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We propose a simple scaling theory describing critical effects at rounded meniscus osculation transitions
which occur when the Laplace radius of a condensed macroscopic drop of liquid coincides with the local
radius of curvature Rw in a confining parabolic geometry. We argue that the exponent βosc characterizing
the scale of the interfacial height �0 ∝ Rβosc

w at osculation, for large Rw , falls into two regimes representing
fluctuation-dominated and mean-field-like behavior, respectively. These two regimes are separated by an upper
critical dimension, which is determined here explicitly and depends on the range of the intermolecular forces.
In the fluctuation-dominated regime, representing the universality class of systems with short-range forces, the
exponent is related to the value of the interfacial wandering exponent ζ by βosc = 3ζ/(4 − ζ ). In contrast, in
the mean-field regime, which was not previously identified and which occurs for systems with longer-range
forces (and higher dimensions), the exponent βosc takes the same value as the exponent βco

s for complete
wetting, which is determined directly by the intermolecular forces. The prediction βosc = 3/7 in d = 2 for
systems with short-range forces (corresponding to ζ = 1/2) is confirmed using an interfacial Hamiltonian
model which determines the exact scaling form for the decay of the interfacial height probability distribution
function. A numerical study in d = 3, based on a microscopic model density-functional theory, determines that
βosc ≈ βco

s ≈ 0.326 close to the predicted value of 1/3 appropriate to the mean-field regime for dispersion forces.

DOI: 10.1103/PhysRevE.106.054802

I. INTRODUCTION

It has long been recognized that fluids adsorbed at solid
substrates display a wealth of new physical phenomena that
are not present in the bulk. These include wetting and
prewetting transitions at planar walls [1–3] and capillary
condensation or evaporation for confinement in pores and
between parallel plates [4], which have received extensive
theoretical and experimental attention. By sculpting the solid
surface, which is now possible in the laboratory, many more
examples of surface phase transitions can be induced even
in rather simple geometries. For example, wedge filling is
an example of an interfacial phase transition that is distinct
from wetting [5–13]. Also, by merely capping a capillary,
the ensuing condensation can be changed from first order
to continuous [14–28]. As well as being of interest to the
fundamental statistical mechanical theory of inhomogeneous
fluids and surface phase transitions, these studies are also of
relevance to microfluidics, for example.

A particularly simple example of a sculpted surface is
one which is completely wet (corresponding to zero contact
angle) and contoured to the shape of a paraboloid or parabolic
groove. Previous theoretical [29,30] and experimental [31,32]
studies of adsorption isotherms on this substrate focused on
the geometry-dominated growth which occurs as the bulk
pressure is increased towards saturation. However, in a re-
cent paper [33] we pointed out that an additional rounded

phase transition, which we termed meniscus osculation, oc-
curs when the pressure is tuned so that the radius of curvature
of the meniscus coincides with the geometrical radius of cur-
vature of the parabola. This marks the value of the pressure at
which the adsorption changes from being microscopic, deter-
mined by intermolecular forces or interfacial fluctuations, to
being macroscopic due to the local condensation of a liquid
drop. Meniscus osculation offers another example of fluid
interfacial behavior showing nontrivial scaling and critical
effects which is related to but distinct from wetting, filling,
and capillary condensation.

In this paper we develop a comprehensive scaling theory
for critical effects occurring at meniscus osculation and in
particular determine the value of the upper critical dimension
which distinguishes a mean-field regime from a fluctuation-
dominated one. The scaling properties which characterize the
adsorption are very different in these two regimes and are
related to the underlying wetting properties via distinct critical
exponent identities. This improves upon our earlier analysis,
which did not identify the upper critical dimension or the
mean-field regime. Two explicit calculations, one mesoscopic
and the other microscopic, are presented which determine the
value of the osculation critical exponent and verify that there
are indeed two separate fluctuation regimes. More specifically,
we show that analogous to the theory of complete wetting
[34–36], meniscus osculation shows two scaling regimes. One
is fluctuation dominated, characterized by universal critical
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exponents that are related to the value of the wandering ex-
ponent ζ , which characterizes the scaling relation

ξ⊥ ∝ ξ
ζ

‖ (1)

between the perpendicular and parallel correlation lengths for
planar interfaces [36]. There is also a mean-field regime where
the exponents are sensitive to the range of the intermolecular
forces where fluctuation effects are negligible. The values of
the critical exponents in the fluctuation-dominated regime,
its dependence on ζ , and also the value of the upper critical
dimension are different from that of the complete wetting
transition. A central result of our paper is that the value of
the upper critical dimension for meniscus osculation is given
by

d∗
osc = 3 − 8

3r + 4
, (2)

where r = 2 corresponds to dispersion forces and r = ∞
corresponds to short-range forces. Our predictions are sup-
ported in two dimensions (d = 2) using a droplet model
treatment of an effective interfacial Hamiltonian [37]. This
determines explicitly the tail of the probability distribution
for the interfacial height above the groove bottom and iden-
tifies that the osculation critical exponent takes the value
βosc = 3/7 in the fluctuation-dominated regime, confirming
an earlier scaling prediction which is understood to be valid
only in the fluctuation-dominated regime [33]. In three di-
mensions (d = 3) numerical studies based on a microscopic
density-functional theory (DFT) with dispersion forces deter-
mines that βosc ≈ 0.326, which is close to the expectation of
our scaling theory, βosc = βco

s = 1/3, within the mean-field
regime.

Our paper is arranged as follows. We begin with a recap of
the scaling theory of the fluctuation regimes and the critical
singularities for complete wetting transitions at planar walls
before developing a crossover scaling theory which identifies
the relevant length scales and critical singularities at menis-
cus osculation. A general scaling theory is presented which,
similar to complete wetting, separates critical singularities
into fluctuation-dominated and mean-field regimes. Explicit
examples which confirm these predictions in d = 2 and d = 3
are presented. We finish our paper with a brief summary and
discussion of possible further work.

II. SCALING THEORY FOR COMPLETE WETTING

To begin, we recall some details of the well-developed fluc-
tuation theory of complete wetting [1,34–36] which we will
need in our analysis of meniscus osculation. The complete
wetting transition refers to the divergence in the adsorption �

of liquid at a planar wall-gas interface, say, as the pressure p
(or chemical potential μ) is increased to saturation psat, above
a wetting temperature, i.e., when the macroscopic contact an-
gle θ = 0. As δp = psat − p → 0, a number of length scales
diverge, in particular

�π ∝ δp−βco
s , ξ‖ ∝ δp−νco

‖ . (3)

Here �π is the wetting layer thickness which is related to the
adsorption � = �ρ�π , where �ρ is the difference between

FIG. 1. (a) Schematic illustration of the equilibrium interfacial
thickness �π ∝ δp−βco

s , parallel correlation length ξ‖ ∝ δμ
−νco

‖ , and
interfacial roughness ξ⊥ ∝ ξ

ζ

‖ for complete wetting by liquid (blue)
at a planar wall-gas interface. (b) Illustration of a droplet configura-
tion in d = 2 constrained to pass through a point at height � 	 �π ,
i.e., one a scale much larger than the length scales shown in (a),
far above the wall. The free-energy cost �F (�) ∝ δp1/2�3/2 of the
droplet determines the asymptotic scaling form of the interfacial
height probability distribution function P(�), identifying explicitly
that for systems with short-range forces βco

s = 1/3. The droplet area
S, interfacial length �m, and the length of contact with the wall �w are
shown.

bulk liquid and gas densities, and ξ‖ is the parallel correla-
tion length arising from the buildup of capillary-wave-like
fluctuations near the unbinding liquid-gas interface, which
leads also to the divergence of the interfacial roughness ξ⊥
[see Fig. 1(a)]. For pure systems, as pertinent to wall-fluid
interfaces, it is well established that the wandering expo-
nent ζ = (3 − d )/2 for dimension d < 3 (with ξ 2

⊥ ∝ ln ξ‖ in
d = 3 corresponding to ζ = 0) with its value also known for
impure systems (most commonly, random-bond and random-
field disorder) [36]. For complete wetting, an exact sum rule
determines that ∂�/∂μ ∝ ξ 2

‖ , leading to the exact exponent
relation [38–40]

1 + βco
s = 2νco

‖ . (4)

The values of the critical exponents can be determined quite
generally from analysis of the simple interfacial model [34,35]

H[�] =
∫

dx
[γ

2
(∇�)2 + W (�)

]
, (5)

where �(x) is the interfacial coordinate (measuring the local
height of the wetting layer at the position x along the wall),
γ is the surface tension which resists interfacial fluctuations,
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and

W (�) = δp� + A

�r
+ · · · (6)

is the binding potential which includes the effect of inter-
molecular forces characterized by the exponent r (with A a
Hamaker constant), which maybe derived from more micro-
scopic theory [2]. Heuristic scaling arguments suggest that the
interfacial wandering leads to an effective entropic repulsion,
decaying as �−τ , where τ = 2(1 − ζ )/ζ , which competes
with the direct intermolecular contribution in W (�), leading
to two scaling regimes.

Fluctuation-dominated regime. For r > τ , fluctuations
dominate leading to scaling behavior, characterized by �π ∝
ξ⊥ ∝ ξ

ζ

‖ , with universal nonclassical critical exponents [34]

βco
s = ζ

2 − ζ
, νco

‖ = ζ

2 − ζ
. (7)

The dependence on the wandering exponent ζ here is quite
general and applies also to impure systems. Thus, in d = 2 the
critical exponent βco

s = 1/3 for pure systems (ζ = 1/2), while
βco

s = 1/2 for systems with random-bond disorder (ζ = 2/3).
Mean-field regime. For r < τ , on the other hand, the inter-

molecular forces dominate, leading to mean-field-like critical
behavior for which �π 	 ξ⊥ with critical exponents

βco
s = 1

1 + r
, νco

‖ = 2 + r

2(1 + r)
, (8)

which follow from simple minimization of the binding poten-
tial.

For fixed r and systems with just thermal disorder, these
regimes determine the upper critical dimension

d∗ = 3 − 4

r + 2
, (9)

below which fluctuations dominate and above which they are
negligible [34]. In d = 3 and with dispersion forces (r = 2)
this implies βco

s = 1/3 (and νco
‖ = 2/3), as predicted many

years ago by Derjaguin and which has been confirmed exhaus-
tively in numerous experiments [1,3].

In d = 2 these heuristic expectations are also fully con-
firmed using discrete and continuum interfacial Hamiltonians
[35,41]. The partition function for the interfacial model (5)
can be determined exactly using continuum transfer-matrix
methods, equivalent to solving the eigenfunctions and eigen-
values of the Schrodinger-like equation

− 1

2β2γ
ψ ′′

n (�) + W (�)ψn(�) = Enψn(�), (10)

where β = 1/kBT , which we hereafter set to unity. This el-
egant transfer-matrix method determines, for example, that
the probability distribution function (PDF) of finding the
interface at height � is P(�) = |ψ0(�)|2, which determines
both �π and ξ⊥, and also identifies that ξ‖ = 1/(E1 − E0).
For the systems with short-range forces (representing the
scaling regime for r > 2), the eigenfunctions are given by
ψn(�) ∝ Ai[(2γ δp)1/3� + λn], where the λn are the zeros of
the Airy function Ai(x) with corresponding eigenvalues En =
2−1/3|λn|(δp)2/3. The power-law dependence on δp within
P(�) immediately determines that βco

s = 1/3, consistent with

(7) on setting ζ = 1/2 as appropriate to d = 2. The decay of
the Airy function then determines that far from the wall the
PDF decays as

P(�) ∝ 1

�1/2
exp

[
−4

3
(2γ δp)1/2�3/2

]
, (11)

which of course still reveals the value of the complete wetting
exponent βco

s . This asymptotic behavior is completely consis-
tent with the droplet model expectation that the PDF decays
as [37]

P(�) ∝ e−�F (�), (12)

where �F (�) is the free-energy cost, in units of kBT , of
forming a constrained droplet of liquid which rises above the
wall forming a cusp at height � [see Fig. 1(b)]. For large � this
free-energy cost is macroscopic and is simply given by

�F (�) = δpS + γ (�m − �w ), (13)

where S is the area of the droplet, �m is the interfacial length,
and �w is the length of contact with the wall [see Fig. 1(b)]. On
either side of the cusp the droplet has a parabolic shape with
curvature δp/γ and a very simple calculation shows that both
the area and interfacial length contributions to the free-energy
cost are the same, determining that �F (�) = 4

3 (2γ δp)1/2�3/2,
in precise agreement with the transfer-matrix analysis (11).
The algebraic prefactor in (11) is related to the interfacial
wandering at the points of contact of the droplet with the
wall, similar to discussions of the magnetization profile in the
semi-infinite Ising model [37]. We will use this droplet model
trick later in application to the meniscus osculation transition.

III. SCALING THEORY FOR MENISCUS OSCULATION

We now turn our attention to the adsorption of fluid near a
completely wet wall which has the shape of a parabolic groove
(or parabolic pit) of cross section

Z (x) = x2

2Rw

, (14)

where Rw is the geometrical radius of curvature at the bot-
tom. The adsorption falls into two regimes depending on the
deviation from bulk coexistence δp. Close to coexistence,
when R > Rw, where R = γ /δp is the Laplace radius, the
groove induces the local condensation of a macroscopic liquid
drop near the bottom. The drop is characterized by a circular
meniscus of radius R that meets the walls tangentially (since
θ = 0) [see Fig. 2(a)]. The size of this drop is determined
trivially. For example, the local height �0 and lateral extension
x0 of the drop are given by [33]

�0 = (R − Rw )2

2Rw

(15)

and

x0 =
√

R2 − R2
w, (16)

respectively. As we approach coexistence these diverge
as �0 ∝ R2 and x0 ∝ R, which is the expected geometry-
dependent behavior for the adsorption in a parabola [29].
However, these results also indicate that these length scales
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FIG. 2. (a) Schematic illustration of the height �0 = (R −
Rw )2/2Rw and width x0 = √

R2 − R2
w of a macroscopic drop ad-

sorbed in a parabolic groove in the regime R > Rw close to bulk
coexistence (with R = γ /δp the Laplace radius). For R < Rw there is
no macroscopic drop and the adsorption remains microscopic arising
from interfacial fluctuations or intermolecular forces. (b) Illustration
of the constrained fluctuation droplet configuration in d = 2 which
determines the free energy and asymptotic scaling form of the PDF
for the interfacial height (above the groove bottom) allowing us to
identify that βosc = 3/7.

vanish as the pressure is reduced and R → Rw and hence that
further away from coexistence, corresponding to pressures
such that R < Rw, there is no local condensation and the
adsorption of fluid is microscopic. We refer to the vanish-
ing of the meniscus at R = Rw as meniscus osculation. At a
macroscopic level this is a continuous surface phase transition
associated with a singular contribution to the surface free-
energy which vanishes as Fsing ≈ (R − Rw )7/2 [33].

Beyond macroscopic considerations, meniscus osculation
must correspond to a rounded phase transition since there
must still be some residual microscopic adsorption in the pres-
sure regime δp > γ/Rw. The rounding at meniscus osculation
leads to novel scaling behavior characterizing the influence of
the geometry on the fluid adsorption at the borderline of the
macroscopic and microscopic regimes. Consider, for example,
the height �0 of the liquid interface above the groove bottom
exactly at osculation R = Rw. Since the wall is completely
wet, �0 must increase with Rw (maintaining the condition that
Rw = R), allowing us to define an osculation exponent βosc,

�0 ∝ Rβosc
w , (17)

which characterizes the local divergence of the film thickness
as we flatten the groove and recover the infinite adsorption of
a wet planar wall.

To determine the value of this exponent we suppose that
the macroscopic osculation transition is rounded over a micro-
scopic scale λ � R to be determined. It is natural to speculate
that this must be related to length scales which characterize
the underlying complete wetting phenomena discussed above.
Crossover scaling then suggests that, in the vicinity of the
phase boundary R ≈ Rw, the macroscopic results (15) and
(16) are modified as

�0 = (R − Rw )2

2Rw
Losc

(R − Rw

λosc

)
(18)

and

x0 =
√

R2 − R2
wXosc

(R − Rw

λosc

)
, (19)

where Losc(x) and Xosc(x) are scaling functions of the dimen-
sionless variable x = (R − Rw )/λ. Note that the microscopic
length scale λ is still allowed to diverge as bulk coexistence is
approached, but we require that it is always much smaller than
the purely macroscopic length scale R. We require that both
scaling functions tend to unity as x → ∞ and that both vanish
as x → −∞ in order to recover the macroscopic results. The
crossover length scale determines the values of �0 and x0 at
the macroscopic phase boundary R = Rw. In order that these
are finite and nonvanishing we require that Losc ∼ |x|−2 and
Xosc ∼ |x|−1/2 as x → 0, which identifies that

�0 ∝ λ2

R
, x0 ∝

√
Rλ, R = Rw. (20)

From these we can immediately rule out that λ is similar
to the planar wetting layer thickness since in that case �0

does not diverge with Rw as required. In Ref. [33] we argued
there were likely two possibilities. The simplest, and perhaps
most natural, hypothesis is that λ ∼ ξ‖. This is indeed the
length scale which controls the crossover scaling and rounding
at meniscus depinning transitions [42,43] and also wetting
on rough surfaces (where it is sometimes referred to as the
healing length [44]). With this ansatz it follows from (4) and
(20) that �0 ∝ �π so that βosc = βco

s , i.e., the parabola does
not significantly enhance the film thickness compared to that
at a planar wall, although it is likely to be a multiple of it.
However, there is an alternate possibility that is also justifi-
able, which is that deep in the preosculation regime (R � Rw)
the influence of the geometry on the film thickness is to
shift and reduce the effective pressure from δp to δp − γ /Rw.
This geometrically induced shift would be consistent with the
effective increase in the pressure, which is known for wetting
on the outside of a sphere or cylinder [45–50]. This means that
as Rw → ∞ the local height tends to �0 ∝ (1/R − 1/Rw )−βco

s ,
which is only compatible with the scaling hypothesis (18) if
λ2+βco

s ∝ R1+2βco
s

w Rβco
s . With this identification for the rounding

length scale it follows from (20) that the value of �0 is much
larger than �π and diverges on approaching coexistence with
exponent βosc = 3βco

s /(2 + βco
s ), which is larger than βco

s .
Here we argue that both these possibilities are realized

and that they are characteristic of the rounding occurring
in two different scaling regimes demarcated by an upper
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critical dimension. Consider, for example, the rounding and
scaling resulting from the assertion that the substrate curva-
ture decreases the effective pressure δp to δp − γ /Rw. It is
natural to assume that this purely geometrical consideration
occurs for systems with sufficiently short-range forces where
the influence of intermolecular forces can be neglected. This
is somewhat analogous to the wedge covariance known for
wetting and filling phenomena in systems with short-range
forces (in both pure and impure systems) which exactly re-
lates thermodynamic observables in a wedge (with tilt angle
α) to those at a planar wall via an effective shift in the
contact angle θ → θ − α [51]. Combining the exponent re-
lation βosc = 3βco

s /(2 + βco
s ) with the result βco

s = ζ/(2 − ζ )
for short-range complete wetting leads to the explicit iden-
tification βosc = 3ζ/(4 − ζ ) for meniscus osculation. This
is greater than the corresponding value βco

s = ζ/(2 − ζ ) for
complete wetting for all ζ < 1, that is, for all dimensions
above the lower critical dimension for bulk phase separation.
Nevertheless, this is precisely what we should expect if we
assume that the phenomena arise from interfacial fluctuations,
since in that case we can also anticipate that �0 ∝ xζ

0 , that
is, the wandering exponent is unchanged by the geometry.
Combining this expectation with the crossover scaling result
(20) identifies that, at osculation, λ ∝ R(2+ζ )/(4−ζ ), which con-
sistently and independently identifies that βosc = 3ζ/(4 − ζ ).
This, we conjecture, is the appropriate rounding length scale
and value of the osculation exponent for systems with suffi-
ciently short-range forces. However, this scaling cannot apply
universally. As we increase the dimensionality the value of
ζ decreases and eventually the osculation critical exponent
reaches the value βosc = 1/(r + 1), implying that �0 ∝ �π

and λ ∝ ξ‖. Since βosc cannot take a smaller value than the
corresponding value of βco

s (the confining geometry cannot
diminish the adsorption) it is natural to assume that this scal-
ing applies also in all higher dimensions. Thus, analogous
to complete wetting, we conjecture that meniscus osculation
falls into one of two scaling regimes.

Fluctuation-dominated regime. For r > 4(1 − ζ )/3ζ , fluc-
tuations dominate and the osculation exponent takes the
universal value

βosc = 3ζ

4 − ζ
. (21)

In this scaling regime �0 ∼ xζ
0 , implying that the geometry

significantly enhances the adsorption such that �0 	 �π . The
crossover scaling and rounding of the meniscus osculation
transition is controlled by a length scale λ ≈ R(2+ζ )/(4−ζ ),
which is larger than the corresponding value of ξ‖ (at this
pressure). Thus, in d = 2 we predict that the meniscus oscu-
lation is characterized by the exponent βosc = 3/7 for pure
systems (ζ = 1/2) and βosc = 3/5 for random-bond disorder
(ζ = 2/3). These contrast with the corresponding prediction
for compete wetting βco

s = 1/3 (for ζ = 1/2) and βco
s = 1/2

(for ζ = 2/3).
Mean-field regime. For r < 4(1 − ζ )/3ζ , the intermolec-

ular forces dominate and the osculation exponent takes the
value

βosc = 1

r + 1
, (22)

which is identical to the value of βco
s . This implies that the

local interfacial height scales with the wetting layer thickness,
i.e., �0 ∝ �π . We anticipate that in general the constant of
proportionality is greater than unity, so the geometry still en-
hances the local adsorption of fluid. The rounding of the phase
transition in this regime is controlled by a crossover length
scale λ ∝ ξ‖. For fixed value of r, these two scaling regimes
identify that for pure systems the upper critical dimension is

d∗
osc = 3 − 8

3r + 4
, (23)

which is larger than the upper critical dimension for complete
wetting, except for systems with purely short-range forces, for
which d∗ = d∗

osc = 3.

IV. MODEL CALCULATIONS

To finish our article, we test these predictions for the two
cases that are most relevant to experiments and studies of
microscopic models: d = 2 with short-range forces (r = ∞)
and d = 3 with dispersion forces (r = 2). In both these cases
the values of the complete wetting exponents are identical
with βco

s = 1/3 and νco
‖ = 2/3, although these correspond to

distinct fluctuation and mean-field regimes, respectively. The
predictions of the scaling theory developed above are that in
d = 2 the osculation exponent βosc = 3/7, different from that
for complete wetting, while in d = 3 it remains βosc = βco

s =
1/3.

A. Case of d = 2, short-range forces

In d = 2 we may study meniscus osculation using a con-
tinuum interfacial Hamiltonian adopting the same droplet
model method described earlier for complete wetting. This,
we anticipate, will exactly determine the scaling form of the
asymptotic probability distribution for the local interfacial
height above the groove bottom. That is, we assume that

Posc(�) ∝ exp[−�Fosc(�)], (24)

where �Fosc(�) is the free-energy cost (in units of kBT ) for
an interfacial fluctuation that forms a droplet which is con-
strained to pass through a point at height � at x = 0 [see
Fig. 2(b)]. Since no direct intermolecular forces are present,
the free-energy cost of this droplet fluctuation is again given
by

�Fosc(�) = δpS + γ (�m − �w ), (25)

where S is the area, �m is the interfacial length, and �w is the
length of contact with the parabolic wall. The droplet has the
shape of a symmetric cusp formed from two circular menisci
of Laplace radius R, centered at x = ±ξ , that meet the walls
tangentially at x = ±x0. For x > 0 the local interfacial height
is therefore described by the function

�(x) = � −
√

R2 − (x − ξ )2 +
√

R2 − ξ 2, (26)

which we may expand, keeping terms of quartic order

�(x) = � − ξ 2

2R
− ξ 4

8R3
+ (x − ξ )2

2R
+ (x − ξ )4

8R3
, (27)
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which is the order required to determine the scaling behavior.
We now sit exactly at osculation R = Rw and define re-
duced variables �̃ = �/R, ξ̃ = ξ/R and x̃0 = x0/R. Matching
the interface and wall heights �(x0) = Z (x0) and derivatives
�′(x0) = Z ′(x0) determines that

x̃0 = ξ̃ + (2ξ̃ )1/3 (28)

and

�̃ = 3
8 ξ̃ 4/3 + ξ̃ 2 + ξ̃ 4. (29)

Using these, it is a straightforward matter to determine the
interfacial area S = 2

∫ x0

0 [�(x) − �(x)]dx, yielding

S
R2

= 3

10
(2ξ̃ )5/3 + 3

16
(2ξ̃ )7/3 + · · · , (30)

where the higher-order terms are of O(ξ̃ 3), which may be
neglected. Similarly, the surface terms, relating to the ex-
cess length of the droplet �m − �w = 2

∫ x0

0 dx[
√

1 + �′(x)2 −√
1 + ψ ′(x)2], follow as

�m − �w

R
= − 3

10
(2ξ̃ )5/3 − 1

8
(2ξ̃ )7/3 + · · · , (31)

where the higher-order terms are also O(ξ̃ 3). The leading-
order terms in the area and length contributions cancel,
implying that, exactly at osculation, the free-energy cost of
the drop scales with the local height as

�Fosc = γ

4
R−3/4

(
8�

3

)7/4

. (32)

Substitution in (24) then immediately determines that the os-
culation exponent takes the predicted value

βosc = 3
7 . (33)

Fluctuations are important at this rounded phase transition
so that, for example, the interfacial roughness also scales as
ξ⊥ ∝ R3/7

w . We anticipate that in Eq. (24) there is also an al-
gebraic prefactor associated with the interfacial wandering of
the points of contact, similar to the droplet model for complete
wetting, although this is not relevant to the scaling behavior
and the identification of βosc.

B. Case of d = 3, long-range forces

To study meniscus osculation in d = 3 we employ a fully
microscopic classical DFT which is based on the minimiza-
tion of a grand potential functional �[ρ] with respect to the
density distribution of the fluid particles ρ(r) [52]:

�[ρ] = F [ρ] +
∫

drρ(r)[V (r) − μ]. (34)

Here F [ρ] is the Helmholtz free-energy functional which
contains all the information about the fluid interactions, while
V (r) is the potential of the parabolic wall whose cross sec-
tion along the x-z plane is given by Eq. (14). The wall is
formed of atoms which are distributed uniformly with a den-
sity ρw over the whole space below its surface demarcated
by the curve (14) assuming translation invariance along the y
axis. The wall atoms interact with the fluid atoms via a purely

FIG. 3. Numerical DFT results for the equilibrium density profile
ρ(r) at osculation for a completely dry parabolic wall (Rw = 100σ )
in contact with a bulk liquid showing the preferential adsorption of
low-density gas at the bottom.

repulsive potential φ = 4ε(σ/r)6; hence the net wall potential
is

V (r) = ρw

∫
φ(|r − r̃|)d r̃, (35)

where the integration domain is the volume of the wall. Here
ε is the strength of the potential, while σ is molecular radius.
The repulsive tail of the wall potential models dispersion
interactions which, within the mesoscopic interfacial model
(5), generate a binding potential decaying asymptotically ac-
cording to a power law with r = 2. However, we note that in
this context, because the intermolecular interaction is purely
repulsive, we consider the analogous drying phenomena when
the repulsive wall is brought in contact with bulk liquid. An
advantage of this is that the drying layer of gas does not ex-
hibit volume exclusion effects, allowing us to access a greater
range of Rw values.

The fluid-fluid interaction is modeled by a (short-range)
truncated Lennard-Jones potential (of strength ε) and its
contribution to the free-energy functional is described by
a combination of Rosenfeld’s fundamental measure theory
[53] (approximating the repulsive part of the interaction) and
a simple mean-field treatment of the attractive part of the
interaction. More details about the construction of the approx-
imative F [ρ] and the numerical details of minimization of
�[ρ] can be found in Ref. [33], where the same fluid model
has been adopted.

In order to determine the exponent βosc, we first found
the equilibrium density profiles for various parabolic walls
with different curvatures with fixed chemical potential μosc =
μsat + γ /Rw�ρ, ensuring that we sit right at the osculation
transition (see Fig. 3). From each density profile we deter-
mined the interfacial height above the groove bottom �0 using
the mid-density rule. In Fig. 4 we display the log-log depen-
dence of �0 with δμosc (with δμosc ≡ μosc − μsat), comparing
it also with the corresponding divergence of the planar wetting
thickness �π for the same range of chemical potentials. This
shows convincingly that �0 and �π diverge with the same
critical exponent which we estimate as βosc ≈ βco

s ≈ 0.326,
in excellent agreement with the predicted value of βosc =
1/3. Our results indicate that the ratio �0/�π ≈ 2, showing
that at meniscus osculation within this mean-field regime the
geometry increases the amplitude of the local adsorption but
not the critical exponent.
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FIG. 4. A log-log plot showing the growth of the interfacial
height �0 (open circles) and the planar wetting thickness �π (closed
circles) for different radii of curvature Rw maintaining the condition
of meniscus osculation μosc = μsat + γ /�ρRw . The two straight
lines shown are nearly parallel, identifying that βosc ≈ βco

s ≈ 0.326
with corresponding amplitude ratio �0/�π ≈ 2.

V. SUMMARY

In this paper we have developed a simple scaling theory for
critical effects which arise from the rounding of the meniscus
osculation transition occurring when the Laplace pressure of
a condensed macroscopic drop of liquid coincides with local
radius of curvature Rw in a confining parabolic geometry.
We have argued that the exponent βosc, characterizing the
scale of the interfacial height �0 ∝ Rβosc

w at osculation, falls
into one of two regimes representing fluctuation-dominated
and mean-field-like behavior. In the fluctuation-dominated
regime, representing the universality class of systems with
short-range forces, the exponent is related to the value of

wandering exponent by βosc = 3ζ/(4 − ζ ), which is different
from the relation βco

s = 2/(2 − ζ ) pertinent for complete wet-
ting. This exponent relation can be understood to arise in two
equivalent ways, either by assuming that when fluctuations
dominate the height �0 and lateral size x0 of the adsorbed
layer scale as �0 ∼ xζ

0 or by enforcing a condition on the
crossover scaling function that in the preosculation regime the
geometry serves to lower the effective partial pressure δp →
δp − γ /Rw. These simple scaling considerations do not apply
if the forces are sufficiently long range, in which case the
midpoint interfacial height �0 ∝ �π and rounding length scale
λ ≈ ξ‖ are more directly and simply related to wetting length
scales. Our prediction that in d = 2 and for short-range forces
the meniscus osculation exponent takes the value βosc = 3/7
was confirmed by a droplet model calculation based on an
interfacial Hamiltonian which determined the scaling form
of the asymptotic decay of the PDF for the local interfacial
height. Future studies could seek to extend this and determine,
for example, the whole PDF including the short-distance ex-
pansion near the wall, which we anticipate can be related
to exact sum rules, similar to studies of continuous wetting
at planar walls [54]. In d = 3 our DFT study indicates that
in the mean-field regime with dispersion forces the ratio of
the interfacial heights �0/�π ≈ 2. It would be interesting to
see if the value of this amplitude can be understood using
simple interfacial Hamiltonian models, which also allow for
the presence of long-range forces [16]. This would have impli-
cations for understanding adsorption on other types of surface
[29,30]. Finally, the adsorption of fluids in substrates with
parabolic pits has previously been considered experimentally
[31,32], although the meniscus osculation was not addressed.
We hope that the present work stimulates such studies.
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