total pressure P is composed of the thermo-
dynamic pressure p and the capillary pressure term k. When
k is positive, the thermodynamic pressure near the interface
will be smaller than the atmospheric pressure in the vapor
portion of the fluid. Therefore, the thermodynamic pressure

FIG. 2. Graph associated with experimental Table I and Eq. (35).
The x axis indicates the Kelvin temperature, and the y axis indicates
for water the corresponding isobaric heat capacity cp expressed in
J kg−1 K−1. The dots represent cp values coming from experimental
Table I.

gradient lifts the droplet. This lifting force can therefore be
considered as a kind of Archimedean force (buoyancy force).
In the following we will show that this hypothesis fits with
experimental observations.

V. DIMENSIONLESS EQUATIONS OF ENERGY

A. Liquid-vapor interface (i)

The condition (16) across the liquid-vapor interface writes

1

2
q2 v2

gi
+ μ(vgi , Ti ) + k vgi = 1

2
q2 v2

li + μ(vli , Ti ),

and Eq. (2) yields

1

2
q2v2

gi
+ kvgi

−RTi

{
Log

(
vgi − b

vli − b

)
− b

(
1

vgi − b
− 1

vli − b

)}

+ 2a

(
1

vli

− 1

vgi

)
= 0.

As proved in Sec. IV we can neglect q̃2 and one obtains

k̃ ṽgi − T̃i

{
Log

(
ṽgi − b̃

ṽli − b̃

)
− b̃

(
1

ṽgi − b̃
− 1

ṽli − b̃

)}

+ 2ã

(
1

ṽli

− 1

ṽgi

)
= 0. (27)

B. Nonisothermal vapor-layer (b)

For the specific heat at constant pressure cp, we choose a
quadratic model in temperature (see Fig. 2):

cp(T ) = K1 + 2 K2 T + 3 K3 T 2. (28)

By integration, we obtain∫ Ti

Tw

cp(T )dT = K1(Ti − Tw ) + K2
(
T 2

i − T 2
w

)

+ K3
(
T 3

i − T 3
w

)
.
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TABLE I. Isobaric heat capacity of water vapor is expressed in J kg−1 K−1. The different temperature values are given together in degrees
Celsius and Kelvin.

T degrees Celsius 90 ◦C 100 ◦C 120 ◦C 140 ◦C 160 ◦C 180 ◦C 200 ◦C

T Kelvin 363 K 373 K 393 K 413 K 433 K 453 K 473 K
cp 2042.9 2080 2177 2310.9 2488.3 2712.9 2989.5

This is the custom to consider locally a linear approximation
for L(T ) [50]:

L(T ) = L0 + L1 T, where L1 < 0. (29)

With Eqs. (28) and (29), Eq. (23) becomes
1
2 q2

(
v2

gi
− v2

w

) + 2 k vgi + K1(Ti − Tw ) + K2
(
T 2

i − T 2
w

)

+ K3
(
T 3

i − T 3
w

) + R(Ti − Tw ) + L1(Ti − Tw ) = 0. (30)

Neglecting terms associated with q̃2, dimensionless form of
Eq. (30) writes

2 k̃ ṽgi + K̃1(T̃i − T̃w ) + K̃2
(
T̃ 2

i − T̃ 2
w

) + K̃3
(
T̃ 3

i − T̃ 3
w

)
+ (T̃i − T̃w ) + L̃1(T̃i − T̃w ) = 0, (31)

where

K̃1 = K1

R
, K̃2 = K2 T0

R
K̃3 = K3 T 2

0

R
, L̃1 = L1

R
.

C. Consequences

In dimensionless form, Eq. (24) writes

(ṽli − b̃) ṽ2
li − T̃i ṽ

2
li + (ṽli − b̃) ã = 0. (32)

Using Eqs. (25), one obtains

k̃ ṽgi = ṽgi − T̃i. (33)

Taking into account Eqs. (27), (31), and (32), and by using
relation (33), the system allowing to solve our problem is

ṽgi − T̃i − T̃i

{
Log

(
ṽgi − b̃

ṽli − b̃

)
− b̃

(
1

ṽgi − b̃
− 1

ṽli − b̃

)}

+ 2 ã

(
1

ṽli

− 1

ṽgi

)
= 0,

2 (ṽgi − T̃i ) + K̃1(T̃i − T̃w ) + K̃2
(
T̃ 2

i − T̃ 2
w

)

+ K̃3
(
T̃ 3

i − T̃ 3
w

) + (T̃i − T̃w ) + L̃1(T̃i − T̃w ) = 0,

T̃i − (
ṽli − b̃

) (
ã

ṽ2
li

− 1

)
= 0.

(34)

System (34) is a system of three equations relatively to
unknowns ṽgi , ṽli , T̃i.

VI. NUMERICAL STUDY

A. Values of specific isobaric capacities of water vapor

The table, giving the values of specific isobaric capacities
for water vapor, is taken from Refs. [31,50]. The following
quadratic relation is used linking the heat capacity at constant
pressure (in J kg−1 K−1) as a function of the temperature T
expressed in Kelvin:

cp(T ) = 8329 + 37.13 T − 0.05460 T 2. (35)

Then ∫ Ti

Tw

cp(T ) dT = K1(Ti − Tw ) + K2
(
T 2

i − T 2
w

)

+ K3
(
T 3

i − T 3
w

)
,

with

K1 = 8329, K2 = 18.56, K3 = −0.01820.

Here and in the following, we do not indicate SI dimensions
of Kj coefficients j ∈ {1, 2, 3}. The experimental values of cp

are given in Table I. The corresponding approximation (35) is
shown in Fig. 2. We see that relation (35) fits perfectly with
experiment values.

B. Values of latent heat of vaporization for water

The table giving the values of latent heat of vaporization
for water as a function of temperature is taken from [31,50].

Usually, a local linear approximation of the latent heat
L(T ) in kJ kg−1 (kilojoule per kilogram) is used as a function
of temperature T expressed in Kelvin. We consider below
two very close approximations of L(T ) to understand how
the results obtained are sensitive to the values of the latent
heat in the numerical calculations. Indeed, the data shown in
Table II correspond to static measurements. In dynamics, the
static latent heat is only a rough approximation: we do not
take into account the heat radiation, physicochemical state and
geometry of the heating surface, nonequilibrium process of
evaporation, etc.

TABLE II. The latent heat of liquid water to be transformed into vapor is expressed in kJ kg−1. The different temperature values are given
both in degrees Celsius and Kelvin.

T degrees Celsius 90 ◦C 100 ◦ C 110 ◦C 120 ◦C 130 ◦C 140 ◦C 150 ◦C 160 ◦C 170 ◦C 180 ◦C 190 ◦C 200 ◦C

T Kelvin 363 ◦K 373 ◦ K 383 ◦K 393 ◦K 403 ◦K 413 ◦K 423 ◦K 433 ◦K 443 ◦K 453 ◦K 463 ◦K 473 ◦K
L 2283.3 2256.4 2229.6 2202.1 2173.7 2144.3 2113.7 2082.0 2048.8 2014.2 1977.9 1939.7
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FIG. 3. The linear approximations of the latent heat of water in
kJ kg−1 expressed by Eq. (36) (in yellow) and Eq. (37) (in blue) are
shown as functions of the Kelvin temperature. The dots represent the
values of L(T ) from Table II.

(1) First linear approximation:

L(T ) = 3295 − 2.800 T . (36)

(2) Second linear approximation:

L(T ) = 3385 − 2.900 T . (37)

These two close approximations are shown in Fig. 3.
What matters is the difference of the latent heats L(Ti ) and

L(Tw ). Hence, only the slope in T is relevant. As we will
see, the variation of 3% of slopes between Eqs. (36) and (37),
implies a sensible variation of the Leidenfrost temperature.

C. Calculations for water of Leidenfrost
and interface temperatures

To show the sensitivity of results to the choice of model
parameters, we have provided two close approximations of the
latent heat of evaporation to reveal the sensitivity of the results
with respect to these parameters.

For the first linear approximation (36) the corresponding
Table III is formed. The condition ṽgi = T̃i corresponds to the
fact that k changes its sign. The value of Tw associated with
bifurcation (26) is our definition of the Leidenfrost temper-
ature which will be denoted by TL. From Table III one can
see that T̃i > ṽgi at T̃w = 1.20 but T̃i < ṽgi at T̃w = 1.25. At
T̃w = T̃L ≈ 1.23 one has T̃w = ṽgi . This critical value is the
Leidenfrost temperature T̃L. In this case, TL ≈ 185 ◦C.

For Tw < TL (k < 0) the liquid film sticks to the solid
surface by causing the nucleate boiling. For Tw > TL (k > 0)

FIG. 4. Graphs associated with the k in Pa as a function of T ◦C
in the first linear approximation (36). The x axis is associated with
the Celsius temperature and the y axis with the pressure k expressed
in Pascal. The dots represented k values calculated with the software
MathematicaTM. In this case, the Leidenfrost temperature highlighted
by a red cross is TL ≈ 185 ◦C.

the vapor film exists. In Fig. 4, we represent the value of k as
a function of Tw in degrees Celsius.

For the second linear approximation (37) the correspond-
ing Table IV is formed. The results are similar but the
associated temperature corresponds to T̃L ≈ 1.28 i.e. TL ≈
204 ◦C. In Fig. 5, we represent the value of k as a function
of Tw.

The two approximations give noticeably different temper-
atures TL (i.e. the variation of 3% of the slope of L(T ) implies
the variation of 10% on TL).

Let us note that when T̃i is eliminated from the third equa-
tion of Eq. (34), only two equations for vli and vgi have to
be solved. We show in Fig. 6 the intersection of the two corre-
sponding curves for the the first linear approximation (36) and
for the value of T̃w = 1.23 corresponding to Tw = 185 ◦C.

In the literature, a wide range of values of Leidenfrost’s
temperature was measured [17]. The dispersion of values is re-
lated to the variation of experimental conditions (atmospheric
conditions, deposition technics, drop size, thermal properties
of the substrate, physicochemical properties of the substrate
surfaces (surface energy and roughness), method to charac-
terize the transition, …). Depending on the characteristics of
the surface, the Leidenfrost temperature can be higher than
TL ≈ 204 ◦C. We are not able to account for the various
experimental conditions and have considered a flat, highly
conductive solid substrate. However, the model provides a
correct order of magnitude for the Leidenfrost temperature.

Moreover, it seems that, in the case of water, a minimum
Leidenfrost temperature of about 150 ◦C is observed for a liq-
uid film on a flat, highly thermally conductive solid substrate
[51,52]. Nevertheless, it must be pointed out that experiments

TABLE III. Calculations of ṽgi , T̃i, ṽli as a function of Tw by using the first linear approximation (36).

Tw degrees Celsius 93.5 ◦C 100 ◦C 119 ◦C 137 ◦C 156 ◦C 175 ◦C 193 ◦C 212 ◦C

T̃w 0.983 1 1.05 1.10 1.15 1.20 1.25 1.30
ṽgi 0.983 0.977 0.965 0.958 0.960 0.971 0.994 1.032
T̃i 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983
ṽli 0.000621 0.000621 0.000621 0.000621 0.000621 0.000621 0.000621 0.000621
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TABLE IV. Calculations of ṽgi , T̃i, ṽli as a function of Tw by using the second linear approximation (37).

Tw degrees Celsius 93.5 ◦C 100 ◦C 119 ◦ 137 ◦C 156 ◦C 175 ◦C 193 ◦C 212 ◦C

T̃w 0.983 1 1.05 1.10 1.15 1.20 1.25 1.30
ṽgi 0.983 0.975 0.958 0.946 0.941 0.947 0.965 0.997
T̃i 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983
ṽli 0.000621 0.000621 0.000621 0.000621 0.000621 0.000621 0.000621 0.000621

with ethanol drops on an oil basin can lead to a special Leiden-
frost effect for a superheat as low as TL − T0 = 1 ◦C relative to
the boiling temperature. However, this technical feat has never
been observed on a solid substrate [53].

Another important observation results in the computation
of temperature Ti. Already Boutigny discovered that this tem-
perature is lower than 100 ◦ C [15]. Experimental data predict
a temperature of liquid bulk near the interface between 92 ◦C
and 97 ◦C [10,54]. The temperature in the liquid bulk far
from the interface depends on the shape of the drop and is
linked to heat exchanges with the external environment. In our
model, the obtained temperature of interface is Ti ≈ 93.5 ◦C
corresponding to T̃i ≈ 0.983. For both approximations (36)
and (37) the Ti values are the same. This result is another
confirmation of the consistency of our model.

Based on the variation of k one can simply explain the
Leidenfrost phenomenon as follows. If k > 0, the thermody-
namic pressure p is lower in the vapor phase just near the
liquid-vapor interface compared to the pressure p0 near the
surface. This results to a detachment of the liquid film from
the surface. On the contrary, if k < 0, the thermodynamic
pressure p is higher, and liquid film wets the surface causing
a violent boiling. In fact the whole process is highly nonsta-
tionary and cannot be described by the stationary equations.
However, our approach gives a reasonable estimation of the
Leidenfrost temperature.

VII. CONCLUSION

For water, we study the boiling crisis phenomenon in the
framework of the internal capillarity model.

FIG. 5. Graphs associated with the k in Pa as a function of T ◦C
in the second linear approximation (37). The x axis is associated
with the Celsius temperature and the y axis with the pressure k
expressed in Pascal. The dots represented k values calculated with the
software MathematicaT M . In this case, the Leidenfrost temperature
highlighted by a red cross is TL ≈ 204 ◦C.

A first important result is the capillary pressure term k
allows us to understand the phenomenon and to determine
the Leidenfrost temperature. The boiling crisis corresponds
to k > 0, and Leidenfrost’s temperature to k = 0. For water,
the model predicts the Leidenfrost temperature which fairly
agrees with experimental results. A second important result
is the estimation of the temperature of liquid-vapor interface
of water. It is proved that its value is below the boiling tem-
perature at atmospheric pressure. This result is also consistent
with experimental data on the overall liquid temperature near
the interface.

In the future, we plan to apply this model to other fluids for
which all necessary experimental data are well documented.
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APPENDIX A: EXTRA-CONDITION AT DYNAMICAL
LIQUID-VAPOR INTERFACES

Extra condition (19) does not come from conservation
laws. It is a natural boundary condition coming from La-
grangian formulation of the problem. It already appeared
in the study of discontinuous solutions of dispersive equa-
tions [41,44,45]. To give a proof in the one-dimensional case,
we consider a general action functional:

A{y} =
∫

I
L(y, y′)dx,

y(x) is an unknown function, and the integral is taken over
a finite interval I. The values of y(x) are fixed at the ends of
interval I. We are looking for y(x) on which the functional
is extremal and we do not assume that y(x) is smooth. The
variation of Hamilton’s actionA can be written as

δA =
∫

I

{
δL
δy

δy + d

dx

(
∂L
∂y′ δy

)}
dx

with
δL
δy

= ∂L
∂y

− d

dx

(
∂L
∂y′

)
.

In the case of nonsmooth (or “broken”) extremal curves, the
same Euler-Lagrange equation should be satisfied for each
smooth part of the extremal curve

δL
δy

= 0. (A1)

Together with Eq. (A1) an additional condition should also be
satisfied at the “broken” point:[

∂L
∂y′

]
= 0. (A2)

In the case of capillary fluids, L is quadratic with respect to y′
because λ is constant. It implies that y′ is continuous at the
broken point. Condition (A2) is usually called Weierstrass-
Erdmann condition, or corner condition. In particular, if a
piecewise C2 solution y(x) is constant on some interval of
x, but is not constant on a neighboring interval, this solution
should have a zero slope at the broken point.

APPENDIX B: SPECIAL CASES OF CAPILLARY
FLUID MOTION

1. Isothermal motion

In the case of isothermal stationary motion, the whole en-
tropy of domainDt corresponding to the bulk (a) and interface
(i) is ∫

Dt

ρη dD = S0, (B1)

where S0 is constant (independent of time t), and dD is the
infinitesimal volume. Due to constraint (B1), Hamilton’s ac-
tion is modified into the following: there exists a constant
Lagrange multiplier T0 such that the new Lagrangian L is
associated with α − T0 η which is the specific free energy at

constant temperature. The application of the Hamilton prin-
ciple yields the same equations of motion where α has to
be replaced by α − T0η. Consequently, the specific enthalpy
is replaced by the chemical potential μ. The variation of η

implies T − T0 = 0.

2. Motion at constant pressure

In the case of stationary motion, if domainDt is an invari-
ant control volume through which the steam flows, it verifies

∫
Dt

dD = V0, (B2)

where V0 is constant (independent of time t). Due to con-
straint (B2), Hamilton’s action is modified into the following:
there exists a constant Lagrange multiplier p0 such that the
new Lagrangian L is associated with H = α + p0/ρ, which
is the specific enthalpy of capillary fluid at constant pressure
p0. Consequently, in Sec. III A, in the energy equation, the
specific energy should be replaced by the specific enthalpy
at constant pressure p0, and the equation of motion is un-
changed.

APPENDIX C: ISOTHERMIC OSCILLATIONS OF THE
VAPOR DENSITY NEAR LIQUID-VAPOR INTERFACE (i)

We look for oscillating stationary vapor flow in the imme-
diate vicinity of interface (i) where the temperature is Ti. The
governing equation of motion in the vapor phase is deduced
from Eqs (11) and (12), and writes in the form

λ
d2ρ

dx2
= μ(ρ, Ti ) + q2

2ρ2
+ r,

where r is a constant of integration. The vapor is considered as
an ideal gas; we get the potential μ, defined up to an additive
constant which can be included in r:

μ(ρ, Ti ) = c2
Ti

Log ρ, where c2
Ti

= RTi.

Here cTi denotes the isothermal sound velocity of vapor at
temperature Ti. To obtain oscillatory solutions, we choose a
special value of r replacing it by a new constant ρ�� :

λ
d2ρ

dx2
= c2

Ti
Log

(
ρ

ρ��

)
+ q2

2ρ2
− q2

2ρ2
��

. (C1)

Integrating Eq. (C1), one obtains

λ

2

(
dρ

dx

)2

= F (ρ) − d, where d = const. (C2)

with

F (ρ) = c2
Ti

(
ρ Log

(
ρ

ρ��

)
− ρ + ρ��

)
− q2

2ρ

(
1 − ρ

ρ��

)2

.

By construction,

F (ρ��) = 0,
dF

dρ
(ρ��) = 0.

The variation of F for the Mach number M2
i = q2/(ρ�� cTi )

2 <

1 is shown in Fig. 7 (In liquid water ρl 
 103kg/m3. If
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FIG. 7. If M2
i < 1, the curve F (ρ ) has a local maximum at ρ� ∈

] ρimin, ρimax[, and a local minimum at ρ�� ∈] ρimax, +∞[. We recall
that ρ = ρ�� is a formal value of ρ and that the physical part of the
curve is only the red part of F (ρ ) corresponding to oscillations of
density between ρimin and ρimax.

boiling-evaporation time of a liquid film with 10−2 m thick-
ness is about 100 s; then u 
 10−4m/s and for the liquid, the
flow rate q 
 10−1kg/m2. s. In the vapor ρl 
 1 kg/m3 and
consequently u 
 10−1m/s, and M2

i 
 10−7 < 1). It has a
unique maximum point ρ� such that 0 < ρ� < ρ��. Moreover,
F → −∞ as ρ → +0. Hence, for any d such that 0 < d <

F (ρ�) one has a solution of (C2) oscillating between ρimin

and ρimax, where F (ρimin) = F (ρimax) = d (see Fig. 7). The
solution of (C2) is schematically shown in Fig. 8 (on the
high diagram). The liquid-vapor interface is considered as a
discontinuity. So, the density jumps from ρli to the extreme
value of the vapor density [see the extra condition (19)].
Since we have two possible values (minimum and maximum
values), the choice has to be done. Obviously, the jump from
ρli to ρimax has a smaller amplitude compared to that from
ρl to ρimin, and hence the smallest energy variation. Also,
physically, only this choice allows us to obtain levitation of
the liquid film. Such a stationary periodic solution gives us
an idea about a strong density variation near the interface:
the liquid-vapor interface is endowed with a micro-structure
representing a strongly oscillatory region. The vapor region
represents a transition zone that begins with an oscillatory

FIG. 8. Upper figure: The vapor density oscillates near the
isothermal liquid-vapor interface. At the interface the density jumps
(and decreases) from ρli = 1/vli to ρgi = 1/vgi . The vapor den-
sity being oscillating between two extrema ρimin and ρimax where
dρ/dx = 0, we have to choose between these two values. The jump
from ρli to ρimax has a smaller amplitude compared to that from
ρl to ρimin, and hence a smaller energy decrease. Consequently,
d2ρ/dx2 < 0 when ρvi = ρimax and k = −λ ρ d2ρ/dx2 > 0. Bottom
figure: case of dissipative vapor flow. The oscillations of vapor den-
sity vanish near the surface boundary layer.

regime and ends with a region of homogeneous density
(see the bottom diagram in Fig. 8).

[1] J. Walker, The amateur scientist, Sci. Am. 237, 126 (1977).
[2] F. Celestini, T. Frisch, and Y. Pomeau, Take Off of Small Lei-

denfrost Droplets, Phys. Rev. Lett. 109, 034501 (2012).
[3] D. Quéré, Leidenfrost dynamics, Annu. Rev. Fluid. Mech. 45,

197 (2013).
[4] B. Darbois-Texier, G. Dupeux, G. Lagubeau, M. Le Merrer,

K. Piroird, D. Soto, C. Clanet, and D. Quéré, La Caléfaction,
Reflets Phys. 37, 12 (2013).

[5] Y. Pomeau, M. Le Berre, F. Celestini, and T. Frisch, The Lei-
denfrost effect: From quasispherical droplets to puddles, C. R.
Mec. 340, 867 (2012).

[6] A. L. Biance, C. Clanet, and D. Quéré, Leidenfrost drops,
Phys. Fluids 15, 1632 (2003).

[7] G. Graeber, K. Regulagadda, P. Hodel, C. Küttel, D. Landolf,
T. M. Schutzius, and D. Poulikakos, Leidenfrost droplet tram-
polining, Nat. Commun. 12, 1727 (2021).

[8] S. Lyu, V. Mathai, Y. Wang, B. Sobac, P. Colinet, D. Lohse, and
C. Sun, Final fate of a Leidenfrost droplet: Explosion or takeoff,
Sci. Adv. 5, eaav8081 (2019).

[9] B. Sobac, A. Rednikov, S. Dorbolo, and P. Colinet, Leidenfrost
effect: Accurate drop shape modeling and refined scaling laws,
Phys. Rev. E 90, 053011 (2014).

055102-11

https://doi.org/10.1038/scientificamerican0877-126
https://doi.org/10.1103/PhysRevLett.109.034501
https://doi.org/10.1146/annurev-fluid-011212-140709
https://doi.org/10.1051/refdp/201337012
https://doi.org/10.1016/j.crme.2012.10.034
https://doi.org/10.1063/1.1572161
https://doi.org/10.1038/s41467-021-21981-z
https://doi.org/10.1126/sciadv.aav8081
https://doi.org/10.1103/PhysRevE.90.053011


SERGEY GAVRILYUK AND HENRI GOUIN PHYSICAL REVIEW E 106, 055102 (2022)

[10] A. Bouillant, T. Mouterde, Ph. Bourrianne, A. Lagarde, C.
Clanet, D. Quéré, Leidenfrost wheels (Supplemental Material:
Temperature field inside Leidenfrost drops), Nat. Phys. 14, 1188
(2018).

[11] N. J. Holter and W. R. Glasscock, Vibrations of evaporating
liquid drops, J. Acoust. Soc. Am. 24, 682 (1952).

[12] X. Ma, J.-J. Liéter-Santos, and J. C. Burton, Star-shaped os-
cillations of Leidenfrost drops, Phys. Rev. Fluids 2, 031602(R)
(2017).

[13] P. Casal and H. Gouin, Vibrations of liquid drops in film boiling
phenomena, Int. J. Eng. Sci. 32, 1553 (1994).

[14] J. G. Leidenfrost, De aquae communis nonnullis qualitatibus
tractatus, Duisburg (1756) translated by C. Wares, On the fixa-
tion of water in diverse fire, Int. J. Heat Mass Transfer 9, 1153
(1966).

[15] M. Boutigny, Sur les phénomènes que présentent les corps
projetés sur des surfaces chaudes, Ann. Chim. Phys. 3, IX 350
(1843); 3, 16 (1844) (website of Bibliothèque Nationale de
France, Paris, 2012).

[16] J. C. A. Peltier, Caléfaction, in Grande Encyclopédie
Méthodique, Universelle, Illustrée (Ed 1888), Hachette,
B. N. F. (website of Bibliothèque Nationale de France, Paris,
2012).

[17] J. D. Bernardin and I. Mudawar, The Leidenfrost point: Ex-
perimental study and assessment of existing models, J. Heat
Transfer 121, 894 (1999).

[18] P. Sadasivan, C. Unal, and R. Nelson, The need for new experi-
ments, J. Heat Transfer 117, 558 (1995).

[19] P. Sadasivan, C. Unal, and R. Nelson, Nonlinear aspects of high
heat flux nucleate boiling heat transfer, J. Heat Transfer 117,
981 (1995).

[20] G. Wang, J. R. McDonough, V. Zivkovic, T. Long, and S. Wang,
From thermal energy to kinetic energy: droplet motion triggered
by the Leidenfrost effect, Adv. Mater. Interfaces 8, 2001249
(2021).

[21] J. M. Delhaye, M. Giot, and M. L. Riethmuller (eds.),
Thermohydraulics of Two-Phase Systems for Industrial De-
sign and Nuclear Engineering (Mc Graw-Hill, New York,
1981).

[22] V. S. Nikolayev, D. Chatain, Y. Garrabos, and D. Beysens,
Experimental Evidence of the Vapor Recoil Mechanism in the
Boiling Crisis, Phys. Rev. Lett. 97, 184503 (2006).

[23] P. Lloveras, F. Salvat-Pujol, L. Truskinovsky, and E. Vives,
Boiling Crisis as a Critical Phenomenon, Phys. Rev. Lett. 108,
215701 (2012).

[24] F. Celestini, T. Frisch, A. Cohen, C. Raufaste, L. Duchemin, and
Y. Pomeau, Two-dimensional Leidenfrost droplets in a Hele-
Shaw cell, Phys. Fluids 26, 032103 (2014).

[25] T. Y. Zhao and N. A. Patankar, The thermo-wetting instability
driving Leidenfrost film collapse, Proc. Natl. Acad. Sci. USA
117, 13321 (2020).

[26] M. Rein, Interaction between drops and hot surfaces, in Drop-
Surface Interactions, CISM Vol. 456 (Springer, Vienna, 2002),
pp. 185–217.

[27] M. A. J. van Limbeek, M. H. K. Schaarsberg, B. Sobac, A.
Rednikov, C. Sun, P. Colinet, and D. Lohse, Leidenfrost drops
cooling surfaces: Theory and interferometric measurement,
J. Fluid Mech. 827, 614 (2017).

[28] M. A. J. van Limbeek, O. Ramirez-Soto, A. Prosperetti, and D.
Lohse, How ambient conditions affect the Leidenfrost tempera-
ture, Soft Matter 17, 3207 (2021).

[29] J. W. Cahn and J. E. Hilliard, Free energy of a non-uniform
system, J. Chem. Phys. 31, 688 (1959).

[30] J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity
(Clarendon Press, Oxford, 1984).

[31] Handbook of Chemistry and Physics, 102nd ed., edited by J.
Rumble (CRC Press, Boca Raton, FL, 2021).

[32] N. C. Patel and A. S. Teja, A new cubic equation of state for
fluids and fluid mixtures, Chem. Eng. Sci. 37, 463 (1982).

[33] Y. Rocard, Thermodynamique (Masson, Paris, 1967).
[34] P. Germain, The method of virtual power in the mechanics

of continuous media, I: Second-gradient theory, Math. Mech.
Complex Syst. 8, 153 (2020), Translated by M. Epstein and
R. E. Smelser.

[35] P. Casal, La théorie du second gradient et la capillarité, C. R.
Acad. Sci. Paris 274 A, 1571 (1972).

[36] D. G. Triezenberg and R. Zwanzig, Fluctuation Theory of Sur-
face Tension, Phys. Rev. Lett. 28, 1183 (1972).

[37] B. V. Derjaguin, N. V. Churaev, and V. M. Muller, Surfaces
Forces (Springer, New York, 1987).

[38] P. G. de Gennes, Wetting: Statics and dynamics, Rev. Mod.
Phys. 57, 827 (1985).

[39] P. Casal, Principes variationnels en fluide compressible et en
magnétodynamique des fluides, J. Mec. 5, 149 (1966).

[40] H. Gouin, Utilization of the second gradient theory in con-
tinuum mechanics to study the motion and thermodynamics
of liquid-vapor interfaces, in Physicochemical Hydrodynamics,
edited by M. G. Velarde, NATO ASI Series Vol. 174 (Springer,
Boston, MA, 1988), pp. 667–682.

[41] S. L. Gavrilyuk and H. Gouin, Rankine-Hugoniot conditions
for fluids whose energy depends on space and time derivatives
of density, Wave Motion 98, 102620 (2020).

[42] H. Gouin, Rankine-Hugoniot conditions obtained by using the
space-time Hamilton action, Ric. Mat. 70, 115 (2021).

[43] P. Casal and H. Gouin, Connection between the energy equation
and the motion equation in Korteweg’s theory of capillarity,
C. R. Acad. Sci. Paris 300, 231 (1985).

[44] S. Gavrilyuk, B. Nkonga, K.-M. Shyue, and L. Truskinovsky,
Stationary shock-like transition fronts in dispersive systems,
Nonlinearity 33, 5477 (2020).

[45] S. Gavrilyuk and K.-M. Shyue, Singular solutions of the BBM
equation: analytical and numerical study, Nonlinearity 35, 388
(2022).
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