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Rigidity transitions in zero-temperature polygons
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We study geometrical clues of a rigidity transition due to the emergence of a system-spanning state of self-
stress in underconstrained systems of individual polygons and spring networks constructed from such polygons.
When a polygon with harmonic bond edges and an area spring constraint is subject to an expansive strain, we
observe that convexity of the polygon is a necessary condition for such a self-stress. We prove that the cyclic
configuration of the polygon is a sufficient condition for the self-stress. This correspondence of geometry and
rigidity is akin to the straightening of a one dimensional chain of springs to rigidify it. We predict the onset of
the rigidity transition and estimate the transition strain using purely geometrical methods. These findings help
determine the rigidity of an area-preserving polygon just by knowing its geometry. Since two-dimensional spring
networks can be considered as a network of polygons, we look for similar geometric features in underconstrained
spring networks under isotropic expansive strain. We observe that all polygons attain convexity at the rigidity
transition such that the fraction of convex, but not cyclic, polygons predicts the onset of the rigidity transition.
Acyclic polygons in the network correlate with larger tensions, forming effective force chains.
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I. INTRODUCTION

Athermal systems such as biopolymer networks can be
modeled as disordered elastic networks [1]. The linear elas-
tic response of granular media modeled by frictionless soft
sphere packings can also be represented by such disordered
networks [2]. This is accomplished by mapping every contact
between neighboring spheres to the harmonic springs of a
disordered spring network [3,4]. Determining the rigidity of
such disordered networks is a nontrivial problem that depends
on both the topology and geometry of the network.

A network that is not rigid can be deformed while pre-
serving the bond lengths. A floppy mode is a deformation
of the network that preserves the bond lengths to first order
in the displacement of the vertices. While nontrivial floppy
modes change the shape or geometry of the network, trivial
floppy modes are just the global translations and rotations of
the network. When all nontrivial floppy modes are removed,
the network is said to be first-order, or infinitesimally, rigid.
This is a microscopic definition of rigidity [5]. By adding
bonds, or constraints, we change the topology of the network
and rigidification is achieved when the number of degrees of
freedom is equal to the number of independent constraints
in the system [6]. A canonical example of this phenomenon
is that the infinitesimal rigidity of a two-dimensional spring
network with central-force spring interactions can be deter-
mined solely by using a combinatorial theorem that identifies
the number of independent constraints [7]. In other words, no
geometry needs to be invoked.

The other independent manner of rigidifying an undercon-
strained network is through a distribution of stresses in the
network that adds up to zero net force on every vertex [8].

Such a system spanning stress distribution is termed a state of
self-stress [2,5]. The simplest example of this is an undercon-
strained chain of springs which rigidifies when stretched out.
The tension in the chain imposes a bending energy cost on all
its transverse fluctuations [2]. Straining such underconstrained
central-force spring networks can reposition the vertices such
that a state of self-stress can be established.

The difference between the number of nontrivial floppy
modes N0 and the number of states of self-stress NS for a given
configuration is determined by Maxwell-Calladine theorem as
[8,9]

N0 − NS = dN − Nb − d (d + 1)

2
, (1)

where Nb is the number of constraints in the spring network
embedded in a d-dimensional space. This is a topological
condition that does not involve any geometrical details of the
network. However, the existence of a state of self-stress is
a question of geometry where we need to identify potential
shapes that can satisfy force balance on the vertices.

A canonical example for a state of self-stress establish-
ing rigidity in underconstrained networks is the case of
two-dimensional disordered spring networks under isotropic
expansive strain. Even though the order of the transition could
not decidedly be found for spring networks derived from
a diluted triangular lattice, a continuous phase transition in
the bulk modulus appears to agree better with the numerical
results [10]. In contrast, for disordered spring networks de-
rived from the contact network of jammed particles, strain in
the form of isotropic expansion establishes a discontinuous
rigidity transition in the bulk modulus [11]. Strain-induced
rigidity transitions, such as these, are being actively studied
via several approaches [12–17].
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On the other hand, the statistical mechanics of shape (not
rigidity) transitions in two-dimensional thermal polymer rings
with a pressure energy term has been carefully studied. These
were studied as idealized models for membrane vesicles
[18–21]. Specifically, the polymer rings are constructed as N
number of springs and a pressure p coupled with the enclosed
area A. While the energetic pressure term −pA favors inflation
of the ring, entropic effects in these thermal models favor
the crumpling of the ring [22]. Thus, entropy counters the
outward pressure force and serves as an ‘inward’ pressure. In
these shape-transition studies, the mean area 〈A〉 is used as the
order parameter and pressure is the tuning parameter. For self-
intersecting rings, at the critical pressure pc ∼ N−1, the ring
blows up achieving infinite area at the transition point [18,23].
By replacing stretchable rods with rigid rods, a continuous
phase transition between the crumpled and the inflated phases
was found [20]. This behavior is different for self-avoiding
rods where smooth crossovers between three distinct scaling
regimes were recognized [19].

While the rigidity transitions in zero temperature disor-
dered spring networks under expansive strain are well studied,
the geometry of the network, i.e., the shapes of its constituent
polygons which is crucial in sustaining states of self-stress
have not been given sufficient attention. In this paper, we
attempt to bridge this gap by addressing some important shape
aspects of this rigidity transition. To disassociate the con-
straints imposed by the network on the constituent polygons,
we first study the correspondence of shape and rigidity in iso-
lated zero-temperature polygons under expansive strain. We
then study the shapes of the polygons in the spring network at
the point of transition in light of these findings.

The critical pressure of transition in a polygonal ring with
a pressure energy term is pc = 4π kBT l2/N , where l is the
length of each edge of the loop. In the limit of zero temper-
ature, the critical pressure for the polygon to blow up into a
regular, cyclic polygon is simply pc = 0+ [20]. However, the
zero-temperature spring networks, which we are motivated
by, have a rigidity transition at finite strain [4]. To enable a
nontrivial transition in athermal isolated polygons, we add a
quadratic energy of the form kAA2 with the constant kA > 0
to the Hamiltonian. By completing the square with the pres-
sure energy −pA as kA[A − p/(2kA)]2, the area-dependent
energy term in the Hamiltonian would be kA(A − A0)2 with
A0 = p/2kA.

The important results of our paper are as follows. We show
that isolated polygons with an area conserving constraint have
a rigidity transition under isotropic strain. We recognize that
convexity of a polygon is a necessary condition to sustain a
state of self-stress. We prove that a cyclic polygon—a polygon
that can be circumscribed on a circle is a sufficient condition
for the same. In contrast, when such polygons are used as
building blocks to construct a disordered spring network, we
find that it is not the cyclic polygons that mark the rigidity
transition. The network is seen to be composed of both cyclic
and acyclic polygons when it attains rigidity. Yet all polygons
are strictly convex at the transition point.

While a nonzero macroscopic elastic constant typically
determines the rigidity of a polygon, we observe that we
can also predict the rigidity of this underconstrained system
using its geometry given its trivial topology. We know that a

(a) (b) (c)

FIG. 1. Correspondence of geometry and rigidity. (a) A straight-
ened out chain of springs rigidifies under extensional strain. (b) A
polygon under expansive strain is rigid when it attains a cyclic
configuration. (c) Convex polyhedrons are known to be rigid. While
(a) and (b) are rigid due to the virtue of a system spanning state of
self-stress, (c) is rigid solely due to the shape-preserving constraints
of the polyhedron faces.

one-dimensional chain of edges when straightened out rigid-
ifies via a state of self-stress. The natural two-dimensional
equivalent of this system—a polygon under expansive strain
can sustain a system spanning state of self-stress when it
attains a cyclic configuration. The correspondence of shapes
in judging the presence of a system-spanning state of self-
stress is reminiscent of an important result of Cauchy’s which
guarantees the rigidity of three dimensional polyhedrons if
the geometric condition of convexity is satisfied [24,25]. See
Fig. 1. While Cauchy’s theorem does not apply to polygons,
an extension of this theorem by Alexandrov proves that all
convex polytopes in Rd with d � 3 are rigid [26].

The outline of the paper is as follows. We introduce the
model in Sec. II and present the numerical results in Sec. III.
We observe that there is no singularity associated with this
transition in the thermodynamic limit. In Sec. IV we show
that convexity of the polygon is a necessary condition for a
state of self-stress. In Sec. V we prove that the cyclic polygon
is the unique configuration sustaining a state of self-stress
and is the geometrical signature of rigidity in the loop. In
Sec. VI A we identify the transition using a purely geometrical
method by employing nontrivial floppy modes. In Sec. VI B
we estimate the rigidity transition strain by approximating the
initial random polygon as a regular polygon. In Sec. VII we
show numerical results that demonstrate that convex polygons
which are acyclic in general, mark the rigidity transition in
periodic disordered spring networks.

We represent vectors by lowercase bold letters as in r and
matrices by uppercase bold letters as in R.

II. RANDOM POLYGON MODEL

To generate a random polygon with N vertices (N−gon),
we use Graham’s algorithm [27]. We randomly pick N points
in the xy plane within a two dimensional box of dimensions
L̃B × L̃B. The nearest of these points to the “center of mass”
of this set is chosen to be the first vertex of the polygon
[28]. The rest of the points are sorted according to the angle
of the vector joining the first vertex with each of the other
N − 1 points. This sorting assigns the set of points with vertex
indices 2, 3, . . . , N . The polygon is constructed by joining
these vertices in the order of the assigned indices. The area
enclosed by this random polygon is ã0 and the ith edge length
is l̃i0 . While we construct an 8-gon constrained to a box of
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lengths L̃B × L̃B, all N-gons with N > 8, are constrained to a
box of edge lengths

√
N/8 L̃B. This ensures that the density of

the random points in the plane does not scale with N .
Once we have the random polygon, the Hamiltonian of the

system is defined as

H̃ = 1

2
K̃�

N∑
i=1

(�̃i − �̃i0 )2 + 1

2
K̃A(Ã − Ã0)2,

where K̃� and K̃A are the spring constants of two-body springs
associated with the edges and the area spring, respectively.
Variables �̃i and Ã are the lengths of the ith spring and the
area of the enclosed loop respectively while �̃i0 ’s and Ã0 as
the rest lengths of the two-body spring and the rest area of
the “area spring,” respectively. At zero strain, the rest lengths
and rest area match those of the initial configuration of the
random polygon such that H̃ = 0. In this work, we measure
lengths in units of L̃B and energies in units of K̃A L̃4

B. In
nondimensionalized units, the Hamiltonian is

H = 1

2
K�

N∑
i=1

(�i − �i0 )2 + 1

2
(A − A0)2, (2)

where K� = K̃�/K̃AL̃2
B. For a polygon embedded in R2 and ẑ

being the direction perpendicular to this plane, the area of the
loop is taken to be the algebraic area [18,20,23],

A =
N∑

i=1

(ri × ri+1) · ẑ, (3)

where the position of the ith vertex is denoted by ri. Note that
we imply cyclicity of indices in i + 1 and N + 1 index is taken
to be index 1.

III. NUMERICAL RESULTS

We can equivalently impose expansive strain on the sys-
tem by decreasing �i0 of each spring proportionally or by
increasing A0 in Eq. (2), i.e., strain can be imposed by tuning
down the dimensionless ratios li0/

√
A0. We choose to strain

the polygon by increasing A0. The strain γ is defined as

γ = A0 − a0

a0
, (4)

where a0 is the initial area of the random polygon. Energy
minimization for every imposed strain is performed numer-
ically in C + + using the BFGS2 method in the multimin
package of GNU scientific library [29]. While Graham’s algo-
rithm [27] ensures a nonintersecting polygon at zero strain, we
allow self-intersections of floppy polygons at nonzero strains.
This retains the simplicity of the system for the purpose of
energy minimization. We denote the minimized energy as
E . Stress σ and stiffness K are defined as derivatives of the
energy density as

σ = 1

A

dE

dγ
(5)

and

K = dσ

dγ
. (6)

FIG. 2. A floppy to rigid transition observed for varying polygon
sizes. Stiffness jumps at γ = γc; however, this step size decreases
with polygon size. Every curve is averaged over 100 runs.

For reporting numerical results, we choose the spring
constants K� = 1. This choice does not change the critical
transition strain. The energy minimized configuration for reg-
ular polygons can be easily solved analytically due to the
symmetry of the polygon (see the Appendix). For irregular
polygons, we observe a floppy to rigid transition in the system.
Stress is seen to be continuous across the transition point γc

and the stiffness jumps. The size of this jump decreases with
N . The finite size analysis for stiffness is reported in Fig. 2.
Judging from the nature of the decrease in step size of the stiff-
ness with increasing N , there is no true phase transition, i.e.,
a transition where derivatives of the energy show singularities
in the thermodynamic limit of N → ∞. We, instead, have a
smooth crossover between the floppy and rigid regimes.

Numerically we found that geometrical quantities such as
average edge length 〈li0〉 weakly scales as N0.46 and average
initial area of random polygon 〈a0〉 scales as N1.06. The critical
strain scales with polygon size as 〈γc〉 ∼ N1.89 (see Fig. 3).
All the scalings are in the large N limit of our simulations. In
Sec. VI B, under a regular polygon approximation to predict
critical strain at large N , we calculate the finite-size scaling of
the critical strain using the scalings of geometrical quantities
of the initial configurations, 〈li0〉 and 〈a0〉.

IV. CONVEXITY IS NECESSARY FOR A SYSTEM
SPANNING STATE OF SELF-STRESS

We now present two short arguments to show that convex-
ity is necessary for the loop to sustain a state of self-stress
where nonzero forces due to the area spring and the tensions
in the spring add up to a zero net force on each vertex of the
polygon.

The force on the ith vertex due to the area spring is given
by the negative gradient of the corresponding energy term in
Eq. (2),

f Ai
= (A0 − A) (yi+1 − yi−1, xi−1 − xi+1). (7)
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(a) (b) (c)

FIG. 3. Finite-size scaling in random polygons. (a) The average edge length scales weakly as N0.46. (b) Average area of random polygon at
zero strain scales as N1.06. (c) Average critical strain of rigidity transition scales as ∼N1.89 at large N . All scalings are obtained as fits to large
N limits of our simulations. The data points are obtained by averaging over 100 runs, and error bars are standard deviation about the average.

This vector is perpendicular to the line joining the adjoining
vertices of the ith vertex. This is easily seen by noticing that
the dot product of this force with (xi+1 − xi−1, yi+1 − yi−1) is
zero. Thus, the direction of force due to the area spring at
any given vertex can be easily constructed geometrically. See
Fig. 6 below.

An ith vertex is called an ear or mouth if the line joining
i − 1-th and i + 1-th vertices lie inside or outside the polygon
[30]. When the tuning parameter A0 is increased (see Eq. 2),
a nonconvex polygon attempts to increase its area without
changing edge lengths. This is achieved by flipping the two
dashed edges in Fig. 4(a) into the two solid edges. A non-
convex polygon can always increase its enclosed area without
changing edge lengths via this discrete floppy mode motion
which transforms a mouth to an ear [31]. Thus nonconvex
polygons cannot be rigid under expansive strain expansion.

Another independent argument can be given as follows.
When there is an outward force on the vertices due to the area
spring, the edges should necessarily be in tension (as opposed
to being in compression) to satisfy force balance at all the ears.
Since a mouth is flanked by ears, this implies that the edges
at the mouth are in tension. However, at the mouth, edges in
tension cannot sustain a force balance with the outward area

(a) (b)

FIG. 4. Convexity is necessary for rigidity in random polygons
with an area constraint. (a) Upon an expansive strain, the nonconvex
configuration represented by dashed-line edges flip over to the solid-
line edges. Thus the polygon achieves an increase in area without
changing edge lengths. (b) The pressure force of the area spring
pointing outwards (blue arrow) and tensions in the two body springs
(green arrows) cannot satisfy force balance at the mouth of the
polygon.

spring force [see Fig. 4(b)]. Since force balance cannot be
satisfied by nonconvex loops, they cannot sustain a rigidifying
state of self-stress. The necessity of convexity is demonstrated
in Fig. 7(a) below where convexity transition precedes the
rigidity transition.

V. CYCLICITY IS SUFFICIENT FOR A
SYSTEM-SPANNING STATE OF SELF-STRESS

In three-dimensional spaces, Cauchy established an im-
portant connection between geometry and rigidity, assuming
a trivial topology [24,25]. First, the congruence theorem of
Cauchy proves that two convex polyhedrons are congruent if
corresponding faces of polyhedrons are congruent. A corol-
lary of this theorem shows that a convex polyhedron with
elastic faces is rigid, i.e., the shape of the polyhedron cannot
be changed without changing the shape of at least one of its
faces. The geometry of the polyhedron is thus sufficient to
judge the rigidity of the polyhedron. For the polygons with an
area spring constrained to two dimensions, the transition point
is again purely determined by the geometry of the polygon
approaching the cyclic polygon. A cyclic polygon is a polygon
whose vertices can be inscribed on a circle which is referred
to as the circumcircle. See Fig. 5.

For two-dimensional polygons, a fundamental result in Eu-
clidean geometry shows that the maximum area of a flexible
polygon is the polygon whose vertices lie on a common circle
(Theorem 12.5a of [32]). It is very intuitive to expect that
when the loop cannot expand any more, it will become rigid.
The subtlety here is displayed when we ask the question How
can the polygon shape which cannot increase area any more
without changing edge lengths be the same shape that can sup-
port a state of self-stress? We present analytical and numerical
arguments to show that the configuration of a cyclic polygon
is a sufficient condition to support a state of self-stress.

A cyclic configuration of a N-gon reduces 2N degrees of
freedom of N vertices to N + 1 degrees of freedom which are
the N number of angular coordinates of the vertices and the
radius r. Without loss of generality we ignore the radius since
it only serves as a scale factor and write the coordinates of the
polygon vertices as

(xi, yi ) = (cos φi, sin φi). (8)
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FIG. 5. An irregular polygon under expansive strain rigidifies
when a cyclic polygon configuration is achieved (shown in solid red
line). The red dashed line is the circumcircle.

The angles between the tangent at the ith vertex and the
jth edge is denoted by θi, j as shown in Fig. 6. We decompose
the forces at each vertex along the direction of force of the
area spring and the direction tangent to this. At each vertex,
there are two force balance conditions along each of these
directions. This system of simultaneous linear equations in the

FIG. 6. Schematic of a cyclic pentagon in a state of self-stress.
The black-dashed line is the circumcircle. Purple inward arrows on
the edges indicate the inwards tension forces in the springs. Green
outward arrows indicate the outward nonradial forces of the area
spring. The thin solid black line segment at each vertex is the line
perpendicular to the outward force of the area spring. θi, j is the angle
between the “tangent” at vertex i and the vertex j. Note that the term
“tangent lines” we loosely use are not tangent to the circumcircle.

spring tensions ti and the forces due to the area spring ni can
be neatly represented as a matrix equation AF = 0,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ1,2 0 0 · · · −cos θ1,N 0 0 · · · · · · 0
−cos θ2,1 cos θ2,3 0 · · · 0 0 0 · · · · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · −cos θN,N−1 cos θN,1 0 0 · · · · · · 0
sin θ1,2 0 0 ... sin θ1,N −1 0 0 · · · 0
sin θ2,1 sin θ2,3 0 0 · · · 0 −1 · · · · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · sin θN,N−1 sin θN,1 0 0 · · · · · · −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1
t2
...
...

tN
n1

n2
...
...

nN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
...

0
0
0
...
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where A is a purely geometrical 2N × 2N matrix and F is
the column matrix of forces. We show that the rank of the
matrix Rank(A) = 2N − 1 by showing that the rank of the
tangent components of the force, i.e., the first N rows of matrix
A is less than N . For this purpose, let us consider matrix B
constructed with the top N rows and the first N columns of
matrix A. We write the cosines of angles θi, j in the matrix as
a dot product of unit tangent vector p̂i and the tension unit
vector t̂ j in the spring connecting the ith and the jth vertices.
These unit vectors are defined as p̂i = pi/pi and t̂i = t i/ti.
Here

t i = (cosφi+1 − cosφi, sinφi+1 − sinφi ),

pi = (cosφi+1 − cosφi−1, sinφi+1 − sinφi−1), (10)

and ti, pi are their respective magnitudes. In this section, (i +
1)th index is considered as (i + 1) mod N . We now decom-
pose B as P−1CT−1 where P−1 and T−1 are full rank diagonal
matrices with elements p−1

i δi, j and t−1
i δi, j respectively. Since

the rank of a matrix does not change on multiplication with a
full rank matrix, Rank(B) = Rank(C). The simplified matrix
C for the tangential (tangential directions are perpendicular to
the force of the area spring at the vertex and are not tangential
to the circumcircle) force balance at the vertices is then

⎡
⎢⎢⎢⎣

|p1 · t1| 0 0 ... −|p1 · tN |
−|p2 · t1| |p2 · t2| 0 ... 0

0 −|p3 · t2| |p3 · t3| ... 0
0 0 ... ... ...

0 0 ... −|pN · tN−1| |pN · tN |

⎤
⎥⎥⎥⎦.

(11)
We take the modulus of the dot product since the angles
between the tension vectors and the tangential vectors are
always acute and, hence, the cosine of the angle must always
be positive.

The rank of a matrix is the dimension of the space spanned
by its row or column vectors equivalently. To find the rank and
nullity of C, we attempt to find solutions (if they exist) to a set
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of N number of equations given by

N∑
i=1

βi Ci = 0, (12)

where Ci is the ith row of matrix C. While the trivial solution
to βi’s always exists, we seek nontrivial solutions. The coeffi-
cients βi can be solved for iteratively as

βi+1 = βi
|pi · t i|

|pi+1 · t i| for i = 1, 2, ..., N. (13)

Using the coordinate representation in Eq. (10), and taking
advantage of trigonometric identities, we obtain

βi+1 = βi

∣∣∣∣sin

(
φi+1 − φi−1

2

)
cosec

(
φi+2 − φi

2

)

× cos

(
φi−1 − φi

2

)
sec

(
φi+2 − φi+1

2

)∣∣∣∣. (14)

By iterating through the first N − 1 equations and can-
cellation of the (sine and cosine)/(cos and secant) terms of
subsequent and next-subsequent iterations we can express βN

in terms of β1 as

βN = β1

∣∣∣∣cosec

(
φ1 − φN−1

2

)
sin

(
φ2 − φN

2

)

× sec

(
φN−1 − φN

2

)
cos

(
φ2 − φ1

2

)∣∣∣∣. (15)

This relation is the same as the one implied by the N th
equation of Eq. (15). Thus, the conditions on the βi’s are not
independent and a nontrivial solution to βi’s can be written in
terms of β1 which serves as the chosen parameter for the set
of solutions. The nullity of this matrix is one and the rank of
the matrix is N − 1. C not being full rank implies that B is
not full rank. Since the rest of the row vectors in A are clearly
independent among themselves and with the row vectors of
B due to the −1 terms, rank of A is 2N − 1 and its nullity
is one.

While nullity of the geometric matrix A would remain zero
in the floppy phase of the polygon allowing only trivial zero
solutions for tensions in the polygon, post rigidity transition,
the nullity becomes one. This is akin to the emergence of
a system spanning state of self-stress under shear strain of
spring networks [12]. Physically, for the random polygon, this
means that for a given cyclic configuration of rigid rods, at
every imposed expansion strain on the loop, there exists a set
of tensions parametrized by t1 that satisfies force balance at
all vertices. Note that not only at the critical strain, but at
all strains post transition, the configuration of the polygon is
cyclic for increasing radii. The configurations of cyclic poly-
gons are a sufficient condition to sustain a system-spanning
state of self-stress. These self-stresses can then rigidify the
loop. Given that the polygon which maximizes area for a
given set of edges is unique [33], this further implies that at
the rigidity transition, the cyclic polygon supports a unique
state of self-stress. A unique state of self-stress supporting the
network’s rigidity is seen in other strain-induced transitions as
well [2,11,12].

VI. RIGIDITY TRANSITION

The critical strain of the rigidity transition in stretching a
chain of springs or inflating random polygons is determined
solely by the geometry of the systems. For a chain of floppy
springs, the total contour length of the springs is sufficient
to predict the critical strain of transition where the chain
straightens out. In this section, we discuss the approach to
the transition and approximating the transition strain. The
simplest method would be to calculate the asphericity of the
polygon which should fall to zero at the point of transition.
Alternatively, in Sec. VI A we delineate a method that explic-
itly shows the insufficiency of the nontrivial floppy modes in
increasing the area of the polygon as it approaches the point of
rigidity transition. In Sec. VI B, to approximate the transition
strain in irregular polygons, we approximate the area of the
cyclic irregular polygon at the transition point by the area of
the corresponding regular polygon. Unlike the measurement
of critical strain reported in Fig. 3, both these methods employ
only the configurations of the polygons and do not require
energy measurements to predict the rigidity transition.

A. Identifying the approach to transition

In this section we predict the critical strain by observing
the shape of the loop. At every strain, we use the energy
minimized configuration to construct the rigidity matrix R for
the two-body spring system whose zero modes are the floppy
modes. We then evaluate the gradient of area A expressed as
a function of the nontrivial floppy variables of the polygon.
The modulus of this gradient continuously decreases and falls
to zero at the rigidity transition. This serves as a measure to
indicate the transition.

For the purpose of formally defining the rigidity matrix R,
let p(τ ) be a continuous, analytic deformation of a network
with N vertices with τ denoting time such that p(0) = r with

r := (r1, r2, . . . , rn). (16)

The constraints of preserving the rest lengths of the two-body
springs are

|ri − r j |2 = d2
i j, (17)

where i, j are the vertices which flank the constraining edge
of length di j , and ri is the position vector of the ith vertex.
Taking the derivative of Eq. (17) with respect to τ at τ = 0,
we have

(ri − r j ) · (p′
i − p′

j ) = 0. (18)

p′
i = p′

i(0) is the velocity of the ith vertex which de-
forms the network infinitesimally. Instead of preserving
the constraints exactly as in Eq. (17), the above set of
equations preserve the constraints only to first order in dis-
placements. The system of equations that represents this
first-order theory may be written in terms of a matrix equation

R(r)p′ = 0, (19)

where R(r) is the rigidity matrix. A network is first-order
rigid if there are no nontrivial solutions to Eq. (19) with the
trivial solutions being rigid body displacements of the entire
network. A nonzero solution to this equation is a nontrivial
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(a) (b)

FIG. 7. The approach to the rigidity transition can be followed by measuring the capacity of the nontrivial floppy modes to increase
the area of the polygon. The irregular octagon used here has five nontrivial floppy modes. (a) Convexity being a necessary condition for
rigidity, the convexity transition precedes the rigidity transition. The rigidity transition coincides with the normalized gradient square of area,
1/N0(dA/du)2 approaching zero. (b) All five components of the gradient of the area go to zero at the point of transition.

floppy mode. Floppy modes are vectors that span the null
space of the transformation. The motion of the bonds in a
floppy mode is such that the velocity of each directed bond
p′

i − p′
j is perpendicular to the direction of the bond ri − r j ,

thus satisfying Eq. (18).
When expansive strain is imposed on the polygon by

changing the tuning parameters, the polygon responds by
moving to a configuration that minimizes the elastic energy
[see Eq. (2)]. Until the rigidity transition, this can be achieved
via floppy motion: motion that preserves the lengths of the
springs while also keeping the area constant. For NS = 0 and
d = 2, we know from Eq. (1) that the number of floppy modes
N0 is N − 3. We seek to write the change in position vector of
the network �r in terms of N0 number of independent floppy
variables,

u := (u1, u2, . . . , uN0 ). (20)

We choose independent definitions for nontrivial floppy
variables which we encode in the matrix equation F�r = u.
Three more constraining equations are provided by fixing the
two translations and rotation of the system. The associated
matrix equation is denoted by G�r = 0. Finally Eq. (19)
provides a set of N equations as R(r)�r = 0.

Dimensions Matrix equations

Nb × 2N R �r = 0
3 × 2N G �r = 0

N0 × 2N F �r = u

2N × 2N R′ �r = u′,

In the last row, we have vertically stacked these equations.
In block notation of matrices the same operation may be
written as

R′ =
⎡
⎣R

G
F

⎤
⎦, u′ =

⎡
⎣0

0
u

⎤
⎦. (21)

Note that the dimensions of the zero vectors differ. Assum-
ing its invertibility, we invert the square matrix R′ to express
the coordinate displacements of the system in terms of the

nontrivial floppy variables,

�r(u) = (R′)−1u′.

On imposition of strain, the displacements of vertices which
obey all the spring constraints to first order and that exclude
trivial translations and rotation is a function of the indepen-
dent nontrivial floppy variables.

The area of the polygon can be found using Green’s theo-
rem or shoelace formula, Eq. (3). Upon strain imposition, we
have

r′(u) = r + �r(u). (22)

The geometric measure for the rigidity transition is

∇A(r′)
∣∣∣∣
u=0

= dA[r + �r(u)]

du

∣∣∣∣
u=0

= 0, (23)

i.e., the gradient of the area function with respect to the in-
dependent nontrivial floppy variables is uniformly zero. If an
expansive area strain is imposed at this configuration, it cannot
be achieved via the motion of nontrivial floppy variables and
an energy cost needs to be paid.

Inversion of the rigidity matrix was done using the SymPy
package of Python [34]. As an example, we use a two-
dimensional irregular octagon which has N0 = 5 number of
floppy modes [see Eq. (1) with NS = 0]. The choice of non-
trivial floppy variables u is

u1 = �x6 + �y6, u2 = �x7 + �y5, u3 = �x5 + �y7,

u4 = �x8 + �y4, u5 = �x4 + �y8. (24)

The results are reported in Fig. 7. We see that the gradient
of the area goes to zero at the critical strain. The gradient of
the area function approaching zero identifies the critical strain
in a similar fashion as the singular value of the equilibrium
matrix approaching zero identifies the rigidity transition in a
shear strained network [12]. We also conclude from the loss
of all nontrivial zero modes at the transition that the system is
microscopically rigid.
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FIG. 8. Regular polygons approximately predict critical strain of
irregular polygons. Ac is the numerically determined area of a cyclic
polygon at critical strain, and Areg is the area of the approximated
regular polygon. The approximation is seen to work well in the N →
∞ limit. Error bars are standard deviations about the average of 100
runs. The solid line is a guide to the eye.

B. Approximation of transition strain

To predict the transition strain, we need to know the area
of the cyclic polygon corresponding to the initial edge length
distribution of the polygon. Finding the area of general cyclic
polygons given the edges is an area of ongoing research in
mathematics. For N = 4, we can find the area of irregular
cyclic polygons using Brahmagupta’s formula,

Area cyclic quadrilateral =
√

(s − a)(s − b)(s − c)(s − d ), (25)

where a, b, c, d are the lengths of edges and s is the
semiperimeter. The area of cyclic pentagons and hexagons
have been found in more recent work [35,36]. It is a nontrivial
problem to find an exact expression for the maximum area
of the polygon. However, the area of any regular polygon
(polygons with equal edge lengths) is easily expressible in
terms of its edge length. Here, we make a simplifying ap-
proximation by considering an irregular polygon as a regular
polygon whose edge length l0 is the average edge length of
the irregular polygon. The area of this regular polygon is
denoted as Areg,

Areg = N

4
l2
0 cot(ψ/2), (26)

where ψ is the angle subtended by the edges at the center
of the polygon. This approximation holds well in the limit
of N → ∞ (see Fig. 8) simply because the area of both
irregular polygons and regular polygons approach the area
of the circumcircle with radius R which satisfies the implicit
equation

N∑
i=1

sin−1

(
�i0

2R

)
= π. (27)

In the limit of large N , we have, li0/2R → 0. The above im-
plicit equation, under this limit, simplifies to

∑N
i=1 li0 = 2πR,

which is the perimeter of a circle of radius R.

Using ψ ∼ N−1 and the numerically calculated finite-size
scaling of 〈li0〉 and 〈a0〉 in Sec. III, we can predict the scaling
of 〈γc〉 in the large N limit by substituting Ac as Areg in Eq. (4).
We find that under this approximation 〈γc〉 should scale as
N1.86 which agrees well with the numerical exponent which
is 1.89.

VII. SPRING NETWORKS

For random polygons, we established that convexity is nec-
essary for a system spanning state of self-stress in Sec. IV and
that cyclicity is sufficient to guarantee a system spanning state
of self-stress in Sec. V. How do such geometric signatures
translate to a system that is built out of random polygons? At
the rigidity transition, do all polygons become cyclic poly-
gons? These are the two main questions we address in this
section.

We consider a two-dimensional spring network with the
energy

HSN =
N∑

i=1

(�i − �0)2, (28)

where li is the spring length of the ith spring and l0 is their rest
length. The network is threefold coordinated and, therefore,
underconstrained via Maxwell constraint counting. We imple-
ment periodic boundary conditions in both directions such that
the network is constrained to a torus. With this construction,
we no longer require the area spring constraint. An isotropic
strain is then imposed by decreasing the rest length l0. Note
that this choice is different from the one made in [11] where
isotropic strain is imposed by proportionally decreasing the
rest lengths li0 of all springs.

As l0 is decreased, the energy of the system is minimized
using FIRE minimization for a modified version of cellGPU
for two-body springs [37]. Once the average tension in the
spring network is nonzero, we characterize it as rigid. In our
simulations [see Fig. 9(b)], we see that at the rigidity tran-
sition, all polygons defined by the bonds connecting vertices
become convex. We also see in Fig. 9(c) that the convexity
transition in the spring network—the strain at which all the
loops in the network become convex—is the same as the point
of rigidity transition. Additionally, the approach to transition
can be judged by measuring the fraction of convex polygons
since this fraction increases linearly with strain [see Fig. 9(c)].
As for cyclicity, Fig. 9(a) clearly shows that posttransition
strain, all polygons are not cyclic. Interestingly, the poly-
gons supporting above-average tensions in the network appear
less cyclic than the polygons supporting less than average
tensions.

The important geometric signature is not cyclicity but
convexity. This is particularly interesting when contrasted
against an isolated polygon where convexity precedes the
rigidity transition [see Fig. 7(a)]. Interestingly, prior work
studying ordered spring networks consisting of polygons
of equal edge lengths with periodic boundary conditions
demonstrates that all polygons are cyclic at the rigidity tran-
sition [38]. In the presence of disorder, not all polygons
are equal in terms of their cyclicity. As loops of polygons
form, those polygons composed of higher-tension springs are
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FIG. 9. Isotropic strain-induced rigidity transition in underconstrained periodic spring networks. (a) The spring network is floppy at l0 =
0.8 and strain rigidified at l0 = 0.6182. Note that the lower the l0, the more is the strain. (b) Left: A floppy network does not have any spring
tensions and constituent loops in the network need not be convex. Right: A rigidified network has nonzero spring tensions and all polygons
are convex. Note the scale bar difference in color map of tensions in springs pre- and posttransition. (c) Top (bottom): Convexity (rigidity)
transition as a function of isotropic strain. Convexity transition in the spring network coincides with the rigidity transition. The blue dashed
line marks the point of rigidity transition. The blow-up plots at the transition show weak finite-size effects.

more stressed in a particular direction. Being more stressed,
or tensioned in a particular direction, causes them to be
acyclic. However, the necessary condition of convexity still
prevails, even in the disordered network. With convexity as
the geometric signature, perhaps understanding of the on-
set of rigidity may be enhanced with a focus on loops of
polygons as opposed to focus on stretching out lines of
springs, which does not, in of itself, relate directly to con-
vexity. Coincidentally, convex and nonconvex loops can map
to a Boolean variable such that a mapping to an Ising-like
description is possible, provided one quantifies the interac-
tion between convex polygons, etc. One can also imagine
that including area-conservation constraints for each polygon
may modify the interaction such that an Ising spin glass-
like description is possible given the additional constraints.
It would indeed be interesting to pursue this line of inquiry
further.

VIII. DISCUSSION

In the context of rigidity theory, Connelly proved that for
a polygon, there exists an expanding motion that conserves
the edge lengths. Such a motion convexifies the polygon and
increases its area [39]. The proof involves the addition of
struts [40] connecting the edges in the polygon. This is rem-
iniscent of a “pressure” within the polygon. In another work,
such an expansive motion inspired by electrostatic charges has
also been studied [41]. In contrast to this, our work does not
incorporate struts.

For a random polygon made up of harmonic springs and
including an additional area spring, we demonstrate that while
a convex configuration is necessary, the cyclic configuration
is sufficient for sustaining a system spanning state of self-
stress. Such a self-stress can then rigidify the polygon with
expansion strain. An isolated loop attaining a cyclic polygon
configuration at the critical strain of rigidity transition, is inde-
pendent of the details of the nonlinearities in the Hamiltonian.
While we have explicitly proved that the cyclic configura-
tion of the polygon can sustain a state of self-stress, our
numerical simulations show that such a self-stress rigidifies
the polygon as evidenced in the nonzero stiffness moduli.
We, therefore, have arrived at a two-dimensional version of
Cauchy’s geometry-rigidity correspondence for isolated struc-
tures that are topologically trivial. It would be interesting to
study the nature of this transition for a thermal system with a
quadratic area-energy term and investigate the existence of a
phase transition as previously done in the context of polymer
rings with pressure coupled to area [18–21].

Given our result for an individual polygon, a natural
extension would be to investigate the geometry-rigidity cor-
respondence for two polygons sharing an edge. There we
anticipate that the cyclicity-rigidity correspondence for each
polygon still holds. One can then naturally extend the inves-
tigation further by considering multiple polygons with shared
edges to form a network of polygons formed with harmonic
springs to arrive at a spring network. We numerically study
this particular limit by imposing periodic boundary condi-
tions. The network which now rests on a toroidal surface does
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not need area springs to sustain a state of self-stress. We find
that while the cyclic configuration is important for the case
of the isolated random polygon to attain rigidity, all polygons
are not cyclic for a strain-rigidified, underconstrained spring
network. However, the data suggest that all polygons are con-
vex at the transition. Intriguingly, earlier work on an ordered,
underconstrained spring network reports that the network
rigidity correlates with the cyclicity of the polygons making
up the network [38]. How such a correlation is modified for
an infinitesimal amount of disorder is an open question.

For the disordered, underconstrained spring networks stud-
ied here, it would be useful to study the correlation of the
cyclicity of the constituent polygons in the network and the
average tensions in such a loop. We expect the two quan-
tities to be anticorrelated. More specifically, polygons that
are less cyclic may become part of the “force chains” in the
network that sustain the system spanning state of self-stress.
Of course, force chains have long been studied in granular sys-
tems [42,43]. Moreover, a correspondence between geometry
and rigidity has been established in force tilings of particle
packings to, again, highlight the importance of the correspon-
dence [44]. Specifically, for frictionless particle packings, all
force tilings are convex in the rigid phase [44]. As we work to
understand the correspondence between geometry and rigidity
in general disordered systems, hopefully we can adopt a “rigid
or not by looking” approach, at least in some limits.
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FIG. 10. Energy of regular polygon under isotropic expansive
strain imposed via the area spring. Analytical solution (solid line)
is possible due to the symmetry of regular polygons. Note that we
use γ ′ strain where A0 spans very large values.

APPENDIX: REGULAR POLYGONS

For a regular polygon, we can analytically solve for
the minimized energy configuration under expansive strain.
A regular polygon has only one degree of freedom—
the edge length l . The area of the regular polygon is
N l2/[4 tan(π/N )]. An exact expression can be found by min-
imizing Eq. (2) with respect to l at each strain. This gives a
cubic equation in l which was solved in Mathematica. Instead
of using, strain γ as defined in Eq. (4), we increase A0 as
A0 = a0/(1 − γ ′ 2) with 0 � γ ′ < 1 to capture the complete
range of possible A0. See Fig. 10.
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