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Explicit kinematic equations for degree-4 rigid origami vertices, Euclidean and non-Euclidean
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We derive algebraic equations for the folding angle relationships in completely general degree-4 rigid-foldable
origami vertices, including both Euclidean (developable) and non-Euclidean cases. These equations in turn lead
to elegant equations for the general developable degree-4 case. We compare our equations to previous results in
the literature and provide two examples of how the equations can be used: in analyzing a family of square twist

pouches with discrete configuration spaces, and for proving that a folding table design made with hyperbolic

vertices has a single folding mode.
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I. INTRODUCTION

The folding of stiff, two-dimensional materials along
straight crease line segments so that the material remains
planar between creases is commonly known as rigid-foldable
origami. It has garnered the attention of designers, engineers,
and physicists as a source of easy-to-manufacture, collapsi-
ble mechanisms for use in everything from metamaterials to
solar sail deployment in space to furniture design [1-4]. Of
particular interest have been rigid origami structures that flex
with only a single degree of freedom, thus giving control-
lable folding mechanics. One way to study such mechanics
is to quantify the folding angle at each crease as the origami
structure flexes. A folding angle p; is the amount the material
deviates from a flat, unfolded state at a crease e;; see Fig. 1(a).
When four creases meet at a vertex, as in Fig. 1(b), the folding
mechanism will have one degree of freedom, meaning that one
crease’s folding angle will determine the folding angles of the
other three creases. Finding equations for these determined
folding angles in terms of the indeterminate folding angle
has been an essential part of many studies of rigid origami
in applications [5-8]. Such folding angle equations provide a
pure mathematical model of rigid folding that ignores thick-
ness of the material or bending energy at the creases. They
nonetheless provide valuable information on the configuration
and relative speeds of the folded creases as the mechanism
flexes.

In this paper we provide folding angle equations that hold
for the full range of possibilities for a degree-4 rigid origami
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vertex (i.e., where four crease lines meet). The flat-foldable
case, where the folding angles may flex to the point where
they all equal £ [see Fig. 1(b), left] has very elegant folding
angle equations that are well known; these will be summarized
along with other background material in Sec. II. In Sec. III
we present our equations, which not only cover the flat- and
non-flat-foldable degree-4 vertex cases, but also work for the
so-called non-Euclidean degree-4 vertex cases where the sum
of the sector angles «; between adjacent creases on the folded
material do not sum to 27 [see Fig. 1(c)]. These fully gen-
eral equations lead to surprisingly elegant equations for the
Euclidean, non-flat-foldable degree-4 case, such as the one
shown in Fig. 1(b), right; this will be the subject of Sec. IV.
Finally, in Sec. V we use our equations in two applications:
(i) a family of twist-based origami pouches that have finite,
disconnected rigid origami configuration spaces and therefore
exhibit bistability by snapping into their target form when
folded; and (ii) the design of a foldable table with hyperbolic
vertices.

II. BACKGROUND ON FOLDING DEGREE-4 VERTICES

We define the crease pattern of a rigid folding origami
to be the planar graph of straight line segments drawn on
the material that is to be folded. In this paper we focus on
crease patterns that have only one vertex in the material’s
interior, sometimes called single-vertex crease patterns. The
angles between consecutive creases at the vertex on the un-
folded material are called sector angles. We denote the sector
angle between creases ¢; and e;11 by «; (where the indices
are taken cyclically, mod 4 for a degree-4 vertex). A single-
vertex crease pattern whose sector angles sum to 27 is called
developable, or Euclidean. Some of the many studies of
the kinematics of degree-4, developable origami vertices are

©2022 American Physical Society
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FIG. 1. (a) Folding angles p; define valley and mountain creases.
(b) Sector angles «; defining examples of flat- and non-flat-foldable
vertices. (c) Examples of non-Euclidean vertices

Refs. [5,6,9—13]. More recent studies have explored rigid fold-
ings of nondevelopable, or non-Euclidean degree-4 vertices
[14,15], where Y a; # 2. Non-Euclidean origami vertices
come in two types: the synclastic case of an elliptic, convex
polyhedral cone crease pattern where the sector angles have
> a; < 27 and the anticlastic case of a hyperbolic vertex with
> a; > 27 [see Fig. 1(c)].

We denote the folding angle of a crease e; by p;. If p; >0
we call e; a valley crease, whereas if p; < 0 it is called a
mountain crease. As seen in Figs. 1(a) and 1(b), valley creases
are denoted in illustrations by a dashed line, while mountains
are drawn with a solid bold line.

If we can fold an origami crease pattern to a point where it
lies in a plane, with all the folding angles equal to & or —,
then we say that the crease pattern is flat foldable. One of the
basic results of flat-foldable origami is Kawasaki’s theorem,
which states that a necessary and sufficient condition for a
degree-4 vertex to be flat foldable is that the sector angles
between creases satisfy o — oy + a3 — g = 0 [16,17].

We define the configuration space of a degree-4 rigid-
foldable origami vertex V to be the set of points
(o1, P2, p3, p4) € R* such that V can be rigidly folded with
folding angles p; at each crease e;. If we let R(e;, p;) denote
the orthogonal matrix that rotates R® about the line contain-
ing crease e; by angle p;, then a necessary condition for an
origami vertex to be rigidly foldable with folding angles p;
is [[R(e;, pi) =1 where I is the identity matrix [18]. The

action of the matrices R(e;, p;) is shown in the degree-4 crease
patterns of Fig. 1(b).

When V is a flat-foldable degree-4 origami vertex, we have
the following [see Fig. 2(a) to aid in the notation].

Theorem 1. For a developable, flat-foldable origami degree-
4 vertex with sector angles labeled so that o) < oy < @3, oy,
the folding angles p; satisfy one of the following sets of
equations:

JrOt')
P2 cos Pl
= p3, Jtan==_——2 an =, 1
L= p3, 2 = —ps, tan = cos e UM M
and
pi_ sin“5E py

P1 = —p3, P2 :p4,tan? = Wtan 5 )

For a proof, see Refs. [17] or [19]. The two sets of equa-
tions in Theorem 1 trace two curves in the configuration space,
called the modes of the rigid folding, that intersect at the
origin (the unfolded state). An example of (p;, p,) graphs of
these two modes is shown in Fig. 2(b).

These relationships were first described by Huffman in
1976, although not in this exact form [20,21]. We see that
developable, degree-4 flat-foldable origami vertices have op-
posite folding angles that are congruent up to sign, and
adjacent folding angles have a linear relationship when pa-
rameterized by the tangent half-angle.

For the developable, non-flat-foldable case Huffman [20]
provides a relationship for the opposite folding angles,

sin® 2 = —Sir.l Zirl S In &+2 sin® @, 3)

2 sin o; Sin @043 2

where the indices are taken cyclically (mod 4), and for the
adjacent folding angle relationships Huffman gives a very
convoluted expression, lamenting that a more simple expres-
sion does not seem possible [20]. Izmestiev [22] provides
formulas that are of similar, but simplified, form to Huffman’s.
However, they exist in a complexified configuration space and
are thus challenging to use.

Numerical methods have also been employed to calculate
folding angles, such as in Tachi’s RIGID ORIGAMI SIMULA-
TOR software [23]. Numerical methods have also been used
to compute configuration space curves of nondevelopable
degree-4 vertex rigid foldings, such as those in Refs. [14,15],
which classify the possible combinations of mountains and
valleys that can exist in non-Euclidean vertices. We now turn
our attention to deriving folding angle equations for rigid
foldings of degree-4 origami vertices in general.

III. KINEMATICS OF GENERAL DEGREE-4 VERTICES

The following theorem describes the folding angle rela-
tionships, and thus the configuration space, of rigid foldings
of general degree-4 origami vertices.

Theorem 2. Given a general degree-4 rigid origami vertex
with sector angles o, ..., a4 and creases e; between sectors
o;—1 and o, the configuration space of the vertex is the set of
folding angles (p1, ..., p4) of the creases e; that satisfy the
following two equations, where the subscript index arithmetic
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mode 1

FIG. 2. (a) The two folding modes of a developable, flat-foldable vertex of degree 4. (b) The configuration space curves for folding angles

p1 and .

is taken cyclically (mod 4):

a2 P (1 + tan? 222) cos(a;—; + o;) + tan? 252 cos(ai — it2) + cOS(ir1 + &iy2) @
2 (1+tan® 22)cos(oi—g — ;) — tan® 222 cos(aip1 — iga) — cos(iy1 + &is2)
and
cos (x,-+2<1 + tan? %) <1 + tan? %) = cos(tjp] — @ — @i—1) tan® % + cos(oiy) + o — oc,-_l)tan2 %
2 Pi 2 Pit1
+ cos(ojy; — @; + aj—1) tan > tan - + cos(ajr) + o + 1)
+4sin o4 sing;_ tan % tan % 5)

Proofs of these equations can be found in Appendix A.

Remark 1. Equation (4) describes the relationship between opposite pairs of folding angles at the degree-4 vertex, while
Eq. (5) describes adjacent pairs of folding angles. These equations capture the entire configuration space of a degree-4 rigidly
folding vertex, but to obtain functions for individual folding angles they need to be manipulated, whereby the choice of square
root branches determines the various folding modes. To enumerate these modes, note that since degree-4 origami vertices have
one degree of freedom, we may choose any angle to parametrize the rigid folding. For example, if we let# = p4 be the parameter,
then from Eq. (5) we obtain two solutions for p;. That is, we can isolate the tan(p;/2) terms to obtain

sin” oy sin® a3 tan® 5t
2sina; sinas tan £ + —(cosay — cos(ar] — a3 — ) + (cos oy — cos(ay + a3 — ag)) tan® 2t)
an o x (cos oy — cos(ary + o3 + ag) + (cos oy — cos(a; — a3 + ag)) tan? %) ©)
2 cosay — cos(a] — a3 — aig) + (cosa — cos(ay + a3 — ag)) tan? 2 ’

2

giving two choices for p;. If we keep the sector with angle oy
fixed and fold the creases on either side of this sector with the
folding angles p; and p4, then this will position the sectors o
and a3, resulting in only one way to place the sector with angle
o, between them, determining the folding angles p, and ps3
(although this may result in the material self-intersecting). In
other words, Eq. (5) provides a proof of the following (which
is already generally known, e.g., see Refs. [9,20,22]):

Corollary 1. Degree-4 rigid-foldable vertices have exactly
two folding modes, meaning that their configuration space
consists of two curves in R*.

(

Remark 2. Care must be taken when trying to use Eqgs. (4)
and (5) to isolate the different folding modes, such as to
express one folding angle as a function of another folding
angle. For example, when taking square roots of both sides
of Eq. (4) one needs to track which branch of the square root
is needed to preserve the folding mode.

A guiding principle that can help, especially for non-
Euclidean degree-4 vertices, is to choose a folding angle p; as
the independent parameter that can achieve the full range of
[, 7] in the rigid folding motion. For example, consider a
bird’s foot vertex, which is a degree-4 vertex with o) = o <
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FIG. 3. (a) An example of a developable degree-4 origami vertex and images of it rigidly folding in its two folding modes. (b) Graphs of
the folding angle relationships (o1, p2), (01, p3), and (p;, p4) for this vertex as computed in [15] (reprinted with permission). (c) The folding
angle relationships for this vertex as plotted from the equations in Theorem 2 for the Euclidean developable case and perturbations into the
non-Euclidean elliptic and hyperbolic cases. Faded parts of curves correspond to self-intersections of the material or folding angles going

beyond £r.

o3 = o4, SO that creases ej-e¢3 look like the toes of a bird’s
foot [see Fig. 10(a) for an example]. In the elliptic case one
should choose p,, the folding angle of crease e;, to be the free
parameter, since all the other folding angles only remain in the
range [0, 7] while in mode 1; if we make any of p;, p3, or p4
negative, then we jump to a different connected component of
the configuration space and will be in mode 2. (More details of
how the folding angles equations from Theorem 1 inform the
rigid folding of bird’s feet can be found in Appendix C.)

Example 1. Equations (4) and (5) can be used to verify
many of the qualitative behaviors of degree-4 rigid origami
vertices as documented by Waitukaitis et al. for the de-
velopable case in Ref. [9] and the nondevelopable case in
[15]. For example, in Ref. [15] the developable degree-4
vertex with plane angles o) = /3, oy = /2, a3 = 37 /4,
and o4 = 57 /12 is studied; see Figs. 3(a)-3(b) for images
of this vertex and a plot of the folding angle relationships
between p; and p,, p3, and p4 for both folding modes, from
Ref. [15] (reprinted with permission). Using Egs. (4) and (5)
from Theorem 2, we can plot these curves as shown in the
first graph of Fig. 3(c), showing our equations match previous
work in the developable case. In the remaining two plots of
Fig. 3(c) we show our algebraic configuration space curves
for this vertex where the sector angles «; have been perturbed
by —0.05/(2m), making a synclastic convex cone vertex, and
by 0.05/(27) to make an anticlastic hyperbolic vertex. Our
curves match the approximation curves made for such non-
Euclidean vertices near the origin given in Fig. 2 of Ref. [15].
Note that in this figure we plot all solutions of the Theorem 2
equations that give p; € [, 7], which includes rigid foldings
that cause the material to self-intersect or cause other folding
angles to go beyond =+; such solution curve parts are drawn
in faded line widths in Fig. 3(c).

Many things can be inferred from the curves in Fig. 3(c).
For one thing, in both the elliptic and hyperbolic cases the
configuration spaces are disconnected, whereas in the devel-
opable vertex they are connected. This makes intuitive sense
because when Y «; # 27, it is impossible to unfold the vertex
so that all the creases have folding angles of zero at the same
time. In the elliptic case this means that the vertex can pop up
or down and cannot switch between the two without bending
faces. It is less intuitive that one cannot switch between modes
1 and 2 in the hyperbolic case, yet their curves clearly do
not intersect. This topological distinction of the configuration

spaces in the elliptic, developable, and hyperbolic cases has
further implications on the definitions of modes 1 and 2. For
example, in the developable vertex the folding angles p3 and
ps are decreasing functions of p; in mode 1 passing from
valley, to unfolded (zero), to mountain, ensuring a smooth
folding motion. But in the elliptic case p3; and ps remain
valleys throughout mode 1, joining two branches that were in
different branches in the developable case. Such observations
could be useful in practice when, say, trying to decide which
crease to use to drive a rigid folding mechanism.

IV. GENERAL EQUATIONS FOR DEVELOPABLE
DEGREE-4 VERTICES

Despite the elegant folding angle equations for flat-
foldable degree-4 vertices, as shown in Theorem 1, equally
elegant equations for general degree-4 developable vertices
have been elusive in the literature. However, the equations in
Theorem 2 can be used to prove (see Appendix B) the follow-
ing.

Theorem 3. For a general, developable degree-4 rigid
origami vertex with sector angles «; and folding creases e;
between sectors «;—; and «;, the folding angles p; at e; satisfy
the following equations:

sina; sinao - cos(@ip1 — ig2)

tan? £ 2
_ sing;_ysine;  cos(aj_| — o) 7
tan? 22 2 M
and
sin(a; 1 + ®i2) . sin «; sin ;g g
tan § Ctan 2L tan 287 ®)

Remark 3. Equation (7) can be manipulated to become
Huffman’s Eq. (3) from Ref. [20], but the formulation in (7)
shows how the general equation for opposite folding angles
can be expressed with tangent of half the folding angles.

Equation (8) reveals a pattern that was hidden in the flat-
foldable equations in Theorem 1. Since in the flat-foldable
case we have p;_; = xp;;1, the right-hand side of Eq. (8)
becomes either

sin «r; + sin ;1 sino; — sin ;1
or

Pi-1 Pi-1 ’
2 2

tan tan

055001-4



EXPLICIT KINEMATIC EQUATIONS FOR DEGREE-4 ...

PHYSICAL REVIEW E 106, 055001 (2022)

EEB
< B Y

0 =52.2° 0 = 59.63° 0 = 67.55°

0 =76.3°

FIG. 4. Square twist crease pattern variations and their folded
results. If 6 = 45° this is the classic square twist. For 6 > 45° the
vertices become non-flat-foldable and fold to a pouchlike nonflat
state.

which, using o) =7 —o;—; and @4 = 7 — @;, makes
Eq. (8) one of the two folding modes of Theorem 1 [since,
for example, sin(o; + o;—1)/(sine; + sine;—1) = cos((o; +
ai_1)/2)/ cos((o; — a;_1)/2)]. Thus, the flat-foldable case
collapses the folding angles p;_i, pi+1 of the two opposing
creases to relate them to p;, whereas Eq. (8) shows how they
should be separated in the general, developable case.

V. APPLICATIONS

We now illustrate how the equations from Theorem 2 can
be used to analyze specific examples of rigid-foldable crease
patterns and explain their mechanical behavior.

A. Square twist pouches

A square twist is a flat-foldable crease pattern made of four
degree-4 vertices forming a square in the paper, whereby flat
folding all the creases causes this square of paper to rotate,
or twist. Square twists have been studied extensively for their
bistable properties and as a building block for larger origami
mechanisms [8,24]. For instance, if the creases of the square
connecting the four vertices are made to be all valleys (or all
mountains), then the square twist will have only two rigidly
folded states, the unfolded state and the flat-folded state where
all folding angles are +.

The classic, flat-foldable square twist crease pattern is as
shown in Fig. 5(a) with 8 = 45°. If we increase 6 at all four

(a’) (b) T 9 — 450
6 = 50°
0 0 = 55°
e p1 0 = 60°
€4 €
0 = 45° ‘
0 P4 m

FIG. 5. (a) The square twist crease pattern with creases e; thru
e, labeled. (b) Plots of the (p4, p1) equation derived from Theorem
2 for various 0, along with the ps = p; line, with their fixed points
indicated.

vertices (so that the crease pattern is still rotationally symmet-
ric) then the vertices become non-flat-foldable and the crease
pattern, when making the inner square be all valleys, will form
a 3D pouch when folded. Examples for various 6§ > 45° are
shown in Fig. 4. Such origami pouches have been explored
by a number of origami artists and researchers such as Palmer
[25] and Mitani [26]. Like the flat-foldable square twist, these
square twist pouches have only two rigidly foldable states,
and when folding these crease patterns physically one can
feel the paper snap into the rigid folded state. That is, these
crease patterns exhibit bistability (between the unfolded state
and a unique rigid folded state) like the flat-folded studies in
Ref. [8].

To prove the bistabiity of these square twist pouches we
canplot Eq. (6) witha; =0 =45°+ A, 0, =90° — A, a3 =
135°, and oy = 90° for various values of 6, with 0 < 6 < 90°.
Such plots on a (p4, p1) axis are shown in Fig. 5(b). Where
these plots cross the p4 = p; line represent configurations for
this degree-4 vertex that have equal folding angles at creases
e; and e4 [see Fig. 5(a)]. This is the only case that will
allow nonzero folding angles to be used at each vertex to
rigidly fold the whole crease pattern and maintain a consis-
tent folding angle loop condition (i.e., rotational symmetry)
around the square ej-e4. One can use spherical trigonom-
etry to prove that the folding angle that allows p; = pg4 is
m — arccos(cot 8). Therefore the rigid origami configuration
space of the square twist pouch determined by sector angle 6
is discrete, consisting of only the unfolded state and the two
states where the folding angles around the square are all equal
to m — arccos(cot f) or its negative.

B. A non-Euclidean folding table

As described in Refs. [14,15], the folding mechanics of
nondevelopable degree-4 vertices can be significantly differ-
ent from developable vertices. In particular nondevelopable
vertices cannot fold to a state where all the folding angles are
zero, and therefore, as seen in Example 1 of Sec. III, the con-
figuration spaces for the two folding modes are disconnected.
In the hyperbolic case sometimes (but not always)' one of
the folding modes generated by the Theorem 2 equations will
result in the paper self-intersecting. Such cases can be lever-
aged in applications, since the self-intersections would make
one of the folding modes impossible, guaranteeing a single
way to fold the mechanism. These features are attractive in
furniture and architecture designs that employ folding, where
controllability (one degree of freedom) and consistency (one
folding mode) are essential.

An example is a folding table designed by author Foschi
whose crease pattern is made of eight degree-4 hyperbolic
vertices, all with sector angles o) = ap = 57/8, a3 = 7/2,
and a4 = 37 /4. Such a vertex is shown in Fig. 6. Entering

"Hyperbolic vertices may have nonintersecting states for both
modes. An example can be seen in the hyperbolic bird’s foot vertex
Fig. 10(b), where the mode 2 versions shown are just the mode 1
cases with the Ms and Vs reversed. Whether or not self-intersections
will happen within a folding mode depends on subtle differences
between the sector and folding angles of the hyperbolic vertex.
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FIG. 6. A rigid folding of a nondevelopable, hyperbolic vertex
withoy = o, =57/8, 03 = /2, and oy = 37 /4.

these into Eq. (4) and simplifying reveals

2 P2 232

tan® — = —sinzﬁ
2 24 4/2cospy 2

The two folding modes can be separated from Eq. (9) as

9

o \/2«/5/(2+\/§cosp4)sin% for mode 1,
2 —\/2\/5/(2 + /2 cos ps) sin % for mode 2.

Similarly, entering our sector angles «; into Eq. (6) and
simplifying produces the corresponding mode folding angle
equations for p;:

24232 V23 /3422 +tan? 2

tan

n o1 _ 4 un % for mode 1,
2 242v2+ V23 \/3+2v2+tan? 2
e 7 for mode 2.
2

Graphs of the mode curves for (o4, p2) and (p4, p;) are shown
in Fig. 7 along with images of the folded vertex at a few points.
This figure also suggests that the vertex is a valid rigid fold
in mode 1 but self-intersects in mode 2. This can be verified
by noting that, according to the graphs of our folding angle
equations, for mode 1 we have an alternating MV assignment
MVMV whereas for mode 2 we have MMVV. The latter
cannot be folded rigidly with this collection of sector angles
without forcing a self-intersection. (See Ref. [15] for a de-
tailed description of which MV combinations can be achieved
in non-Euclidean vertices.) Note that hyperbolic vertices do
not always force self-intersections in one of their folding
modes; the discussion of bird’s feet vertices in Appendix C
shows one example.

Therefore the nondevelopable vertex with sector angles
(57 /8,57 /8, /2,3 /4) has only one physically foldable
folding mode, which is mode 1 in Fig. 7. Note that the origin
of Fig. 7(a) represents the folding where p, = p4 = 0 and we
have a double-covered flat fold. Also, comparing the graphs
in Figs. 7(a) and 7(b), we see that as p4 approaches O in the
negative direction in mode 1, we will have p; — 7, whereas
if p4 approaches 0 in the positive direction in mode 1 we have

mode 1

N
L s B B ]

==

N
T T T

mode 2

FIG. 7. (a) The configuration space of p, graphed with p4, fol-
lowing Eq. (9), with some points indicated with their rigid foldings.
(b) The curves for p; graphed with p, using Eq. (5) and the same
rigid folding sample points.

p1 — —n. Thus ps = 0 is a discontinuity for the p; (and p3)
folding angle, as can be seen in Fig. 7(b). In other words, in
a physical model we cannot fold from negative p4 values to
positive pq4, since doing so would cause the crease e; to turn
from a valley to a mountain as we pass through the origin, and
this would require the folded material to pass through itself.
When the nondevelopable (57 /8, 57 /8, w/2,3m /4) ver-
tices are placed together to make an octagonal ring, the
nondevelopable folding table is formed, as shown in Fig. 8.
Note that the construction of the table has the layers of ma-
terial arranged from the start so that the creases labeled ey
in our single-vertex analysis must fold into mountain creases,
implying that p4 < O throughout the folding process. In other
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FIG. 8. The complete nondevelopable folding table.

words, the rigid folding motion shown in Fig. 8 is the only
valid folding motion for this table, leading to a mechanical
folding design that cannot misfold into an undesired shape.

VI. CONCLUSION

We have devised folding angle equations that hold for all
cases of degree-4 rigid origami vertices. While it was pre-
viously known that such equations exist, the ones presented
here have the advantage of being expressed in terms of tan-
gents of half the folding angles, which allows us to make
connections to the flat-foldable case. In addition, we used
these equations to prove surprisingly simple folding angle
equations for arbitrary degree-4 vertices in the developable
case, which nicely generalize the flat-foldable case. Also, we
provided some examples of how these equations can easily
help analyze the kinematic behavior of degree-4 rigid origami
vertex designs.

The fact that the tangent half-angle representation is so
prevalent in degree-4 folding angle equations remains to be
fully understood. As detailed in Ref. [27], sometimes this
phenomenon can be explained by proving that a given crease
pattern is kinematically equivalent to a developable flat-
foldable crease pattern, where the folding angle equations are
linear in terms of tan(p;/2). It could be that this technique can
provide a different proof of the general degree-4 equations in
Theorem 3, but it is not clear how this would be done for
nondevelopable degree-4 vertices.
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APPENDIX A: PROOF OF THE GENERAL
DEGREE-4 EQUATIONS

A schematic of an arbitrary degree-4 vertex is shown in
Fig. 9, which we consider lying in the xy plane with the vertex
at the origin and the crease e; along the positive x axis (note

e1 = xr-axis

Oé3 a4

FIG. 9. A degree-4 vertex crease pattern. If 6 = 0 the vertex is
developable; 6 # 0 is nondevelopable.

that rigid foldability requires 0 < «; < = for each ;). In order
to make the vertex lie flat in the xy plane, and to aid our
kinematic analysis, we split crease line e3 and insert an angle
6. If 6 = 0 then the vertex is developable (}_ «; = 27). The
nondevelopable cases are 6 > 0, where the vertex forms an el-
liptic polyhedral cone, and 8 < 0, which gives us a hyperbolic
vertex.

We will follow an approach to modeling the kinematics of
all these cases based on rotation matrices (e.g., Refs. [28,29]).
We let the sector of paper with angle a4 to remain fixed and let
ps =t be the free parameter. This means that the point p; =
[cos(2m — a3 — o), sin(2w — a3 — aq)] will fold to position

R (—ag)Rc ()R (ct4) i, (AL)

where R.(B8) and R.(8) are the 3 x 3 matrices that rotate R3
by B about the x and z axes, respectively. On the other hand
the point p, = [cos(o; + ap), sin(a; + op)] will fold into
position

Rx(pl )Rz(al )Rx(p2)Rz(_al )pr

The x coordinate of (A2) does not involve p; because the
matrix R,(p;), which leaves the x coordinate invariant, is the
only part of (A2) that involves p;. Therefore we can equate
the x coordinates of (A1) and (A2) and solve for p,. Doing
this gives us

(A2)

Sin oy Sin o4 COSt — COS (03 COS Oy
COoS pp = cotog cotap + .

sin o sin o
(A3)
Since cosine is an even function and p, € [—m, 7],
Eq. (A3) implies that there are two possibilities for p, for a
given input of ps = t, and thus there are at least two folding
modes for the vertex, which we could denote by £0,(¢). An
exception for this is when o3 = o, and oy = o1, in which case
Eq. (A3) reduces to p, =t and there is only one solution for
2.
The folding angle p; may then be determined by
finding the angle between the vector in (A2) and
R (a1)R,(02)R,(—c1)p,, which is just (A2) with the R, (p;)
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removed. This becomes

(cos ay sin(az + org) — sin oy cos(az + arg)) sint )

p1 = arctan - : ) 2
cos(az + arg) sin oy cos ag(cost — 1) — sin(az + a4 )(Sin” oy + COS” o4 COSt)

 aretan ( (sin(oe; + ) — cos(a; + ap) sinay) sin p; ) (Ad)

cos(ay 4 ap) cos oy sinag (1 — cos p) + sin(a; + az)(cos? oy cos ps + sin® a;)
However, this equation does not lend itself to simplification. Another approach for relating p; and p4 = ¢ is to, keeping the sector

oy in the xy plane fixed, fold e; and e4 and compute the images of e, and e; from this. The trajectory of e, = (cos ¢y, siny, 0)
and e3 = {cos[—(a3 + a4)], sin[—(a3 + a4)], 0} is
11 := Ry (p1)ez and 15 := R (—a4)R(—p4)R (0a4)es3,
respectively. We want the angle between 7] and 7, to be oy, so T - T, = cos,. Expanding this, dividing both sides by
cos pj cos py and rearranging yields
COS (¢] COS (/3 COS 0g — COS (X2 sin or; cos oz sin oy

= sin«; sin a3 cos oy +
COS p1 COS P4 COS 04

COS (¢q Sin ¢r3 Sin oy . .
— sin oy sin o3 tan g tan pq4. (AS)

COS p1

We then perform the Weierstrass substitution sin p4 = 2x/(1 4+ x?) and cos ps = (1 — x2)/(1 + x?), giving us that x = tan(p4/2).
Then to express p; as a function of p4, we also substitute sin p; = 2y/(1 +y?) and cos p; = (1 — y?)/(1 + y*), which means
y = tan(p;/2). Substituting these into Eq. (A5) and simplifying gives us

cos(ay + a3 + aq) + x2 cos(ay — o3 —ay) + x2y2 cos(a; + o3 —ay) + y2 cos(a; — a3 + ay)
+4xysina; sinaz — (1 +x2)(1 + y*) cosay = 0. (A6)

Resubstituting x = tan(p4/2) and y = tan(p; /2) gives us exactly Eq. (5) from Theorem 2.

Equation (A3) above may also be improved by a Weierstrass substitution. Here we let sin¢ = 2x/(1 + x?) and cost = (1 —
xz)/(l + x?) and sin p, = 2y/(1 + y2) and cosp, = (1 — yz)/(l + y2). Substituting these into the x coordinates of (Al) and
(A2) and isolating the p, terms gives us Eq. (4), which captures both folding modes for p,.

Since the choice of placing e; on the positive x axis in this derivation was arbitrary, we could rotate the vertex to place e, e3,
or e4 on the x axis and create similar equations. This proves Theorem 2.

APPENDIX B: PROOF OF THEOREM 3

Proving Theorem 3 is a matter of performing extensive trigonometric manipulations to the equations in Theorem 2 along with
the fact that, since we are in the developable case, we have ) «; = 2. We provide an outline of the manipulations needed for
the interested reader.

To prove Eq. (7), we use Eq. (4) from Theorem 2, where we let o;1p = 2w — o;—1 — @; — ;1 and simplify to obtain

P 2sin gy sin(e_; + &; + oy 1) tan® 252
2 cos(aig + a;) — cos(ai_1 — o) + (cos(ei_1 + o + 20ti11) — cos(e—; — o)) tan? fa”

(

Reciprocating, letting o;—; + & + ojr] = 27T — ¢4 oj_] — o — Wi, ZiVes us
again, and separating fractions yields

1 cos(aj_1 — ;) — cos(aj_1 + ;)
tan? & = 2sin iy SN @y tan? 252 COS Pjp2 Sin iy Sinetj—y + & + iy 1)
cos(at1 — iy2) — cOS(atj— — ;) +cos a1 cos(ai—1 + o + @iy1) — cos(ai—1 — o)
B 2sin;y sin o) ' = (1 4 cos pj2)(sino;p sin(ej—1 + o; + ;1)
Then using the identity cos(a — b) — cos(a + b) = —sin(@i_ + o) sin(a; + ai+1)(l 1 tan? %)

2 sina sin b and simplifying gives us Eq. (4).
To verify Eq. (5) we can start with this equation, take the
square root of Eq. (4) to replace tan(p;/2), and use Eq. (6)
to replace tan(p;+1/2), making sure to take the square root This equation may then be shown to be true using the

branches that correspond to the same folding mode [e.g., the identities cos &;+ cos(otj— + o; + @iy1) — cos(oj—) — @) =
positive branch of Eq. (4) goes with the negative branch of 2sin(o;_1 + ojp1) sin(o; + o) — sine; g sin(e;_; + o; +
Eq. (6)]. Simplifying this, as well as letting o, = 2w — air1) and 1 + cos piyr = 2 cos?(pis2/2) and simplifying.
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mode 1 mode 2

pr = — — = with oy = @ =7/4,
a3 = (3 :7'!'/3

pil = ——— with a1 = (g :27'1'/37
a3 = Q3 :377'/4

FIG. 10. (a) A bird’s foot vertex, where Y o; need not equal
27. (b) Graphs of the (p;, p2) and (p], p,) relations from Egs. (C3)
for a convex cone bird’s foot with sector angles (7 /4, 7/3) and a
hyperbolic bird’s foot with sectors (27 /3, 37 /4). (c) Placing the two
vertices from (b) together to visualize the folding angle congruence.

APPENDIX C: BIRD’S FOOT VERTEX EXAMPLES

For another example showing the utility of the Theorem 1
equations, let us consider degree-4 vertices where two pairs
of consecutive sector angles are equal, e.g., «; = ap and
o3 = ay [see Fig. 10(a)]. In the developable case, this is the
flat-foldable bird’s foot vertex that forms the vertices in the
much-studied Miura-ori crease pattern [3]. In this case previ-
ous results give us that the two folding modes in Theorem
1 become tan(p,/2) = —cosa; tan(p;/2) for mode 1 and
tan(p;/2) = 0 for mode 2, implying that one of the folding
modes has two creases (the left and right toes of the bird’s
foot) being unfolded and the other two creases folding to-
gether in a straight line.

Our equations can replicate this and go further for the non-
developable case. Substituting o = oy and oz =y =7 —
oy with i =2 into Eq. (4) yields tanz(p2/2) = tanz(,o4/2),
implying that p, and p4 are congruent up to sign. Using Eq. (4)
with i = 1 also gives us p; = ps3 up to sign. Then substituting
this case into Eq. (5) with i = 4 produces

tan % ((cos a1 — cos(3ap)) tan % — 45in’ & tan %) =0.
(ChH
Therefore either p; = 0, implying p3 = 0 and p, = p4 and we
are just folding the straight line made by creases e, and e,
or the other factor in Eq. (C1) is zero, giving us tan(p4/2) =

cosaj tan(p;/2). Then using Eq. (5) with i =1 gives us
tan(p,/2) = — cosa; tan(p;/2), which exactly supports the
results from Theorem 1 but with slightly more generality; if
o) < /2 then p; will have the opposite sign as p, and the
same sign as p4, whereas if «; > 7 /2 then the reverse is true,
p1 will have the same sign as p4 and be opposite from p;.
In the nondevelopable case, substituting oy = «p and 3 =
oy with i = 1 and then i = 2 into Eq. (4) simplifies to
2 P1 2 3 P2 sinas cos

tan Eztan > and cos =~ = nar 0s =, (C2)

while Eq. (5) withi = 1 and i = 4 gives us

sin oy cot a3 + cos & CoS
tan p 1 3. 1 01 (C3)
2 sin pj

and

P4 sin &3 cot ay + CcOoS a3 COS Py
tan — = - .
2 sin p;

(C4)

To our knowledge, these are new folding angle equations for
nondevelopable bird’s foot-type vertices.

Note that previous studies on rigid foldings of bird’s foot
vertices show that if all four creases are to be rigidly folded
(with no folding angles constantly zero), then the left and
right toe creases ey, e3 in Fig. 10(a) must have the same MV
parity [17]. Therefore the (o1, p3) relation in Eq. (C2) implies
P1 = P3.

Furthermore, the symmetry evident in the Eqs. (C3) and
(C4) can be exploited. If we substitute «; = 7 — o3 and a3 =
m — «a; into Eq. (C4) we get

P4 sin o) cot a3 + cos g cos p;

tan — = -
2 sin pj

) (C5)

which is exactly the (p;, p) relation in Eq. (C3) but with a
sign difference. Therefore if we let C be an elliptic bird’s foot
degree-4 vertex with sector angles («, o3), say with o) < a3
and folding angles p;, and let C’ be a hyperbolic degree-4
bird’s foot vertex with sector angles (7 — a3, m — @) and
folding angles p!, we will have p, = —p; and, similarly, p; =
p4. An example of this is illustrated in Fig. 10(b), showing
the graphs of our folding angle equations, identical up to sign.
Geometrically this can be verified by placing the convex cone
C and hyperbolic vertex C’ together with e; = ¢/ and e3 = ¢,
so that the folded structure is really two intersecting planes of
paper folding along the straight lines e, <> e4 and e <> ¢,
as shown in Fig. 10(c). This also proves that p; = p; and
03 = p;. The above verifies, and offers alternate proofs of,
the compatible kinematics of certain egg box and Miura-ori
crease patterns shown in Ref. [30] as well as the nested convex
cone and hyperbolic vertices of the zippered origami tubes of
Ref. [7].
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