
PHYSICAL REVIEW E 106, 055002 (2022)
Editors’ Suggestion

Controlling the configuration space topology of mechanical structures
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Linkages are mechanical devices constructed from rigid bars and freely rotating joints studied both for their
utility in engineering and as mathematical idealizations in a number of physical systems. Recently, there has been
a resurgence of interest in designing linkages in the physics community due to the concurrent developments of
mechanical metamaterials, topological mechanics, and the discovery of anomalous rigidity in fiber networks
and vertex models. These developments raise a natural question: to what extent can the motion of a linkage or
mechanical structure be designed? Here, we describe a method to design the topology of the configuration space
of a linkage by first identifying the manifold of critical points, then perturbing around such critical configurations.
Unlike other methods, our methods are tractable and provide a simple visual toolkit for mechanism design. We
demonstrate our procedure by designing a mechanism to gate the propagation of a soliton in a Kane-Lubensky
chain of interconnected rotors.
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I. INTRODUCTION

Linkages have been pervasive in engineering since the
beginning of automation. In science, they also serve as
prototypical mechanical models for many different physical
systems, including animal limbs and joints [1–3], polymer
physics [4], protein allostery [5–9], DNA rigidity [10,11]
origami [12–14], and jamming [15–17]. At a basic level,
a linkage is a graph whose edges have a fixed length but
whose vertices are otherwise freely rotating joints. Yet this
superficial simplicity belies behavior that can be surprisingly
complex and rich. This richness is apparent in the recent
rise of mechanical metamaterials [18], materials whose me-
chanical response arises from their geometry, the discovered
topological protection of soft modes in isostatic lattices [19],
and the anomalous rigidity of massively undercoordinated
spring and fiber networks [20].

One of the first important mathematical results was
Kempe’s universality theorem, which showed that a linkage
can be designed such that a given vertex traces out a portion
of any rational algebraic curve [21,22]. The results of follow-
ing the proof’s design procedures can be unwieldy for even
simple curves. A planar curve of degree d requires no more
than 3d + 2 edges, where d is the degree of the curve [23]
(there is a different bound in three dimensions [22]), but
these edges must be arranged in very specific geometries
and, consequently, the tolerances required in their fabrication
are unclear. Moreover, if one wants to change the motion of
an existing mechanism, there is no guarantee that the result
can be achieved without changing the connectivity of the
linkage itself.

*cdsantan@syr.edu

This paper arises from the following observation: there are
many applications where the precise motion of the vertices
of a linkage is less important than the motion’s qualitative
features. In these cases, not only can we achieve the desired
effect, but we can do so with simpler linkages. Moreover, we
demonstrate that select small changes in the linkage geometry
can drive large, qualitative changes in the behavior of the
mechanism, without changing connectivity.

In this paper, we introduce an approach to linkage design
that takes advantage of the critical points of a configuration
space [24,25]. At a critical point, a mechanism has an anoma-
lously large class of potential linear motions available to it,
but higher-order corrections from the mechanical constraints
restrict the motion to a subset of these motions [26–29]. Many
linkages of this type have branched configuration spaces,
meaning that many different qualitative motions are accessi-
ble. For example, generic origami and kiragami mechanisms
have highly branched configuration spaces, leading to pluripo-
tency [30,31]. Similar branched configuration spaces have
been used to design mechanical logic devices [32] and kine-
matotropic mechanisms that can change how many degrees of
freedom they can access [33,34].

Critical points are delicate; even small perturbations of
the mechanism geometry will destroy them. However, by
controlling those perturbations, we demonstrate that the con-
figuration space topology of a mechanism can be controlled.
As a result, we obtain linkages with switchable motion using
only a small number of tunable components. We demonstrate
this extreme switchability in the celebrated Kane-Lubensky
(KL) chain [19], a series of rotors joined by springs, which
supports the propagation of a soliton called a “spinner” in
which each rotor, in turn, rotates a full 360◦ [35,36]. We will
apply our design methodology to the KL chain. By replacing
one of the unit cells with a designed mechanism, we show
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that the propagation of the spinner soliton can be controllably
gated. Because our method relies on topological program-
ming, the mechanisms are robust to flexibility and fabrication
imperfections.

In Sec. II, we review relevant parts of rigidity theory and
mechanisms. In Sec. III, we describe mathematical tools that
provide a geometrical interpretation to critical points. This in-
terpretation will provide the basis of our design methodology,
which we will illustrate with an example containing five bars.
Finally, in Sec. IV, we will use our formalism to explicitly
design a mechanism to gate the KL chain. Importantly, the
operation of the resulting gate is robust with respect to small
perturbations. Finally, we conclude with a brief discussion
highlighting new directions enabled by this work.

II. CRITICAL POINTS IN MECHANISMS

A. Mathematical rigidity

In this section, we review the basic mathematical descrip-
tion of mechanisms. Though we focus on linkages, which are
constructed entirely from free-rotating joints and inextensible
bars, the formalism can be generalized to mechanisms with
other holonomic constraints. We define a linkage as a collec-
tion of V vertices in d dimensions joined by E rigid bars. The
configuration of a linkage can then always be represented by a
point u in the space of vertex positions, which we will denote
as M, and has dimension M = V d . We assume there are E
bars in the linkage and denote the length of the αth bar, �α (u).
The configuration space of the linkage can then be represented
by the family of equations,

�2
α (u) = L2

α, (1)

where Lα is the target length of the αth bar. Note that Eq. (1) is
written using the square of �α (u) so that it can be an analytic
function everywhere. By replacing �α (u) with a more general
class of functions in Eq. (1), we can also describe mechanisms
with more complex components beyond rigid bars.

Rather than analyzing the configuration space for specific
values of Lα , we will instead analyze the entire family of con-
figuration spaces that can occur with a fixed network topology
by changing the Lα . Between Kempe’s universality theorem
and the potential arbitrariness of �α (u), however, it is indeed
difficult to say a great deal more about the configuration space
with any kind of generality. Therefore, we assume that �2(u)
is an analytic function of u and that E � V d . With these
assumptions, the Jacobian matrix, whose components are

Jαi(u) = ∂�2
α (u)

∂ui
, (2)

provides critical information about the mechanism. Naively,
one would expect the configuration space of the mechanism
to be D = M − E (for M > E ). Indeed, the inverse function
theorem implies that the configuration space is a smooth
D-dimensional manifold in any open set of M in which the
Jacobian matrix is full rank. At such a configuration u, the
tangent space coincides with the right null space of Jαi(u),∑

i

Jαi(u)δui = 0. (3)

The solutions δui of Eq. (3) are called zero modes.

Any point uC at which the Jacobian fails to be full rank, on
the other hand, we call a critical point, and the corresponding
edge lengths �2

α (uC ) we call a critical value. Critical points
are characterized by self stresses σα , which are elements of
the left null space of Jαi(uC ),∑

α

σαJαi(uC ) = 0. (4)

Because of their relation to critical points, we will see that
self-stresses play an important role in the topology of the
configuration space.

Sard’s theorem ensures that critical values (but not neces-
sarily critical points) are a set of measure zero. In that sense,
most choices of edge lengths lead to a configuration space
that is a smooth D-dimensional manifold. Consequently, any
change in the configuration space’s topology that occurs as the
Lα change must happen at a critical point. Thus, these critical
points also govern the overall topology of the configuration
space of a mechanism.

In the next section, we proceed to analyze the geometry of
the configuration space at and near such critical points.

B. Shape of the configuration space at critical points

To understand the shape of the configuration space, we
expand �2

α (u + δu) for small deformations, δu having com-
ponents δui, around the critical point, obtaining

0 =
∑

i

Jαiδui + 1

2

∑
i j

∂2�2
α (uC )

∂ui∂u j
δuiδu j + O(δu3). (5)

It is common at this stage to write a formal series expansion,
δu = δu(1) + δu(2) + · · · , and substitute it into Eq. (5). One
finds δu(1) is a zero mode of the Jacobian satisfying [28]

1

2

∑
α

∑
i j

σ (n)
α

∂2�2
α (uC )

∂ui∂u j
δu(1)

i δu(1)
j = 0, (6)

where {σ (1)
α , σ (2)

α , . . . } is a basis for the space of self-stresses
at uC .

To proceed, we make further assumptions. The most im-
portant of these is that Eq. (6) completely characterizes the
local geometry of the critical point. It is well known that if no
solution to Eq. (6) exists, then the linkage is rigid, but the con-
verse does not necessarily hold. There are mechanisms whose
rigidity is only visible at higher order, as well as mechanisms
that are rigid at order larger than two but, nevertheless, are
mobile [27]. Experience suggests that these examples are rarer
than the better behaved examples we consider here, but we are
unaware of any results quantifying their rarity or even a simple
means to determine when Eq. (6) is sufficient to describe the
geometry of the critical point accurately. For the scope of this
paper, it will prove sufficient to assume we can safely truncate
our expansion of δu at second order and check, post hoc,
that the results produced by our design procedure satisfy our
assumptions.

We will make three other assumptions as well:
(i) All critical points uC lying on a configuration space of

constant Lα are isolated. There are linkages for which this
fails and for which the entire configuration space lies along
a sequence of critical points (see, for example, [37]). Note,
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however, that there are also mechanisms with large D which
do satisfy this assumption [31,38,39]. In this paper, we will
ultimately focus on example mechanisms with only a single
degree of freedom, so this will not prove a particularly strong
assumption, but in this section we allow D to be general and
only specialize to D = 1 subsequently.

(ii) All critical points have exactly one self-stress. This
assumption is certainly not always true. It fails, for example,
in flat origami mechanisms [31]. Generally, however, we will
see that, qualitatively, critical points with several self-stresses
appear to require more fine-tuning. This assumption implies
that there will be D + 1 zero modes at each critical point by
the rank-nullity theorem applied to the Jacobian matrix at uC .

(iii) The matrix

∑
α

σα

∂2�2
α (uC )

∂ui∂u j

has nonzero eigenvalues when restricted to the zero modes at
uC . This assumption allows us to simplify the characteriza-
tion of the critical points. Notice that without assumption 2,
this characterization would be more difficult because Eq. (6)
would yield a system of quadratic equations rather than a
single equation.

While all of these assumptions will play a role in our
analysis, one could relax some of them at the expense of
complicating the design procedure. Additionally, they may not
be mutually exclusive from our assumption zero that Eq. (6)
completely characterizes the local geometry of the critical
point. Our examples will satisfy them, however, and we leave
it for future work to understand which are truly required and
which are conveniences.

Suppose we choose a basis for the zero modes at uC ,
{ζ1, . . . , ζD+1}, writing δu(1)

i = ∑
n cnζn,i. Then, Eq. (6) be-

comes ∑
nm

Qnmcncm = 0, (7)

where Qnm is a symmetric matrix given by

Qnm =
∑

i j

∑
α

ζn,iζm, jσ
(1)
α ∂2�2

α (uC )/∂ui∂u j . (8)

Under our assumptions, there are just two possibilities. If Qnm

is either positive- or negative-definite, the linkage is rigid:
there is no solution to Eq. (7) other than cn = 0. If Qnm has
a combination of positive and negative eigenvalues, however,
the geometry of the configuration space at uC is that of a
cone. This is precisely what happens in single-vertex flat
origami [31,40] (Fig. 1). We call such a point uC a branch
point, though this space of possible zero modes is sometimes
called a kinematic tangent cone [41].

C. Shape of the configuration space near critical points

We next ask what happens to the configuration space of a
mechanism when the lengths are deformed from their critical
values, Lα = L(c)

α + δLα . A lengthy calculation shows (see
Appendix A)∑

nm

Qnm(cn − δcn)(cm − δcm) = �, (9)

FIG. 1. Schematic of how a configuration space with a branch
point split into one of two types of smooth, disconnected configura-
tion spaces. The choice of sign is arbitrary.

where the deformation is along the zero modes at uC ,∑
n cnζn,i as before, and δcn and � are quantities whose value

depends linearly on the length changes, δLα , to lowest order.
We first consider what happens when � = 0. In that case,

when δcn = 0, Eq. (9) recovers the results from the previous
section: there is either a rigid point or a branch point at
cn = 0 corresponding to the critical point uC . When δcn �= 0,
however, the critical point itself moves by ≈ ∑

n δcnζn,i.
When � �= 0 and Q has only positive eigenvalues (the

critical point is second-order rigid), we have two possibilities:
(1) � > 0 implies the solution to Eq. (9) is an ellipsoid in
D + 1 dimensions (it is almost rigid [42]), and (2) � < 0
implies there is no solution to Eq. (9). The opposite occurs
if Qnm has only negative eigenvalues.

Finally, we consider the case of a branch point, for which
Qnm has eigenvalues of opposite sign. To develop intuition, it
is useful to consider the special case of a branch point when
D = 1. Then, Qnm is a 2 × 2 matrix with two eigenvalues of
opposite sign. The solutions to Eq. (9) take the form of two
hyperbolas in the plane spanned by the zero modes at uC

whose precise configuration depends on the sign of � (see
Fig. 1 for characteristic examples for both signs of �). For
D > 1, branch points also break up into smooth surfaces but
do so, presumably, in a more complex way that depends on the
signature of Qnm (see Ref. [40] for an example in origami).

As an illustrative example, we turn to the well-studied
four-bar linkage shown in Fig. 2(a). The four-bar linkage is
constructed from two rotors of length L1 and L3 pinned at one
end and joined at the other by a bar of length L2. The system
configuration can be parameterized as a point in four dimen-
sions with coordinates (x1, y1, x2, y2), and the configuration
space is one dimensional. When L1 = L2 = L3 = a, there are
three branch points each having a single self-stress and two
zero modes. The configuration space is shown in Fig. 2(b) in
terms of the two rotor angles θ1 and θ2. By slightly increasing
the length of L2 > a, the branch points all split into a pair
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FIG. 2. (a) Schematic of the planar, four-bar linkage with vari-
ables defined. (b) Projection of the configuration space of the
two-rotor mechanism with L1 = L2 = L3 = a projected into the
(θ1, θ2) plane (black). This choice of lengths has three branchlike
critical points. Deforming the length of L2 results in a smooth con-
figuration space with either one (red) or two (blue) components. The
arrows indicate the direction of the tangent form ti(u) from Eq. (10).

of hyperbolas oriented opposite each other in the quadrants
spanned by the configuration space when L2 = a. On the other
hand, L2 < a results in the branch point splitting into a pair
of hyperbolas in the other pair of quadrants. As a result of
switching the orientation of the hyperbolas, the configuration
space goes from having a single component for L2 > a to two
disconnected components when L2 < a.

III. CONTROLLING CONFIGURATION SPACE
TOPOLOGY

We noted earlier that the topology of the configuration
space cannot change without passing through an intermediate
critical point. If it could, this would contradict the notion
that the configuration space is smooth when the Jacobian Jαi

is full rank. This fact and the analysis of Sec. II suggests
a method for controlling the topology of the configuration
space: (1) find a set of lengths Lα for which the configuration
space has many branch points, and (2) perturb the lengths,
Lα → Lα + δLα , such that the branch points split into smooth
hyperbolas in the desired configuration. For the four-bar
linkage in Fig. 2(b), for example, if we could control how
each of the three branch points splits independently, we would
have complete control over how the configuration space winds
around the torus defined by the angles (θ1, θ2) as well as the
number of components in the configuration space.

A. The geometry of the critical configuration set

Since we are interested in understanding how to choose
edge lengths Lα to control the topology of the configuration
space of a linkage, we will consider all possible mechanisms
that have the same connectivity but arbitrary values of Lα . To
do so, we define an antisymmetric tensor,

ti1···iD (u) =
∑
j1··· jE

εi1···iD j1··· jE
∂�2

1(u)

∂u j1

· · · ∂�2
E (u)

∂u jE

, (10)

where εi1···iD j1··· jE is the antisymmetric Levi-Civita tensor. Im-
portantly, ti1···iD (u) = 0 if and only if u is a critical point. This
is because the components of t i1···iD are the E × E minors

of the Jacobian matrix. When these all vanish, the Jacobian
matrix has lower rank (see Appendix B for a more detailed
discussion). Thus, Eq. (10) identifies all possible critical
points in mechanisms sharing the same connectivity. Versions
of Eq. (10) have been studied to identify singularities in robot
manipulators [43–47].

The tangent form allows us to define the critical configura-
tion set as the locus of points for which

ti1···iD (u) = 0. (11)

In many practical cases, and in all of the cases we consider
in this paper, it is possible to solve Eq. (11) analytically.
Note, however, that the solutions to Eq. (11) only provide the
configurations where the Jacobian of the mechanism is not
full rank. Therefore, some of the solutions may not satisfy
all of our assumptions from Sec. II B. We conjecture that our
assumptions are valid on all but a set of measure zero of
the critical configuration set, but are not aware of or able to
produce a proof of this.

To help understand the geometry of the critical config-
uration set, we return to our previous example, the planar,
four-bar linkage from Fig. 2(a). In this example, D = 1 but
M = 4 since the mechanism configurations are specified by
points (x1, y1, x2, y2). If the two pinned vertices are located at
(0,0) and (a, 0) and we restrict Lα > 0 (so no bars have zero
length), this critical set is described by the two-dimensional
manifold of configurations in which all vertices are colinear,
y1 = y2 = 0.

For one degree of freedom mechanisms (D = 1), Eq. (10)
provides another way to understand how the configuration
space topology changes with changing lengths near a critical
point uC . In that case, ti(u) is a vector field everywhere tangent
to the zero modes of the mechanism, which follows from
the simple fact that it is always orthogonal to the constraints
(Appendix B). Thus, ti(u) can be thought of as a local vector
field whose integral curves trace out curves of constant Lα .
That is, when ti(u) �= 0, curves of constant Lα can be parame-
terized by the solutions

dui(s)

ds
= ti[u(s)]. (12)

We show this in Fig. 2(b) using arrows pointing along ti pro-
jected onto the rotor angles. Because ti(u) is divergence free
(Appendix B), each branch point has two arrows pointing in
and two arrows pointing out. Note that ti(u) provides a way to
think about the mechanism configuration space as a dynamical
system. This dynamical system should not be confused with
the motions of the physical mechanism, however, which can
move either parallel or antiparallel to ti(u) equally well. This
is also distinct from the dynamical system approach obtained
for a periodic (or nearly periodic) mechanism as an iterated
map [48,49].

Equation (12) also provides an intuitive way to understand
the hyperbolas formed by the configuration space near branch
points that arise from Eq. (9). We project ti(u) near uC onto
the plane spanned by the two zero modes, ζ1 and ζ2. Since
ti(u) is tangent to the configuration spaces, we expect that the
trajectories approach this plane as they approach uC . After
projection, we obtain a two-dimensional (2D) vector field
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whose components are

Tn(c1, c2) =
∑

i

ζn,iti(uC + c1ζ1 + c2ζ2). (13)

The integral curves of Tn then trace the projection of the
configuration space onto the plane spanned by the zero modes
near the branch point.

In this projection, the constant Lα trajectories are quite
limited in how they can appear. We know that Tn(0, 0) =
0, but because we assume branch points are isolated,
the projected tangent vector Tn(c1, c2) �= 0 elsewhere. Now
suppose that the critical point is a branch point. The projec-
tion of the configuration space on the plane of zero modes
will have the form of a hyperbolic fixed point, with a stable
and unstable manifold associated with the configuration space
branches that solve Eq. (7) (Fig. 1). Thus, we would gener-
ically expect the trajectories near the branch point to appear
hyperbolic when projected onto the plane of zero modes.
Though we do not work with second-order rigid points here,
these considerations also limit what the trajectories do near
such rigid points [42].

B. The geometry of the critical value set

For any point uC in the critical configuration set, �2
α (uC )

gives its corresponding critical value: the set of squared bar
lengths that would be required for the system to be in config-
uration uC . We will call the image of the critical configuration
set in the space of squared lengths the critical value set. We
again illustrate with the four-bar linkage: the set of critical
values is a self-intersecting surface (L2

1, L2
2, L2

3 ) = [x2
1, (x2 −

x1)2, (a − x2)2]. In Fig. 3, we show the critical value set in
terms of (L1, L2, L3) rather than the squared lengths to make
the surface slightly more compact and easier to understand
visually. Note that we have included additional leaves on
either the L1 = 0, L2 = 0, or L3 = 0 plane which happen to
contain only rigid critical points; this is a natural consequence
of the fact that any mechanism with two pinned vertices and
one edge having zero length must always be rigid.

Were we to choose the Lα to lie anywhere along the por-
tion of the critical value set in Fig. 3, the resulting linkage
would have one or more critical points. It is also apparent that
Fig. 3 self-intersects. At such a self-intersection, there will
be multiple critical configurations uC , corresponding to the
same choices of edge lengths Lα . Thus, if we choose the Lα

along a line of self-intersection, there are two branch points
[Fig. 3(d)]. If we choose Lα along a smooth portion of the
critical value set, there is only one critical point [Fig. 3(e)].
Interestingly, Fig. 3 shows that at (L1, L2, L3) = (a, a, a),
three individual sheets self-intersect. Therefore, we expect
that that choice of Lα is the unique place where three branch
points coincide [Fig. 3(c)]. An animation demonstrating the
branch splitting for the four-bar linkage is included in the
Supplemental Material [50].

The critical value set contains more information than just
the location of critical values. If the critical value set is locally
a smooth manifold, the self-stresses at such a critical point
are always normal to the critical values (see Appendix B).
Though the converse is not generally true—normals need not
also be self-stresses—if the critical value set is a manifold of

FIG. 3. (a) The critical value set for the four-bar linkage, plotted
in terms of (L1, L2, L3) in units of a. The points (c)–(e) show the
locations of the configuration spaces in (c)–(e). (b) A different view
of the surface with a cutout on the L1 = 0 plane showing the shape
of one of the enclosed volumes. There is one critical point in the
configuration space along any smooth portion of the set (e). Self-
intersecting lines indicate choices with two critical points (d) and
the triply self-intersection point at (L1, L2, L3) = (a, a, a) (c) is the
unique choice with three critical points. (c)–(e) The configuration
spaces corresponding to the points in (a), showing how to split dif-
ferent branch points. (f) The volumes labeled with their branch point
types, corresponding to the standard engineering classifications.

codimension one, it must necessarily coincide with the single
self-stress at that point and there can be no other self-stresses.
We also see that splitting a branch point amounts to choosing
δLα transverse to the critical value set. On one side of the
surface in Fig. 3, a branch point splits into one pair of smooth
branches; on the other side, it splits into the opposite pair.
This endows the calculation of how branch points split under
small perturbations of the lengths with a concise geometrical
meaning.
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With this understanding of the critical value set, we can
classify the distinct configuration spaces of the four-bar
linkage in terms of the 23 = 8 individual volumes enclosed
by the surface in Fig. 3. For completeness, we note that these
volumes correspond to standard results for the four-bar link-
age found in the engineering literature, which can be classified
by the sign of three functions [51],

τ1 = a − L1 + L2 − L3, τ2 = a − L1 − L2 + L3,

τ3 = L2 + L3 − a − L1, (14)

derived from limits on the angles θ1 and θ2. When one of
the τi is equal to zero, the configuration space contains the
corresponding critical point from Fig. 2(b). Thus, the critical
value set in Fig. 3 agrees with the surfaces computed in
Refs. [52,53]. The regions are labeled in Fig. 3(f).

C. Three-rotor system

Finally, in this section, we will use these considerations to
describe a design procedure for configuration space topology.
To be concrete, it is helpful to consider a specific example, the
three-rotor linkage in Fig. 4(a). The three-rotor linkage has
three pinned joints attached to three bars of length r1, r2, and
r3 (the rotors) and whose opposite ends are joined by bars of
length L1 and L2. Therefore, u is a six-component vector and
the five bars provide constraints, �2

α (u) = L2
α , that limit the

configuration space to a single degree of freedom generically.
Since the mechanism has five bars, it is difficult to visualize

the critical set and critical value set. Nevertheless, we can still
gain insight by restricting ourselves to the cross section of M
for which r1 = r2 = r3 = a. We plot the cross section of the
critical value set with the (L1, L2) plane in Fig. 4(b). While
this is a cross section, the open regions in Fig. 4(b) still
correspond to structures with different configuration space
topologies, with the transitions from one distinct region to
another through the critical value set occurring through a
branch point. However, it is still a cross section of a higher-
dimensional space and care must be taken when interpreting
the intersections of the critical value set. Choosing L1 = L2 =
a leads to a configuration space with 12 interconnected branch
points, though it appears that only two lines meet at L1 =
L2 = a in Fig. 4(b). The proliferation of branch points in this
example can be understood from the fact that this linkage
contains two pairs of four-bar linkages. Choosing all bars to
have length a, therefore, maximizes the branch points of each
individual submechanism.

To identify these branch points, we solve ti(u) = 0
subject to the length constraints �2

α (u) = L2
α using Mathemat-

ica (Wolfram). At each critical point, we then solve Eq. (7)
to obtain the tangents to the configuration space. The tra-
jectories in Fig. 4(c) are obtained by first stepping along
one of the obtained tangent vectors, then stepping along the
configuration space in the direction indicated by ti(u) with
a step size proportional to its magnitude. The step size is
adjusted to maintain the edge lengths to less than one-percent
strain. Finally, the integration for each segment is terminated
when the magnitude of ti(u) falls below a critical threshold,
indicating that the integration has reached a point close to
the next critical point. Once terminated, we minimize

∑
i t2

i
with respect to the configuration to verify that the integration

FIG. 4. (a) Schematic of the planar, three-rotor linkage with
variables defined. (b) A cross section of the critical value set for
r1 = r2 = r3 = a. (c) The 3D configuration space of the three-rotor
linkage with r1 = r2 = r3 = L13 = L23 = a, corresponding to the red
(gray) point in (b), contains 12 individual critical points. Arrows
indicate the orientation of each configuration space segment.

has found the next branch point. The directions of integration
inherited from ti(u) are indicated by the arrows in Fig. 4(c).

Note, however, that the branch points shown in Fig. 4(c)
are not all independent. Projecting the configuration space
onto the θ1-θ2 plane must give the configuration space of
the equivalent four-bar linkage found by ignoring the third
rotor. In contrast, removing the first rotor is equivalent
to the projection onto the θ3-θ2 plane. Consequently, any
branch points that overlap in one of these two projections
must, after a deformation, still be identical in projection
and such overlapping branches appear or disappear together.
From Fig. 4, this implies that branch points are paired
{(1, 2), (3, 5), (4, 6), (7, 8), (9, 11), (10, 12)}.

We finally consider how to “program” the configuration
space by adjusting the lengths of r1, L1, and L2 away from
their critical values. For each critical point, we plot the domain
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FIG. 5. A schematic of programming the three-rotor system.
(a) A map showing how changing the length of r1, L1, and L2 leads
to different ways to split the branch points from Fig. 4. The shaded
and unshaded regions correspond to the two ways for the branch
points to split. The red (light gray) dot, corresponding to a change in
length r1 = 1.05a, leads to the red (light gray) curve in (b). In order
to change the topology of the configuration space by changing how
branch points 4 and 6 split, an additional change to L1 = 0.9a can be
effected, shown by the blue (dark gray) dot. The new configuration
space is shown in (b) as a blue (dark gray) curve.

over which � > 0 in Fig. 5 as a table for each branch point.
We next choose lengths according to the red (light gray) dot
in Fig. 5(a), which increases r1 at constants L1 and L2. The
resulting configuration space is shown as the red (light gray)
curve in Fig. 5(b). Note that the red (light gray) point was
chosen so that the configuration space is smooth but passes
near the branch points. If the red (light gray) curve has the

topology we want already, we can stop now. If we instead
wanted to switch the sign of the branch point pair (4,6) to ob-
tain a particular configuration space topology, from Fig. 5(a)
we see that the three lengths (r1, L1, L2) distinguish this pair
of branch points from the rest. Inspection of Fig. 5(a) suggests
that an additional change in L1 would switch the way only
those two branch points split. The result of this perturbation is
the blue (dark gray) curve in Fig. 5(b). Note that Fig. 5(b)
shows that since each branch point has one self-stress, the
hyperbolas approach the plane spanned by the two zero modes
as expected.

If we limit ourselves to perturbing only the bar lengths
(r1, L1, L2), Fig. 5(a) shows even more redundancy in how the
branch points split than expected from our previous analysis
that branch points split in pairs. That is, just three control
lengths are not sufficient to obtain full control over the way the
configuration space splits at the branch points. While it would
be difficult to plot Fig. 5 using all five bar lengths, there seems
to be no mathematical obstacle to generalizing the analysis to
distinguish all six pairs of branch points independently.

IV. THE GATED KANE-LUBENSKY CHAIN

We finally apply our design methodology to design a
mechanism that gates the propagation of a soliton in the
Kane-Lubensky (KL) chain [19]. The KL chain is a topologi-
cally polarized lattice of rotors that has a zero mode on either
the left edge or the right edge, depending on the choice of
bar lengths. It was later discovered that the KL chain actually
supported two distinct families of propagating solitons, the
“flipper” and the “spinner” [35], that allowed a continuous
pathway between the left and right edge modes. The spinner
soliton, however, is topologically protected by the shape of
the configuration space [35,36]. In this section, we modify a
single unit cell of a spinner-supporting KL chain with rotor
length r = 3a/2 and � = 3a/2 by adding an additional two
bars and one pinned vertex [Fig. 6(a)].

In the spinner phase of the KL chain, a full cycle consists of
the soliton traveling back and forth across the chain once, and
the KL chain returning to its initial configuration. After one
full cycle, each rotor in the KL chain has rotated by 2π , with
each rotor rotating by π each time the soliton passes. Here,
we will show that these additional components can act as a
gate by opening a gap in the full 2π rotation of the KL chain
rotors, thereby obstructing the passage of the soliton.

In addition to the length of the two additional bars, L1 and
L2, we also allow the location of the pinned vertex to be set an
arbitrary distance D from the KL chain. In order to allow for
different positions of the third pinned vertex, we augment u to
include the y coordinate of the third vertex, but also augment
the constraint functions to pin that vertex’s y position. Thus,
we use a constraint map,

fα (u) =

⎛
⎜⎜⎜⎝

�2
1(u)
...

�2
E (u)

D2(u)

⎞
⎟⎟⎟⎠, (15)

where D(u) is the function that determines the distance
between pinned vertex 3 and 2. Thus, the generalized
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FIG. 6. (a) A Kane-Lubensky chain with a gating mechanism
attached. The gating state is controlled by the length D; the red (light
gray) bar and the blue (dark gray) bar correspond to an ungated and
gated state, respectively. (b) A cross section of the critical set with
r = � = 3a/2 and L1 = 2a. There is a critical point at L2 = 2a and
D = 5a/2. (c) At the critical point, changing the position of the third
rotor or the lengths of two beams can switch the type of branch split
(gray and transparent regions). The red (light gray) point corresponds
to branch splitting such that the mechanism is ungated, while the blue
(dark gray) point demonstrates that changing D can switch to a gated
configuration. (d) The configuration space at and near the critical
point as a function of the three rotor angles, and the projection of that
configuration space onto the θ1-θ2 plane. The gap in the blue (dark
gray) projection shows that the full range of angles is not accessible
in that configuration, and thus the chain is gated.

constraint fα (u) is a smooth function whose solution allows
us to pin vertex 3 by setting the length D in Fig. 6(a) to an
arbitrary value.

Using this generalized formulation, we can compute a
cross section of the critical value set with r = � = 3a/2 and

L1 = 2a [Fig. 6(b)]. Figure 6(b) shows that there are six dis-
tinct regions separated by critical points. The labels on each
region correspond to the sign of τ1, τ2, and τ3 from Eq. (14)
with respect to the four-bar linkage between vertices two and
three. For concreteness, we choose L2 = 2a and D = 5a/2,
on the boundary between the blue (+,+,−) and red (+,+,+)
regions, as the initial lengths for our gate, resulting in a con-
figuration space with two critical points [Fig. 6(d)]. When
D < 5a/2, the system is in the red (light gray) regime, and
when D > 5a/2, it is in the blue (dark gray) regime. This
choice determines whether or not the KL chain rotors wind
around fully. Note that the projection of the configuration
space in the θ1-θ2 plane [Fig. 5(d)] never changes shape, but
that the change in how the branch points split into hyperbolas
determines whether or not the full range of angles is accessible
to the system. To verify that the red (light gray) and blue (dark
gray) regimes correspond to ungated and gated behavior of
the KL chain device, we use the mechanisms package [54] in
Mathematica (Wolfram) to calculate the infinitesimal motions
of the linkage and animate those motions. As shown in Fig. 7,
changing D controls whether or not the soliton can complete
a full cycle along the KL chain.

To test our design, we constructed the gated KL chain in
Fig. 6(a) numerically and constructed a single unit cell and
gate from LEGO pieces (The Lego Group). The design of
the LEGO gate was chosen to be compatible with the LEGO
realization of a KL chain shown in [35]. When testing dif-
ferent examples, we pushed on the various bars and rotors in
the device to move it through all possible configurations. We
tracked how rotors 1 and 2 moved to determine if the gate
was preventing a soliton from propagating. Figure 7 shows
a comparison between the simulated and LEGO chains with
both D larger and smaller than 5a/2. Movies of both chains in
the gated and ungated states are provided in the Supplemental
Material [50]. In the case of an ungated chain, the soliton
propagates from one end of the chain to the other (and back);
for a gated chain, the soliton propagates up to the location of
the gate but is reflected.

Interestingly, the size of the gap in the projection of the
blue (dark gray), gated configuration space in Fig. 6(d) is
important for determining how the soliton is reflected from
the gate. For very small gaps, which occurs when D is close to
its critical value, the soliton can, temporarily, pass the gate but
is, ultimately, prevented from completing an entire cycle. For
larger gaps, when D is farther from its critical value, the
soliton appears to reflect from the gate. From Fig. 6(c), the
same effect can be achieved by changing the size of L2 instead
of D, since the plane dividing the gray and transparent regions,
which corresponds to the two ways to split the branch, is
slightly angled in that direction. Movies of both simulated
and LEGO chains that switch between the gated and ungated
states by changing L2 are also provided in the Supplemental
Material [50].

Our analysis shows that the presence of a gap in the (θ1, θ2)
plane blocks soliton propagation. In the example of Fig. 6(a),
changing the length D moves the device from the gated [blue,
(+,+,−)] region to the ungated [red, (+,+,+)] region of
Fig. 6(b). However, this is not the only pair of regions that
produces a functioning gate. Indeed, the regions indicated
in Fig. 6(b) as (+, +, +) (red) and (−,−, +) (yellow) are
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FIG. 7. Top row (red): Ungated device made from LEGOs with the corresponding simulation. This device can continue rotating and return
back to its initial position, as indicated by the arrow. Bottom row (blue): Gated device made from LEGOs with the corresponding simulation.
This device gets stuck in the configuration shown in the last frame and is forced to reverse direction in order to continue moving.

ungated with respect to propagation of the soliton, whereas the
remaining regions are gated. Numerical experiments further
show that if we had chosen L1 to change length as well,
we would have found even more regions of both gated and
ungated behavior as we extended Fig. 6(b). It becomes clear
that there is a great deal of flexibility when choosing D, L1,
and L2 to produce the desired dynamics of the final KL chain
and gate system.

V. CONCLUSIONS

In this paper, we have described a procedure to design the
topology of the configuration space of mechanical linkage.
The idea rests on the ability to identify critical points and, es-
pecially, branch points—singular configurations of a linkage
in which several pathways meet. By analyzing the shape of
the configuration space near these branch points, we are able
to design perturbations to the lengths and positions of a fixed
set of vertices that change the shape of the topology of the
configuration space in well-defined ways. As a demonstration,
we used our techniques to design a gate for the propagation
of the spinner soliton in a Kane-Lubensky chain. While we
applied our approach to linkages with fixed edge length, there
is no reason they would not also apply more generally to other
systems with holonomic constraints.

Because the design procedure works by controlling con-
figuration space topology, the resulting mechanisms should
be quite robust to fabrication errors and the tolerance of the
joints, so long as one chooses lengths Lα sufficiently far from
the critical value set.

It would be interesting to extend this work in a few further
directions. First, when bars are no longer rigid but elastic,
there arises the possibility of a snap through transition be-
tween the different hyperbolas on either side of a branch point.
Indeed, tuning various branches close to or farther from a

branch point could be used to tune the ease of initiating a snap
through transition. This could potentially lead to mechanical
structures and mechanical metamaterials whose mechanical
response can be reprogrammed in situ.

A second interesting extension would be to consider mech-
anisms built from responsive materials that are sensitive to
external stimuli. In that case, the dynamic increase or decrease
in the lengths of the bars could be used to drive the pathway
of a mechanism in an environmentally dependent manner.
This could also be affected if the positions of certain pinned
vertices could be made to depend on the external environment
or the state of a second input mechanism. This would enable
the realization of simple mechanical logic that is robust to
some damage because it relies only on the topology of a
configuration space [55,56].

Finally, we note that our design principle exploits the
fact that the configuration space topology can only change
at critical points—configurations where the Jacobian of the
constraints fails to be full rank. Our approach is somewhat
reminiscent of Morse theory, in which the extrema of a scalar
function can be related to the topology of the space on which
that function is defined [57]. Morse theory has been used
to study the configuration spaces of spherical (and other)
linkages [38,39], but we leave it to future work to make this
connection more precise.
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APPENDIX A: PERTURBING QUADRATIC CRITICAL
POINTS

In this Appendix, we will show that Eq. (9) does, indeed,
describe the configuration space near a critical point when the
lengths of a linkage are perturbed from their critical values.
We assume we have a mechanism with E edges and V vertices
in d dimensions with dV > E . We further suppose that the
configuration of the mechanism is at a critical point uC , with
corresponding critical values (L(c)

α )2. Let u = uC + δu and,
correspondingly, Lα = L(c)

α + δLα , and expand the squared
lengths to quadratic order, using Eq. (1),

2L(c)
α δLα + δL2

α =
∑

i

∂�2
α (uC )

∂ui
δui +

∑
i j

1

2

∂2�2
α (uC )

∂ui∂u j
δuiδu j .

(A1)

Finally, as in the main text, we assume that Eq. (A1) com-
pletely characterizes the critical point, and that there is one
self-stress at uC , with components σα , and two zero modes,
with components ζ1,i and ζ2,i.

It will prove convenient to express Eq. (A1) using
an orthonormal basis in the space of square lengths,
{σα, e(1)

α , . . . , e(E−1)
α }. We similarly write δui in an orthonor-

mal basis {ζ1,i, ζ2,i, η1,i, . . . , ηE−1,i},

δui = c1ζ1,i + c2ζ2,i +
E−1∑
I=1

aIηI,i. (A2)

We first contract Eq. (A1) with σα , and we obtain an equa-
tion that can be expressed as

(cT aT )

(
Q B
BT M

)(
c
a

)
= �̃, (A3)

where the components of the matrices are given by

�̃ =
∑

α

σα

(
2L(c)

α δLα + δL2
α

)
, (A4)

Qnm = 1

2

∑
αi j

ζn,iζm, jσα

∂2�2
α

∂ui∂u j
, (A5)

Mnm = 1

2

∑
αi j

ηn,iηm, jσα

∂2�2
α

∂ui∂u j
, (A6)

and

Bnm = 1

2

∑
αi j

ζn,iηm, jσα

∂2�2
α

∂ui∂u j
. (A7)

We also assume that aI are the components of the vector a and
that c1 and c2 are the components of a two-dimensional vector
c. Finally, we complete the square in Eq. (A3) to obtain

(c + Q−1Ba)TQ
(
c + Q−1Ba

) = �̃ − aTBTQ−1Ba. (A8)

Note that Q−1 exists because all of the eigenvalues of Q are
nonzero by assumption.

Already, Eq. (A3) is in the form of a conic section whose
form depends on the eigenvalues of Q. What remains is to
show that a depends only on the length changes (and not c)
to lowest order and, ultimately, to find an expression to
determine it.

To do this, we project Eq. (A1) onto the remaining basis
vectors e(n)

α in the space of square lengths. We obtain

∑
m

∑
i

∑
α

e(n)
α

∂�2
α (uC )

∂ui
ηm,iam + 1

2

∑
i jα

e(n)
α

∂2�2
α (uC )

∂ui∂u j
δuiδu j

=
∑

α

e(n)
α

(
2L(c)

α δLα + δL2
α

)
. (A9)

There are E − 1 equations in Eq. (A9) and dV − E + 1 zero
modes at the critical point, the space spanned by δu⊥

i is dV −
(dV − E + 1) = E − 1 dimensional. The matrix appearing
in Eq. (A9) is, consequently, square. Since we have already
removed zero modes and self-stresses, it is also invertible. We
define a new matrix M such that its inverse M−1 is given by
the components

M−1
nm =

∑
i

∑
α

e(n)
α

∂�2
α (uC )

∂ui
ηm,i. (A10)

This then allows us to solve Eq. (A9) in powers of both δLα

and c. To first order in both, we obtain

an ≈
∑

m

Mnm

∑
α

2e(m)
α L(c)

α δLα + O(cδL, c2, δL2). (A11)

We can now put together the results by defining

δc = −Q−1Ba (A12)

and

� = �̃ − δcQδc (A13)

to obtain

(δc − δc)TQ(δc − δc) = �, (A14)

where � and δc depend linearly on the changes in lengths to
lowest order. Therefore, small perturbations of the length are
seen to produce trajectories that lie on a 2D conic section with
a perturbed center.

While this is a rather intricate derivation, we could have
obtained the correct answer up to the order of δu ∼ δL1/2

more simply by assuming O(a) ∼ O(c). We have found
the full form of Eq. (A14) to be more useful in perturb-
ing larger linkages, however, as it better captures the case
that changes in the bar lengths perturb, but do not com-
pletely eliminate, critical points in the configuration space of a
linkage.

APPENDIX B: PROPERTIES OF THE TANGENT FORM

The tangent form is defined as

t i1···iD (u) =
∑
j1··· jN

εi1···iD j1··· jN
∂ f1(u)

∂u j1

· · · ∂ fN (u)

∂u jN

, (B1)

where εi1···iD j1··· jN is the antisymmetric Levi-Civita tensor.
Next we compute some simple properties of the tangent form.
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The tangent form is divergence free. This can be seen from
the following calculation:

∂t i1···iD (u)

∂ui1

=
∑
j1··· jN

εi1···iD j1··· jN
∂2 f1(u)

∂ui1∂u j1

· · · ∂ fN (u)

∂u jN

× · · · +
∑
j1··· jN

εi1···iD j1··· jN
∂ f1(u)

∂u j1

· · · ∂

∂ui1

∂ fN (u)

∂u jN

= 0, (B2)

where each term is zero due to the antisymmetry of the
Levi-Civita tensor and the symmetry of partial derivatives.

For one degree of freedom mechanisms, the tangent form is
a vector tangent to the configuration space away from critical
points. First, we note that

∑
i1

∂ fα
∂ui1

t i1···iD [u(s)] = 0, (B3)

which implies that ∂ fα
∂ui

t i[u(s)] = 0. Now suppose that u(s)
traces the configuration space in a region where t i1···iD [u(s)]
is nonzero. Then,

∑
i

∂ fα[u(s)]

∂ui

∂ui(s)

∂s
= 0. (B4)

Hence the configuration space is perpendicular to all of the
∂ fα (u)/∂ui, but ti(u) is also perpendicular to all of them.
Hence, they must be parallel. The more general case for
mechanisms with more than one degree of freedom is more
subtle but can also be computed.

The tangent form is zero at u if and only if u is a critical
point. Ultimately, this is a consequence of the fact that the
components of t i1···iD (u) are the E × E minors of the Jacobian
of �2(u). Nevertheless, we demonstrate it here for complete-
ness. There are E functions,

{
∂ f1(u)

∂ui
, · · · ,

∂ fE (u)

∂ui

}
. (B5)

Since the zero modes are defined by the nonzero solutions,
δui of

∑
i

∂ fα (u)

∂ui
δui = 0 (B6)

the zero modes are in the orthogonal complement of the span
of the vectors, ∂ fα (u)/∂ui. At a critical point, there must be
additional zero modes and so the ∂ fα (u)/∂ui span a lower-
dimensional space and can no longer be linearly independent.
Without loss of generality, we can take it to be α = 1 so

∂ f1(u)

∂ui
=

∑
β>1

cα

∂ fβ (u)

∂ui
. (B7)

Substituting this into the definition of ti1···iD (u) and using
Eq. (B3), we immediately obtain ti1···iD (u) = 0.

Similarly, if ti1···iD (u) = 0, then the ∂ fα (u)/∂ui cannot all
be linearly independent. One way to do see this is to choose
D vectors vn orthogonal to the ∂ fα (u)/∂ui for all α, as well as
to each other. Then,

v1,i1 · · · vD,iDti1···iD (u) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

vT
1
...

vT
D

∇ f1(u)T

...

∇ fE (u)T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (B8)

where ∇ is the gradient in u and superscript T denotes the
transpose. Since the vn are orthogonal to the other vectors, one
of the ∇ fα (u) must be linearly dependent on the rest of them.
We immediately obtain that there is at least one additional
linear independent zero mode.

Self-stresses are orthogonal to the critical value set. The
critical set is defined as the set of points uC such that
ti1···iD (uC ) = 0. The critical value set is the image of the
critical set under the map fα (uC ). Suppose that uC (s) is a
one-parameter path of points in a smooth portion of the critical
set. Then consider its image Fα (s),

fα (uC (s)) = Fα (s). (B9)

If the derivative ∂Fα (s)/∂s is nonzero, then it is tangent to the
critical value set. Therefore,

∂Fα (s)

∂s
=

∑
i

∂ fα (uC (s))

∂ui

∂uC,i(s)

∂s
. (B10)

If σα is a self-stress, then
∑

α σα∂ fα/∂uI = 0. Therefore, we
obtain

∑
α

σα

∂Fα (s)

∂s
= 0. (B11)

Since this is true for any path in the critical value set, it follows
that all self-stresses are orthogonal to the critical value set.

Though the converse of this is not true—some vectors
normal to the critical value set may not be self-stresses—if
the critical value set has codimension one, then there can be
only one self-stress and the normal vector of the critical value
set necessarily corresponds to that self-stress.

Orientation. The tangent form ti1···iD (u) carries additional
useful geometrical information about the mechanism at regu-
lar (noncritical) configurations. When D = 0, t (u) is a scalar
whose sign was used to compute a topological index in
periodic mechanisms [36]. Beyond this, it endows the con-
figuration space with a natural orientation in any dimension.
At a regular point on the configuration space of a mechanism,
x, ti1···iD (x)dxi1 ∧ · · · ∧ dxiD is a differential form which pro-
vides a local orientation: for any basis of tangent vectors
{ζ1, j, · · · , ζD, j},

sgn
∑
i1···iD

ζ1,i1 · · · ζD,iDti1···iD (u) = ±1. (B12)
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However, note that this local orientation is only defined up to
an overall sign since we can always take one of the constraint
functions to have the opposite sign.

Though we do not make a great deal of use of it in this pa-
per, it is worth noting that if one is able to find two regions in

which t i1···iD (u) has opposite signs, there must be a boundary
between those regions for which t i1···iD (u) vanishes. That is, in
principle, we can use the tangent form to verify the existence
of critical configurations.
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