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Penetrating a granular medium by successive impacts
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We consider the penetration dynamics of a vertical cylinder into a dry granular medium subjected to successive
impacts. The depth of the impactor below the free surface zN first evolves linearly with the impact number
N and then follows a power-law evolution zN ∝ N1/3. The depth reached by the cylinder after a given number
of impacts is observed to increase with the impact energy, but to decrease with its diameter and the density of
the granular medium. We develop a model that accounts for the quasistatic and inertial granular forces applying
on the cylinder to rationalize our observations. This approach reveals the existence of two intrusion regimes
for large and small impact numbers, allowing all data to be rescaled on a master curve. Then, we extend the
study to the effect of sidewalls on the dynamics of the impactor. We show that lateral confinement changes the
dependence of the impactor depth on the impact number zN (N ). This effect is accounted for by considering the
increase of the granular drag with the lateral confinement.
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I. INTRODUCTION

Probing the ground to extract samples or to dig up buried
objects is at the heart of many civil engineering activities and
exploration missions. Several applications, such as tunneling
or underground scanning, would benefit from the development
of subterranean robots capable of penetrating and moving
below the surface [1,2]. Among the techniques used to pen-
etrate a probe into the ground, several rely on the transfer
of kinetic energy to the digging impactor as in drilling [3].
This transfer can also be done using a succession of steps like
when someone drives a nail, i.e., hammering. In particular,
the hammering mechanism underpins the operation of space
probes that are designed to dive below the sandy surface
of other planets and inspect their physical properties [4,5].
Despite its common use, the hammering technique as a means
of penetrating a granular soil is little explored from a physical
point of view.

The study of granular media has followed an intensive
effort these last decades, with a particular focus on the
stress state within these materials. The pioneering work in
this field is by Janssen who considered the stress distribu-
tion in a confined granular medium [6]. He observed that
the pressure exerted on the base of the container saturates
at a value much smaller than the hydrostatic pressure that
would be measured for a liquid column. Instead, the pres-
sure saturates at a constant value that scales as the weight
of grains over a vertical distance comparable to the width of
the container. His continuum phenomenological model relies
on the hypothesis that the frictional contact forces between
the grains and the walls are at their Coulomb threshold and
that the vertical stresses are redistributed proportionally to
the horizontal ones. This effect, characteristic of granular
media, has led to numerous works in static [7–9] or dynamical
configurations [10,11].

Over the last few decades, many works were devoted to
the dynamics of an object impacting a granular medium. A
large part of this effort concerns spherical projectiles, well
suited to the study of impact crater morphology [12–15]. This
configuration has implications in geophysics for meteorite im-
pacts [16,17], a problem in which the effective gravity must be
taken into account [18]. Different experiments and numerical
simulations permitted to estimate the drag force applying on
the sphere during its intrusion [19–28]. In parallel, theoret-
ical models were proposed to rationalize these observations
[29–31]. A widely used model to describe the drag force
during the impact of a sphere is that which considers the sum
of two contributions: a collisional term and a Coulomb friction
term [21]. The collisional term evolves as v2, where v is the
penetration velocity of the sphere and is associated to the
energy dissipation by collisions with the grains constituting
the granular medium [32,33]. This expression for the inertial
drag was shown to hold for objects of different shapes with a
prefactor that accounts for their geometry [34]. The frictional
term, by analogy with the hydrostatic pressure in a classical
fluid, is described with an evolution as ρgz, where z is the
penetration depth of the object [35]. This prediction holds for
small depths and different models were proposed for the drag
force at larger depths. In this limit, the quasistatic drag force
on a penetrating object was described by a generic term in zα ,
with α > 1 and that depends on the object geometry [36–38].
More recently, the quasistatic granular drag experienced by a
slender object was rationalized as the sum of a z term and a
z2 term [39]. This model is the result of two contributions:
the pressure of the granular force at the tip of the slender
object (∝ z) and the granular frictional force on the lateral
side of the submerged part, integrated over the entire depth
(∝ z2). The previous expressions for the drag force permitted
to capture finely the dynamics of an object that realizes a
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single impact in a granular medium. However, the predictions
of these models regarding a succession of impacts remain to
be explored.

In this paper, we study experimentally the penetration of a
slender object (called impactor hereafter) into a dry granular
material by successive impacts. First, we measure the evolu-
tion of the penetration depth of the impactor as a function
of the number of impacts it receives, in a granular medium
that can be considered as infinite. We highlight the existence
of two regimes and we develop a continuous modeling of
the penetration depth. Second, we explore the influence of a
lateral confinement during the penetration and we show that
friction to the walls introduces a modification of the scaling
law of the penetration depth.

II. EXPERIMENTAL SETUP

The experimental setup consists of a cylindrical container
of diameter D, height 300 mm, containing rigid beads of di-
ameter dg and density ρg [Fig. 1(a)]. The beads used are made
of different materials, plastic, glass, and metal of density ρg =
920, 2500, and 7740 kg m−3, and diameters dg = 1, 0.45 and
2 mm, respectively. A controlled preparation of the granular
medium is obtained by pouring the grains into the container
and then tapping it at least ten times on the floor, ensuring an
initial volume fraction φ = 0.62 ± 0.01. We define the bulk
density of the granular medium as ρ = φ ρg. The impactor is
a hollow cylinder of external diameter d (ranging from 16 to
50 mm) and mass m0 (ranging from 60 to 460 g) ending with
a 60◦ angle conical head, as sketched in Fig. 1(a). Initially, the
tip of the impactor is placed at a depth z0 = 50 mm below the
surface of the granular medium to ensure its stability. The im-
pacts are generated by a cylindrical mass mi = 209 g dropped
inside the hollow cylinder from a height h, without any initial
velocity. When the mass reaches the bottom of the impactor, it
transfers its momentum and the impactor moves deeper in the
granular medium. The impacts are reproduced several times
in a row, keeping constant the dropping height h and thus the
impact energy E = migh. A picture of the impactor is taken
after each impact and allows one to measure its final depth zN

below the granular surface as a function of the impact number
N . Particular care has been taken to systematically center the
impacting mass with the axis of the impactor to ensure that the
system remains vertical during successive impacts (deviation
less than 2◦). In addition, we checked that the time interval
between impacts has no influence on the intrusion dynamics
in a range between 10 s and 100 s. This interval time is much
larger than the characteristic time required for a grain to fall
from its own diameter

√
dg/g � 10 ms. In all the experiments,

the ratio of the impactor diameter over the bead diameter d/dg

is always larger than 10, allowing to describe the medium in
the limit of continuum mechanics [39]. Note that we do not
measure significant variations of the mean packing fraction
during the successive impacts, as each impact reinforces the
initial tapping protocol. Also, to avoid any interaction with
the bottom of the container, the distance between the tip of
the impactor and the bottom is at least ten times larger than
the diameter of the grains [40].

FIG. 1. (a) Sketch of the experimental setup and notations used.
(b) Depth of the impactor zN as a function of the impact number
N , for an intrusion in glass beads (dg = 0.45 mm and ρ = 1550 kg
m−3). The impactor has a diameter d = 50 mm and a mass m0 =
460 g. The impacting mass is mi = 209 g and is released from h =
25.5 cm corresponding to an energy E = 0.52 J. Inset: Same data in
a logarithmic plot. The black line represents zN ∝ N1/3.

III. PENETRATION IN UNBOUNDED
GRANULAR MEDIUM

A. Experimental results

We first consider the case where the diameter of the con-
tainer is large compared to the impactor diameter (D > 8 d)
and side walls have a negligible effect on the impactor pen-
etration [23]. A typical penetration dynamics obtained under
these conditions is shown in Fig. 1(b) for an impactor entering
into glass beads and experiencing N = 125 successive im-
pacts. We observe that the dynamics is fast for the first impacts
then slows down with the number of impacts, but continues to
progress without saturating with depth. The inset in Fig. 1(b)
displays the logarithmic plot of the data and shows that the
penetration dynamics is well approximated by the scaling law
zN ∝ N1/3 when N � 10.

The inset in Fig. 2(a) presents the penetration dynamics zN

for an impactor entering glass beads and submitted to different
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FIG. 2. (a) Depth of the impactor zN as a function of the accumulated impacting energy NE mi/m for different impact energies E . Inset:
zN as a function of the impact number N . For intrusions in glass beads (dg = 0.45 mm and ρ = 1550 kg m−3), the impactor has a diameter
d = 33 mm, a mass m0 = 210 g, and the impacting mass is mi = 209 g. (b) Depth zN as a function of the impact number N for different
diameters d , with dg = 0.45 mm and ρ = 1550 kg m−3, by keeping constant the impact energy E and the mass ratio mi/m. (c) Depth zN as
a function of the impact number N for different densities of the granular medium ρ, with d = 33 mm and a mass m0 = 210 g, the impacting
mass mi = 209 g is released from h = 255 mm.

impact energies E . We observe that the intrusion dynamics
keeps the same increasing shape whatever the impact energy,
but that the depth after a given number of impacts increases
with E . The same data are presented in Fig. 2(a) as a function
of the total impact energy delivered to the impactor NE mi/m,
where m = m0 + mi. It turns out that experiments performed
with different pairs of h and mi, but the same impact energy
E = migh leads to the same results, highlighting that the im-
pact energy is the relevant parameter in this problem.

The effect of the impactor diameter d on the penetration
depth is displayed in Fig. 2(b) as a function of the impact
number N , by keeping constant the impact energy E . The
intrusion dynamics is then observed to be slower for larger
impactor diameters.

Finally, we explore the influence of the density of the
granular medium on the penetration by successive impacts
[Fig. 2(c)]. We realize experiments with grains of different
materials by keeping unchanged the impactor characteristics
(m0 = 210 g, mi = 209 g, and d = 33 mm) as well as the im-
pact energy (E = 0.52 J). We observe that increasing the bulk
density ρ of the granular medium significantly slows down the
intrusion dynamics.

B. Model

To model the evolution of the penetration depth zN with the
number N of successive impacts, we consider the forces that
apply on the impactor during the advancing phases. The im-
pactor experiences its own weight, the force resulting from the
impact of the internal mass, and the resistance of the granular
medium. Here, the weight of the impactor mg is small com-
pared to the granular drag and can be neglected in the force
balance. The mechanical action exerted by the impacting mass
is accounted through momentum conservation during the col-
lision of the internal mass with the bottom of the cylinder. The
impacting mass mi dropped from a height h without initial
velocity has a mechanical energy migh and a velocity before
impact

√
2gh. The collision of the internal mass mi with the

penetrating object of mass m0 is assumed to be perfectly in-
elastic. In these conditions, the conservation of the momentum
of the system provides that the initial velocity of the impactor
just after the impact is vi = √

2gh mi/m. The resistive forces

resulting from the interaction of the impactor with the granular
material have both a collisional and a frictional origin. At
each new impact, two temporal regimes can be distinguished
[24]: a first phase corresponding to the earliest instants where
the inertial resistance dominates and where the drag force
strongly depends on the velocity of the impactor; a second
phase where the quasistatic resistance dominates, independent
of the impactor velocity. In the following, we will focus on the
terms corresponding to these two regimes, one after the other.

By considering first the case where the velocity of the
impactor is high and the inertial contribution of granular drag,
proportional to the cross sectional area (∼d2) and to the
density of the granular medium ρ, overcomes the quasistatic
contribution, the equation of motion for the impactor of mass
m is written as

m
dv

dt
= −Kv ρd2 v2, (1)

where v = dz/dt and Kv is a characteristic prefactor
of the collision dissipation. As in the case of a sphere
impact in a granular medium, Kv is expected to depend
on the packing fraction φ [12,24,31]. The model is
developed in the limit of continuous depths z and then
discretized to zN to be compared with experiments. At
the beginning of impact number N , the impactor is
located at the depth z = zN−1 of the previous impact
and its velocity is v = vi. By using the relation dv/dt =
(dv/dz)(dz/dt ) = v dv/dz = (1/2) d (v2)/dz, Eq. (1)
leads to

v2(z)

v2
i

= exp

(
− z − zN−1

L0

)
, (2)

where L0 = m/2Kv ρd2 is a characteristic length, which
scales as m/ρ d2. This expression is valid at the first instants of
the penetration dynamics. The final depth zN is reached when
the impactor velocity vanishes, i.e., v(zN ) = 0. We obtain a
relation between two successive rest positions zN − zN−1 =
L0, which, by iteration from the initial depth z0, leads to the
following prediction:

zN − z0

L0
= N. (3)
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This relationship describes the first asymptotic regime that is
expected to occur during the first set of impacts at shallow
depths.

We now consider the opposite situation where the qua-
sistatic contribution of the drag force overcomes the inertial
term and which occurs in the limit of low velocities or high
depths. In this limit, the resistance experienced by the im-
pactor from the granular medium is proportional to z2 [39,41].
We neglect here the resistive force term of the pressure at the
tip of the impactor, which should evolve as z, assuming it is
approximately cylindrical. Under these conditions, the equa-
tion of motion for the penetration dynamics of the impactor is
written as

m
dv

dt
= −Kz ρgd z2, (4)

where Kz is a characteristic prefactor of the friction force. This
equation can be made non-dimensional by using L0 and by
introducing a characteristic time T0 = (Kv d/Kz g)1/2, which
scales as (d/g)1/2. For the impact number N , the initial con-
ditions are z = zN−1 and v = vi. Using the same relation as
before for dv/dt , we obtain the following solution:

v2(z)

v2
i

= 1 − 1

3

(
L0

viT0

)2( z3 − z3
N−1

L3
0

)
. (5)

The final depth zN is reached when v(zN ) = 0. We obtain
a relation between two successive impacts, which, by itera-
tion with respect to the initial depth, leads to the following
prediction:

z3
N − z3

0

L3
0

= 3N

(
T0 vi

L0

)2

. (6)

In the limit of large depths (zN � z0), we can approximate
that z3

N − z3
0 � (zN − z0)3 and the previous equation leads to

zN − z0

L0
=

[
3N

(
T0 vi

L0

)2]1/3

. (7)

To summarize, two intrusion regimes should be considered,
where zN ∼ mN/ρd2 ∝ N in the limit of small depths and
zN ∼ (mv2

i N/ρgd )1/3 ∝ N1/3 in the limit of large depths. Note
that both predictions provide that the depth of the impactor
after a given number of impacts decreases with the impactor
diameter d and the density of the granular medium ρ, in
qualitative agreement with experiments displayed in Figs. 2(b)
and 2(c). At intermediate depths, we expect a crossover be-
tween these two regimes and we suggest to connect these two
predictions by the arbitrary expression

zN − z0

zc
=

N
Nc(

1 + N
Nc

)2/3 , (8)

where zc is the crossover depth and Nc the number of impacts
associated to this crossover. Note that shallow penetration
depths corresponding to N/Nc � 1 and large penetration
depths corresponding to N/Nc � 1, lead, respectively, to the
limiting cases zN ∝ N and zN ∝ N1/3 discussed before. We
consider zc and Nc as free parameters and we seek the
best fit of the measured intrusion dynamics with Eq. (8).

Figure 3(a) presents all the intrusion dynamics normalized
by Nc and zc estimated through this procedure. We con-
clude that the proposed modeling is compatible with the
experimental data since all our measurements collapse on a
master curve which corresponds to Eq. (8). The identification
of Eqs. (3), (6), and (8) leads to the following expressions
for the crossover parameters: zc = √

3 vi T0 ∼ vi(d/g)1/2 and
Nc = √

3 T0 vi/L0 ∼ ρvi d5/2/(m g1/2). In the following, we
compare the estimations provided by our fitting procedure to
these predictions. Figure 3(b) shows the evolution of zc/d as a
function of vi/(d g)1/2. We observe a good agreement between
the experimental data and the scaling of zc predicted by this
modeling. The fit of the data highlighted by the solid line in
Fig. 3(b) provides an estimate of the ratio Kv/Kz = 0.4 ± 0.2.
Figure 3(c) presents the evolution of Nc as a function of
ρvi d5/2/(m g1/2). The fit of the data [solid line in Fig. 3(c)]
provides an estimate of the ratio (Kv

3/Kz )1/2 = 4 ± 3. The
agreement between the measurements and predictions is still
reasonable even though there is more dispersion on the data.
This dispersion arises from the fact that Nc is limited to a
narrow range of values (between 1 and 10) while the uncer-
tainty on this parameter can hardly be less than 1. Moreover
the variations of prefactors in granular media are known to
be highly fluctuating [35,39]. These two scaling laws allow
to give an estimate of Kv � 6 and Kz � 15. Note that the
values of Kv and Kz are known to depend on the shape of
the impactor. Indeed, a collisional model permitted to pro-
pose a dependency for Kv with the geometry of the object
[34]. In the quasistatic limit, an Archimedean law was pro-
posed for the granular drag at low depths, which allow to
express the influence of the head geometry on the resistive
force [35].

The crossover between the two intrusion regimes is de-
scribed by the ratio between the collisional and the frictional
forces. The transition between these two regimes can be ratio-
nalized with a non-dimensional number which corresponds in
this case to the Bagnold number Ba defined as

Ba = ρd2v2

ρgdz2
=

(
d

z

)(
v2

gz

)
=

(
d

z

)
Fr2, (9)

where Fr = v/
√

gz is a dynamic Froude number. This defi-
nition drops the constant relative to the ratio Kv/Kz which is
of the order of unity. When Ba � 1, the quasistatic contribu-
tion of the granular resistance predominates, whereas when
Ba � 1, the inertial term overcomes. In these experiments,
this number is related to the Froude number which compares
two characteristic velocities: the initial velocity due to the
impact of the mass and the velocity linked to the hydro-
static pressure. The dynamic side comes from the fact that
the more the object sinks, the smaller this number naturally
becomes.

IV. PENETRATION IN A CONFINED GRANULAR MEDIUM

In this section, we consider the effect of a lateral con-
finement on the intrusion dynamics of the impactor over
successive impacts. We follow the same experimental pro-
cedure as previously, but we now investigate larger ratio of
the impactor diameter over reservoir diameter d/D where the
influence of the lateral walls is not negligible anymore.
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FIG. 3. (a) Normalized impactor depth (zN − z0)/zc as a function of the normalized impact number N/Nc. The solid line represents the
prediction of Eq. (8). (b) Crossover distance zc deduced from the fit and normalized by the impactor diameter d as function of the experimental
parameter vi/(d g)1/2. The solid line corresponds to zc/d = A vi/(d g)1/2, with A = 1.1. (c) Crossover impact number Nc as a function of
the experimental parameter ρvi d5/2/(m g1/2). The solid line corresponds to Nc = Bρvi d5/2/(m g1/2), with B = 15. Symbols have the same
meaning as in Fig. 2.

Whereas previous experiments were conducted for d/D <

0.125, we now increase this ratio up to 0.4. Figure 4 shows the
intrusion dynamics of an impactor penetrating into glass beads
with different values of the ratio d/D. When d/D is smaller
than 0.3, all the intrusion dynamics collapse on the prediction
of Eq. (8) when rescaled by the crossover depth zc and the im-
pact number Nc. However, when d/D becomes larger than 0.3,
the intrusion dynamics starts to deviate from the unbounded
case. The lateral confinement not only reduces the depth of the
impactor after a given number of impacts, but also changes the
penetration law as highlighted by the semi-logarithmic scales
of Fig. 4 that reveal a transition towards a logarithmic trend,
zN ∝ ln N , when d/D � 0.3. To characterize this change in

FIG. 4. Normalized depth zN/zc as a function of the normalized
impact number N/Nc for increasing ratio of impactor diameter over
the reservoir diameter d/D. The upper solid line indicates the pre-
diction for unbounded intrusion from Eq. (8) and the lower solid line
represents the extreme case zN ∝ ln N when the lateral confinement
matters. Inset: Estimated exponent α from the fit of the intrusion
dynamics with Eq. (10) as a function of d/D. The gray region
distinguishes confined cases from the unbounded case.

behavior, we fit the intrusion dynamics by the following law:

zN − z0

zc
=

(
N
Nc

)α+2/3

(
1 + N

Nc

)2/3 , (10)

where α is a free parameter equals to α = 1/3 when the effect
of the lateral confinement is negligible, recovering Eq. (8),
while in the limit of large N , this relation scales as zN ∝ Nα .
Therefore, we look for the exponents α that provide the best
fits of the intrusion dynamics and we plot them in the inset of
Fig. 4 as a function of the ratio d/D. We observe that α � 0.33
when d/D � 0.3 and decreases towards zero for larger values
of the ratio d/D.

When the friction on the lateral walls is mobilized, the
pressure in the material does not increase linearly with depth,
but rather saturates exponentially towards a constant value [6].
This corresponds to a dynamical Janssen effect resulting from
the mobilization of the friction and is already observed when
moving a vertical wall upwards [10]. However, in practice, we
do not observe any saturation of the force experienced by a rod
plunging into a granular medium [37,39,42]. The moving wall
is the side of the impactor that goes downwards and thus mo-
bilizes friction in the opposite direction. In this case, the usual
expression of the Janssen force adopts a different form since
there is no saturation: we therefore consider that the pressure
in the material increases exponentially with depth. This ex-
ponential dependence was already proposed to rationalize the
force experienced by the bottom wall of a narrow granular
column as it pushes up the grains [43]. This dependency of the
pressure with depth is reflected in the drag force that applies
on the impactor. Indeed, a previous study revealed that the
presence of lateral walls increases the drag experienced by a
sphere intruding at low speeds into a granular tank [44]. To
account for this effect up to the limit of extreme confinements,
we suggest an exponential variation of the force with depth

m
dv

dt
= −Kz ρgdλ2 exp

(
z

λ

)
, (11)

where λ is the characteristic depth of the evolution of the
pressure profile. Following the same method as previously, the
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solution of this equation is

v2(z) − v2
i = −2 Kz ρgdλ3

m

[
exp

(
z

λ

)
− exp

(
zN−1

λ

)]
.

(12)

Looking for zN where v(zN ) = 0, and using the characteristic
length L0 and the characteristic time T0 introduced in the
unbounded case, we obtain

exp

(
zN

λ

)
− exp

(
zN−1

λ

)
= v2

i L0T 2
0

λ3
. (13)

By iteration, we obtain a prediction for the intrusion dynamics
in the presence of lateral confinement

zN

λ
= ln

[
exp

(
z0

λ

)
+ v2

i L0T 2
0

λ3
N

]
. (14)

In the limit of large depths (zN � z0), this prediction scales as
zN ∝ ln N and thus has the same scaling as the observations
made for d/D � 0.3 (Fig. 4). Since a power law of the form
zN ∝ Nα is always larger than ln N at large N , this explains
why the fits of the intrusion dynamics with Eq. (10) have an
exponent α that decreases towards zero when the effect of the
confinement dominates.

V. CONCLUSION

In this study, we analyze the different intrusion regimes
of a cylindrical impactor that penetrates a granular medium
through N successive impacts. In an unbounded medium, the
dynamics of the impactor during the first impacts is ruled
by a balance between the force resulting from the impact of
the internal mass and the inertial resistance of the granular
medium due to collision dissipation (∝ v2) and leads to an
intrusion law of the form zN ∝ N . For larger impact num-
bers, as the impactor moves deeper in the grains, the input

energy is balanced by the quasistatic force applied by the
granular medium on its lateral surface (∝ z2). Thus, the intru-
sion dynamics becomes sublinear as zN ∝ N1/3. We develop a
theoretical framework that accounts for the forces applied by
the grains on the impactor. The scaling laws predicted by the
model are in agreement with the experimental measurements.
The existence of these two regimes of penetration dynamics
reveals a crossover depth zc ∼ vi(d/g)1/2 which depends on
the geometry of the object and the impact velocity, also well
captured by the model.

In a confined granular medium, the penetration dynamics is
modified as the granular forces are modulated by the friction
at the walls. The more confined the environment, the more
difficult is the penetration by successive impacts since the re-
sistant force increases. Consequently, the intrusion dynamics
transits towards a logarithmic trend, zN ∝ ln N in the case of
extreme confinement. We extend the theoretical framework
that accounts for the forces applied by the granular medium
on the impactor in this case.

The agreement between the predictions of this model and
our measurements proves that we now have a reliable under-
standing of the granular forces applying on an impactor to
predict its dynamics when its submitted to complex solicita-
tions such as a series of impacts. This understanding offers
promising opportunities to optimize the design of autonomous
digging systems based on this principle and dedicated to ex-
plore any granular soils. In future studies, we can explore the
effect of cohesion of the granular medium on the intrusion
dynamics of the impactor to get closer to practical situations.
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