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Universal mechanical instabilities in the energy landscape of amorphous solids: Evidence from
athermal quasistatic expansion
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Using numerical simulations, we study the failure of an amorphous solid under athermal quasistatic expansion
starting from a homogeneous high-density state. During the expansion process, plastic instabilities occur,
manifested via sudden jumps in pressure and energy, with the largest event happening via cavitation leading to
the material’s yielding. We demonstrate that all these plastic events are characterized by saddle-node bifurcation,
during which the smallest nonzero eigenvalue of the Hessian matrix vanishes via a square-root singularity. We
find that after yielding and prior to complete fracture, the statistics of pressure or energy jumps corresponding
to the plastic events show subextensive system-size scaling, similar to the case of simple shear but with
different exponents. Thus, overall, our paper reveals universal features in the fundamental characteristics during
mechanical failure in amorphous solids under any quasistatic deformation protocol.
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I. INTRODUCTION

Amorphous solids are extensively utilized in diverse appli-
cations that span from nanometric scales to centimeters [1–4].
Stability of these materials under various external mechan-
ical perturbations is important for such usage, and hence
the significance for understanding the underlying processes
leading to their mechanical failure. Cavitation is one such
mode of spontaneous catastrophic failure that occurs in these
solids, be it hard (metallic glass, polymer glass etc.) or soft
(emulsions, wet granular matter, gels, etc.), when the ma-
terial is subjected to expansion of some kind. The initial
microcavities [5–16] potentially lead to eventual fracture if
the expansion process is continued, as evidenced in recent
experiments [17]. Thermodynamically, formation of cavities
is related to accessing the zone of solid-gas coexistence in the
temperature-density plane of the phase diagram of cohesive
glass-forming systems [18–20], as encountered both at finite
temperatures [21–23] and under athermal conditions [18] dur-
ing mechanical expansion.

The underlying energy landscape of amorphous materials
is complex, and analyzing the material properties through
the landscape’s features, especially the local minima [called
inherent structures (ISs)] and saddles, is a domain of active
research. In the context of the material’s response to ather-
mal quasistatic shear (AQS) [2,24], i.e., at vanishing driving
rate and in the absence of thermal noise [25,26], it has been
demonstrated that, during the straining process, yielding hap-
pens via the occurrence of irreversible plastic events and
each such event can be considered as a catastrophic process
corresponding to a saddle node bifurcation within the en-
ergy landscape, i.e., whenever an event occurs, the smallest
nonzero eigenvalue of the Hessian matrix, Hαβ

i j (defined later)

vanishes via a square-root singularity [24,27–30]. Appearance
of the square-root singularity is special, particularly because a
minimum and a saddle of index 1 in the underlying potential
energy landscape have to meet each other during the defor-
mation process, leading to a saddle-node bifurcation. Here
saddle of index 1 refers to the saddle in the energy landscape
which has one unstable direction. The failure via saddle of
index 1 is one of the crucial aspects of this deformation
process, as it means the vanishing of only the lowest nonzero
eigenvalue in this context. For example, if the process happens
via a saddle of index 2, then it would have meant that two
eigenvalues would have simultaneously gone to zero at the
failure point. Thus, saddle-node bifurcation is very special, as
it means that deformation proceeds along a unique direction,
the direction of the lowest eigenvector. This also means that
particles in the whole system move in a concerted manner
along the direction of the lowest eigenvector. To reiterate,
this process is not necessarily the same in other deformation
processes across different systems, for example, in a granular
assembly of spheres in the presence of frictional forces, the
plastic event leads to a different bifurcation process, and it has
been demonstrated in Ref. [31] that two real eigenvalues can
merge and give rise to two imaginary eigenvalue pairs instead
of vanishing of the lowest eigenvalue.

Further, analyzing the statistical properties of the plastic
events is also of significance. In the case of the AQS steady
state, it has been shown [30] that the mean drops in energy and
stress, respectively, scale as 〈�U 〉 ∼ Nα , 〈�σ 〉 ∼ Nβ , where
α = 1/3 and β = −2/3, being universal exponents in both
two and three dimensions across different model systems.

It is pertinent to ask whether other quasistatic mechani-
cal deformations also involve similar singularities and follow
similar statistics. A priori, it is not evident that spontaneous
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emergence of density inhomogeneities in the form of cavity
formation, under expansion, would correspond to a failure
via saddle of index 1. A recent study using a one-component
system, which potentially crystallizes at low temperatures,
seemed to show that at the instant of cavitation of the
solid, a saddle-node bifurcation does occur [32]. However,
the study specifically focused near the Sastry density, i.e.,
where IS states start to show spatial inhomogeneities [33,34],
using states obtained through thermal quench from a high-
temperature liquid state at this density and then probing its
stability. The behavior at higher or lower densities and specif-
ically IS states sampled at low temperatures was not studied.

In this paper, we investigate the stability of local minima
within the energy landscape visited by a model amorphous
solid while it is subjected to athermal quasistatic expansion
(AQE), starting from a homogeneous high-density state. We
observe that the expansion leads to the release of pressure
via spontaneous formation of cavities, which become precur-
sors for fracture progression upon continued expansion, and
eventually leads to loss of material integrity. We demonstrate
that, all throughout this trajectory, plastic events of different
magnitudes happen, be it in the homogeneous state or when
density inhomogeneities pop up and proliferate. And, all such
events occur via a saddle node bifurcation within the energy
landscape. Further, we show that during cavitation and prior
to complete fracture, the statistics of pressure or energy jumps
corresponding to the plastic events show subextensive system-
size scaling [28], similar to the case of AQS but with different
exponents. Thus, broadly speaking, our observations regard-
ing the response to expansion in conjunction with previous
observations on response to shear deformations indicate that
the nature of mechanical instabilities that the underlying land-
scape of amorphous materials undergo under any mechanical
deformation is universal in nature.

The paper is organized as follows. After the introductory
discussions in Sec. I, we elaborate on the modeling aspects
and numerical methods used in our study in Sec. II. This is
followed by an extensive discussion of our findings in Sec. III,
and we conclude with a summary and perspectives in Sec. IV.

II. MODEL AND METHODS

A. Model details and initial states

Our study is mainly focused on the well-characterized two-
dimensional model binary Lennard-Jones mixture (KABLJ)
which has 65 : 35 composition of the two species, labeled
A and B, with interaction parameters and σAA = 1.0, σBB =
0.88, σAB = 0.8, εAA = 1.0, εBB = 0.5, εAB = 1.5 [35]. In this
model, the interaction potential, smoothened up to first two
derivatives, between particles i and j is the following:

V (ri j ) = 4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6]
+ u(ri j ), (1)

where

u(ri j ) = C0 + C2

(
ri j

σi j

)2

+ C4

(
ri j

σi j

)4

. (2)

Here, i and j would correspond to either of the labels A or
B. The constants C0, C2, and C4 are determined by requiring

the potential and its first two derivatives to be zero at the cutoff
r = 2.5σi j . The simulations have been performed for a variety
of system sizes ranging from N = 103 to N = 105.

To prepare initial states for our study, we first equilibriate
the system at T = 1.0 (in LJ units), which is in the liquid
regime, followed by cooling at a constant rate of 10−4 per
MD timestep to a final temperature of T = 0.01 [36], which
is in the glassy regime. The corresponding glass transition
temperature of the model system is at T = 0.33 [37]. The
athermal states used in our paper are generated by obtaining IS
states corresponding to the glassy configurations at T = 0.01,
via conjugate gradient minimization.

We also study a few other models in d = 2, 3, detailed in
the Supplemental Material (SM) [38], to demonstrate univer-
sal behavior across diverse model amorphous systems. These
are: (i) The 3D Kob-Andersen (3dKABLJ) [35]: 80:20 binary
mixture interacting via Lennard-Jones potential with the same
interaction parameters as 2DMKA. The initial states were pre-
pared by quenching high temperature (T > 2.0) liquid. (ii) 3D
Wahnstorm mixture (3dWahn) [39]: 50:50 binary mixture in-
teracting via Lennard-Jones potential with parameters, εAA =
εBB = εAB = σAA = 1.0, σAB = 1.1, and σBB = 1.2. The initial
states were prepared by quenching high temperature (T >

2.0) liquid. (iii) 2D Lancon et al. model (2dLancon) [40,41]:
A binary mixture with composition NA/NB = (1 + √

5)/4, in-
teracting via Lennard-Jones potential with parameters σAA =
2 sin(π/5), σBB = 2 sin(π/10), σAB = 1.0, εAA = εBB = 0.5,
and εAB = 1.0. The initial states were prepared by quenching
high temperature (T > 3.0) liquid.

B. Athermal quasistatic expansion and stability analysis

Starting from a spatially homogeneous high density state
(ρ = 1.2 for KABLJ) having positive barostatic pressure, we
study the athermal quasistatic response (i.e., in the absence of
any thermal effects and in the limit of vanishing driving rates)
of this system to isotropic expansion [18]. In each expansion
step, a constant volume strain is applied on the system by
rescaling the length of the box by a factor (1 + ε) along
with affine transformation of particle coordinates, followed
by minimization of the energy of this strained configuration
using the conjugate gradient algorithm [42]. The values of ε

are varied from ε = 10−4 to ε = 10−9. The initial states used
for the expansion process are obtained by thermally cooling
high-temperature liquid states, followed by energy minimiza-
tion; see SM for further details. The AQE simulations are done
using LAMMPS [43].

LAPACKE [44] is used for doing the stability analysis of
the local minima states by computing eigenvalues and eigen-
vectors of the Hessian matrix Hαβ

i j , which is defined as

Hαβ
i j = ∂2U ({ri})

∂rα
i ∂rβ

j

. (3)

For a system of N particles interacting via a pairwise
potential φ(r), the potential energy is given by

U (r1, r2, . . . rN ) = 1

2

N∑
i=1

N∑
j=1;i �= j

φ(| ri − r j |).
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FIG. 1. Model KABLJ. Variation of (a) average pressure (P), (b) average energy per particle (U/N), with density ρ, for different system
sizes as marked. Corresponding density variation of susceptibility (c) χp and (d) χU . Inset of (c) shows the system-size dependence of pressure
susceptibility peak, χ peak

p ∼ N , indicated with dashed line. Similar system size variation of χ
peak
U shown in inset of (d). (e) Density values at

which the two peaks in susceptibility occur, for different system sizes.

The Hessian matrix of the potential energy for a pairwise
potential can be reduced to [29]

Hi j
αβ = ∂2 U

∂ri
α ∂ r j

β

= −
(

φ
i j
rr

(ri j )2
− φ

i j
r

(ri j )3

)
ri j
α ri j

β − δαβ

φ
i j
r

ri j
,

(4)
where ri j

0 = xi − x j , ri j
1 = yi − y j , φr = ∂φ/∂r, and

φr = ∂2φ/∂r2. Our focus is on tracking the evolution of the
smallest nonzero eigenvalue of the Hessian, λmin, and the
corresponding eigenmode, during the AQE.

III. BACKGROUND: THE SQUARE ROOT SINGULARITY

Here, we briefly sketch the derivation of the square-root
singularity. Because of the presence of disorder, the bulk
modulus and other nonlinear moduli will have two contribu-
tions, one coming from the variation of the potential energy
with changing deformation (well-known in the literature as
the Born term) and the contribution coming from the non-
affine motions of particles. Note that, at zero temperature,
this nonaffine contribution in a perfect crystal will not be
there. The nonaffine part of the contribution is one that is
responsible for the observed square-root singularity in these
moduli. For example, bulk modulus will have a nonaffine
contribution which will diverge as ∼1/λmin, whereas the next-
order nonlinear modulus will diverge as ∼1/λ3

min. Now as
these two moduli will be related to each other via a simple
derivative with respect to the applied strain, one can clearly
see that λmin ∼ √

γp − γ , where γp is the strain at which the
plastic drop happens. A detailed derivation can be found in
Ref. [29]. In our current paper, γ will be inversely related
to the density change, so one expects naturally to see λmin ∼√

ρ − ρc, where ρc is the density at which the plastic event
happens.

IV. RESULTS

A. The yielding

When we expand the homogeneous solid, the density
decreases and expectedly the pressure also decreases; see
Fig. 1(a) for the density dependence of the ensemble-averaged
pressure 〈P〉 for different system sizes. Energy of the system
〈U/N〉 also decreases simultaneously; see Fig. 1(b). As expan-
sion continues, beyond some density, the pressure becomes

negative, implying occurrence of internal tension. When the
pressure changes signs, the energy goes through a minimum
and then starts increasing. Eventually, the built-up tension is
released, and the system yields with a big jump in pressure
[see Fig. 2(a) for the case of a trajectory corresponding to
N = 105]. The fluctuations in pressure within the ensem-
ble, quantified via a susceptibility χp = N (〈P2〉 − 〈P〉2), goes
through a maximum when the jump in pressure is witnessed;
see Fig. 1(c). The pressure jump and a peak in the corre-
sponding susceptibility parallels the response to shear, where
a large stress drop at yielding is associated with a peak in
stress fluctuations [45]. Similar behavior is also observed
in the energy fluctuations, quantified via the susceptibility
χu = (1/N )[〈U 2〉 − 〈U 〉2]; see Fig. 1(d).

We note that the jump in pressure becomes sharper with
increasing system size. Along with that, the peak height of the
susceptibility increases as χp

peak ∼ N [see inset of Fig. 1(c)],
with the peak also becoming narrower, similar to what has
been observed in the case of AQS response [45]. These obser-
vations evidence the existence of a yielding transition, located
at the density at which χp

peak occurs, with the yield point
shifting to larger densities with increasing N [see Fig. 1(e)].

We now focus on the spatial ramifications of the response
to the AQE process by illustrating the evolution of an ex-
ample particle configuration, whose P versus ρ trajectory is
shown in Fig. 2(a). We observe that the state which is spa-
tially homogeneous at higher density [see Fig. 2(b)] yields
under expansion via the spontaneous formation of a large
cavity, as shown in Fig. 2(b). Upon further expansion, the
cavity increases in size and newer cavities appear in front
of the expanding front [see Figs. 2(d) and 2(e)], with these
events showing up as saw-toothed steps in the P versus ρ

as shown in Fig. 2(a) [18]. While the expansion proceeds,
cavities start merging, the fracture expands and eventually per-
colates, leading to the complete failure of the system [46,47];
see Figs. 2(f) and 2(g). The processes of cavity mergers and
eventual fracture via fissures of necklike structures lead to
large fluctuations in pressure which shows up as a secondary
peak in χp, very distinctively visible for larger system sizes
(N = 105, 2.5 × 104). Here too, we notice that the location
of the peak shifts to larger density with increasing system
size [38]. We note that these processes also happen in the
smaller system and the second peak in χp is likely to occur
there too, probably at smaller ρ.
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FIG. 2. Model KABLJ. (b)–(g) Snapshots from a N = 105 system showing cavitation and eventual failure at density points ρ = 1.143 (b),
1.106 (c), 1.083 (d), 1.058 (e), 1.043 (f), 1.039 (g) as marked for the single trajectory for which the evolution of pressure with density is shown
in (a).

B. Postyield analysis

Next, we probe the stability of the local minima visited
by the amorphous system during the quasistatic expansion,
focusing on the density regime around yielding and beyond,
prior to the complete fracture. For this purpose, we compute
the smallest nonzero eigenvalue, λmin, of the Hessian matrix
of the configuration obtained after each combined step of
expansion and minimization. In Fig. 3(a), the evolution of
λmin with ρ is plotted for a N = 5000 KABLJ state, using an
expansion step of ε = 5 × 10−4 for the expansion trajectory
shown in Fig. 3(b) initiated from ρ = 1.2. We note that for ev-
ery jump in pressure, λmin drops sharply. When well-resolved
via smaller expansion steps ranging between 10−8 to 10−11,
λmin vanishes as a power law: λmin ∼ √

(ρ − ρc)/ρc, where ρc

is the estimated location, in each case, of the plastic instability
marked by the square-root singularity. In Fig. 3(c), the power-
law behavior of λmin is displayed in the vicinity of the density
locations marked in Fig. 3(b), which correspond to the esti-
mated ρc obtained via the power-law fit in each case; see data
set labeled (1). These locations correspond to the sequence
of initial cavitation, subsequent increase in the cavity, and
also formation of neighboring cavities; see SM [38] for the
density maps. The vanishing of λmin, in each case, is thus con-
sistent with the scenario of saddle-node bifurcation discussed
in Sec. I. Thus, for each of these irreversible events, the nature
of the singularity is exactly the same, and this is observed for
all system sizes as shown in the SM [38]. In Fig. 3(c), we
also show that the same power-law behavior is observed for
other model glass-forming systems in similar density regimes,
both in d = 2 and 3, thus underlining the universal nature of
this finding across amorphous systems. Note that the data are
scaled appropriately with respective proportionality constants
(A) to collapse the curves of the same model on top of each
other.

Next, if we plot the eigenfunction corresponding to the
minimum eigenvalue at the brink of singularity, i.e., the last
numerically resolved density prior to ρc, we observe that its
spatial structure is very similar to the nonaffine displacement
field that is generated during the expansion step on the ap-
proach to ρc, i.e., between the last two numerically resolved
density points prior to the singularity. In Figs. 3(d) and 3(e),
we demonstrate this for the events marked in Fig. 3(a) during
the postyield regime. This clearly demonstrates that just the
lowest eigenmode of the Hessian matrix contributes to the
ensuing plastic instability, i.e., there exits only one unstable
direction on the energy landscape, viz. the one provided by
the eigenvector corresponding to λmin.

To summarize, despite the occurrence of density inhomo-
geneties, for all such events in this regime around yielding

and prior to complete fracture, plastic events are generically
approached by incidents of saddle-node bifurcation within
the underlying potential energy landscape, similar to what
has been earlier observed during the response to quasistatic
shear [24,27,30]. Thus, one can conclude that such sin-
gularities are characteristic of plastic events whenever an
amorphous solid responds to large mechanical deformations,
be it via shear or expansion.

C. Analyzing the yielding avalanche

In the previous subsection, we discussed the displacement
fields at the brink of the plastic instability, i.e., approach-
ing each ρc from a slightly larger density. Now, we focus
on the displacement field across the plastic instability, i.e.,
the pressure jump. In particular, we discuss the case of
the main cavitation event marked in Fig. 3(a), occurring at
ρc ≈ 1.09489, for which we show in Fig. 4(c) the spatial map
of displacement field associated with the emergence of the
large cavity. We contrast this with the spatial map of eigenvec-
tor [Fig. 4(a)] related to λmin, at the brink of the event, i.e., the
last numerically resolvable point prior to the corresponding
ρc, viz. at a distance of δρ ≈ 10−9 from the instability. The
overlap between the maps in (a) and (c) is 0.57. On the other
hand, for the displacement field on the brink of these events,
viz. between the last two numerically resolved data points on
the power-law branch prior to the event, the overlap is 0.99;
see Fig. 4(b) for the displacement field. Thus, although the ap-
proach to the instability is solely determined by the eigenmode
related to λmin, the displacement across the plastic drop has a
more a avalanchelike character wherein a cascade of plastic
events, triggered via the first event, occur before stability is
regained on the landscape. Such an avalanchelike feature has
also been reported in the case of sheared amorphous solids
during the occurrence of large stress drops [48], again un-
derlying the similar behavior for two different mechanical
deformation protocols.

D. Statistics of plastic events

We now study the statistics of the jumps in pressure and
energy, in the density regime beyond yielding, for the different
system sizes, to probe the system size scaling behavior of
the distributions of pressure and energy jumps, �P and �U ,
respectively. We note that, in this regime, both pressure and
energy are not in a true stationary state. Nevertheless, we try to
get some idea about the scale of the avalanches as the system
transits toward eventual failure after a spot of weakness has
been seeded in the form of a cavity.
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FIG. 3. Variation of the (a) minimum eigenvalue of the Hessians,
λmin and (b) corresponding pressure during a particular quasistatic
expansion trajectory of a N = 5000 KABLJ state. (c) For amorphous
states obtained at density points marked in (a) and (b), λmin shows
power-law behavior λmin ∝ √

(ρ − ρc )/ρc, where ρc is the estimated
location of singularity in each case (dataset labeled as 1). Also
shown are similar power laws obtained in other d = 2, 3 models [38];
data sets labeled as 2 (3dKABLJ), 3 (3dWahn), 4 (2dLancon). Note
that the data are scaled appropriately with respective proportionality
constants (A) to collapse the curves of the same model on top of
each other. (d) For the density locations in the postyield regime,
marked in (a), maps of nonaffine displacements on the approach
to ρc. (e) Corresponding maps of eigenfunctions associated with
respective λmin.

FIG. 4. The yielding avalanche. On the approach to the
main cavitation event, for the trajectory shown in Fig. 3(a), at
ρc ≈ 1.09489—(a) the eigenmode measured at the last numerically
resolved density prior to the yielding event, viz. at a distance of
δρ ≈ 10−9; (b) the corresponding displacement field while approach-
ing the yield point. (c) The displacement field across the subsequent
yielding event leading to cavitation.
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FIG. 5. Model KABLJ. Top: Distribution of jumps in (a) pres-
sure and (b) energy, during AQE, after occurrence of main cavitation
event. Bottom: Data collapse of the distributions, with appropriate
N-scaling, which also reflects in the system size dependence of cor-
responding mean jump values, viz. 〈�P〉 ∼ N−0.34 (c), 〈�U 〉 ∼ N0.53

(d), shown in the respective insets. The dashed lines in bottom panel
correspond to power-laws with exponents 0.91 (c) and 0.93 (d).

The distributions, P(�P) and P(�U ), for the different N
are shown in Figs. 5(a) and 5(b). The distributions for different
N collapse upon scaling the argument by N−0.34 and N0.53,
respectively; see Figs. 5(c) and 5(d), which is also reflected
in the N dependence of the first moments of the distribu-
tions, viz. 〈�P〉 and 〈�U 〉, as shown in the respective insets.
We note that for the smaller system sizes, these distributions
are independent of the sampling window, postcavitation (see
SM [38]). However, for the larger systems, there is a density
window where these distributions deviate and this happens
near the second peak in χp where larger events tend to happen
due to fissures and mergers; post this regime, the distributions
recover the scaling form. However, the vestiges of large drops
in pressure and energy do show up in the tails of the distribu-
tions aggregated across the density regime after yielding; see
Figs. 5(a), 5(b) and SM [38].

It is to be noted that the scaling exponents are differ-
ent from the case of shear and also the difference between
these exponents comes out to be ≈0.9 unlike in the case of
yielding under shear, where α − β ≈ 1. However, the latter
holds only when the density does not change [49], which
is the case for shear but not for expansion. Moreover, the
distributions themselves show nice power-law behavior at
small arguments as P(�P) ∼ �Pη and P(�U ) ∼ �U θ , with
η 	 0.91 and θ 	 0.93 as shown in Figs. 5(c) and 5(d) by
the solid lines. It also seems that the forms of the distribu-
tions can be approximated by the Weibull distribution with
similar power-law exponents; see SM [38]. It is not immedi-
ately obvious why pressure and energy drops in the postyield
should show extreme value statistics which is expected for the
first plastic drop as shown before for AQS studies [30]. The
power-law exponent of P(�U ) suggests an exponent 0.52 for
the system-size dependence of 〈�U 〉 in agreement with our
observation but the pressure drop statistics does not follow the
same. This observation does warrant further studies for better

understanding plastic instabilities during AQE. Nevertheless,
the scaling collapse of distributions suggests that under AQE,
postyield, amorphous solids display scale-free plasticity too,
just like in the case of AQS albeit with different value of
exponents α and β.

E. Analysis of the first event

So far, we have focused on the events after yielding, i.e.,
the main cavitation process. Now we probe the first instance
when λmin vanishes, i.e., occurrence of the first irreversible
plastic event, during the expansion process, starting from the
high density state. We observe that this instability occurs at
a fairly large density, far away from cavitation; see Fig. 6(a)
for a single trajectory of a N = 5000 system. By sampling
such events from several trajectories, we show in Fig. 6(b)
that here too λmin ∼ √

(ρ − ρc)/ρc, underlying that all such
instabilities have a similar origin, viz, a saddle-node bifur-
cation in the underlying energy landscape. The spatial map
of the eigenfunction at the brink of the instability illustrated
in Fig. 6(a) is shown in Fig. 6(c). Again it matches well
with the nonaffine displacement undergone on the approach
to the instability [see Fig. 6(d)], with both showing system-
spanning spatial structures having a quadrupolar Eshelby-like
shape [2,24]. We note that even in the case of response to
shear, preyielding avalanches have been reported [50]. Unlike
the case at cavitation, no spatial inhomogeneity in density
occurs here; see Fig. 6(e). In fact, in between this first event
and yielding via cavitation, numerous plastic events occur, and
in each case, the nature of the singularity is the same. The cor-
responding spatial maps of nonaffine displacements initially
show Eshelby-like shapes, which somewhat get distorted as
the cavitation regime is approached (see SM [38]), and at
cavitation and beyond take a different structure in the vicinity
of the cavity, as is visible in Fig. 3(e). The shear mode visible
during the early events is perhaps caused by the frozen-in
shear stresses generated during the preparation of the glass
via quench. It is possible that it takes several events to relax
out these frozen-in stresses and thereafter as the cavitation
regime is approached, the shape of the eigenmodes start to de-
viate with possible mixing with the dilatational modes which
become predominant at cavitation (see SM [38]). Even be-
yond yielding, the emerging solid matrix has a higher density
wherein Eshelby-like events can again occur upon further de-
formation. Systematic investigations of these eigenfunctions
needs to be done in future.

V. CONCLUSIONS

To summarize, we have studied how a spatially homo-
geneous amorphous solid responds to quasistatic isotropic
expansion. As expected, the release of built-up internal
stresses leads to yielding transition via cavitation, which then
acts as precursor to eventual failure via system-spanning frac-
ture. Both the yielding density as well as the location of
complete fracture can be identified via susceptibility measure-
ments. The system-size scaling of χp is exactly the same as
that observed for applied shear.

Our main focus is in examining the stability of the local
minima that the system visits during the expansion process
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FIG. 6. Model KABLJ. (a) Variation of λmin for a expansion trajectory (N = 5000), with the location of first event marked. (b) For first
plastic events sampled from independent trajectories, power-law behavior: λmin ∝ √

(ρ − ρc )/ρc. Data shown for different system sizes,
as marked, and scaled appropriately for the data collapse. (c) Map of the eigenfunction related to λmin at the brink of ρ ≈ ρc(= 1.168)
corresponding to trajectory shown in (a). (d) Map of corresponding nonaffine displacement field. (e) Coarse-grained density field after the first
jump, displaying spatial homogeneity.

by monitoring the smallest eigenvalue of the correspond-
ing Hessian matrix. We demonstrate, using several model
amorphous solids, both in d = 2 and 3, that whenever the
eigenvalue goes through zero, all throughout the expansion
trajectory, be it for the first event in the high density phase
or around and after the yielding via cavitation, it vanishes
as a square-root singularity, which is characteristic of a
saddle-node bifurcation within the underlying energy land-
scape. Thus, the point of yielding, where such instability
was reported for a monocomponent system [32], is nothing
special vis-à-vis how the eigenvalue vanishes. Rather, these
irreversible processes, which lead to nonaffine displacements,
seem universal characteristics of plastic events whenever an
amorphous solid responds to large mechanical deformations,
be it via shear or expansion. However, we note that unlike
yielding via shear which can occur in amorphous materials

of all kinds, cavitation has a thermodynamic underpinning
vis-à-vis the existence of gas-solid coexistence in the phase
diagram of attractive glass-formers [51] and not for repulsive
ones.

In the future, we plan to study the statistics of the first and
subsequent intermediate events prior to cavitation to connect
with similar analysis done for AQS response.
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