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Structure of electrolyte solutions at nonuniformly charged surfaces on a variety of length scales
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The structures of dilute electrolyte solutions close to nonuniformly charged planar substrates are systemat-
ically studied within the entire spectrum of microscopic to macroscopic length scales by means of a unified
classical density functional theory approach. This is in contrast to previous investigations, which are applicable
either to short or to long length scales. It turns out that interactions with microscopic ranges, e.g., due to the
hard cores of the fluid molecules and ions, have a negligible influence on the formation of nonuniform lateral
structures of the electrolyte solutions. This partly justifies the Debye-Hückel approximation schemes applied
in previous studies of that system. In general, a coupling between the lateral and the normal fluid structures
leads to the phenomenology that, upon increasing the distance from the substrate, fewer details of the lateral
nonuniformities contribute to the fluid structure, such that ultimately only large-scale surface features remain
relevant. It can be expected that this picture also applies to other fluids characterized by several length scales.
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I. INTRODUCTION

Historically, the theoretical study of solid-fluid inter-
faces has naturally started with the investigation of idealized
surfaces with laterally uniform properties [1–6] instead of
realistic models of surfaces with geometrical, chemical, or
electrical nonuniformities. This approach was justified, on the
one hand, by the initial lack of knowledge about the micro-
scopic structure of real surfaces, and, on the other hand, by
the computational advantages gained from exploiting lateral
symmetries. However, in particular in the context of electro-
chemistry and colloidal science, efforts have been made to
include surface nonuniformities in the theoretical description.
A pioneering contribution is due to Richmond [7,8], who stud-
ied the effective interaction of two parallel planar dielectric
bodies with nonuniform surface charge distributions mediated
by a dilute electrolyte solution in between, assuming that
the linearized Poisson-Boltzmann (Debye-Hückel) approxi-
mation [9] (see also Refs. [10–12]) is applicable. In recent
years the issue of electrolyte solutions close to nonuniformly
charged substrates within the Debye-Hückel approximation
[13–16], (nonlinearized) Poisson-Boltzmann theory [17,18],
as well as statistical field theory [19–23] has been addressed
intensively (see also the review in Ref. [24]). These stud-
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ies are focused on large length scales, either by ignoring
the microscopic fluid structure of the electrolyte solution or
by modeling its long-ranged structure within a square gra-
dient approximation (see Ref. [15]). Moreover, microscopic
approaches, e.g., Monte Carlo (MC) simulations [25–27] or
classical density functional theory (DFT) [28,29], have been
used. But, due to technical reasons, these studies were limited
to rather small systems and special types of surface charge
nonuniformities. Thus an approach is missing that exhibits the
accuracy of a DFT combined with the efficiency of a Debye-
Hückel approximation, in order to span the whole range from
microscopic to macroscopic length scales.

The present study suggests a step in this direction. This
method consists of a quadratic expansion of the density func-
tional not about the bulk profiles (as within the Debye-Hückel
approximation), but about the profiles of a planar-symmetric
(i.e., quasi-one-dimensional) system. The surprising observa-
tion is that microscopic hard-core contributions turn out to
be quantitatively irrelevant for the formation of the lateral
structure. In this respect, disregarding the size of the fluid
molecules and ions by using the Debye-Hückel approxima-
tion for laterally nonuniform modes, as was done in many
previous studies, is justified. However, the present investi-
gation suggests that, in contrast to those previous studies,
the Debye-Hückel approximation should not be used for the
planar-symmetric contributions, which require more sophisti-
cated descriptions including, e.g., finite-size effects.

Our contribution is structured as follows: Section II de-
scribes the considered model of an electrolyte solution in
contact with a nonuniformly charged substrate and the for-
malism to infer the structural quantities. Results concerning
the number density profiles in the normal and in the lateral
directions as well as the interfacial tension as a function of the
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FIG. 1. A planar, nonuniformly charged substrate with nega-
tively charged (bright, yellow) and charge-neutral (dark, brown)
regions is in contact with a dilute univalent electrolyte solution
(solvent blue, cations red, anions green). The x-y plane of a three-
dimensional Cartesian coordinate system coincides with the substrate
surface, whereas the z-direction points in the normal direction to-
wards the bulk of the electrolyte solution.

length scales of the lateral nonuniformities are presented and
discussed in Sec. III. Conclusions about the general structural
features of electrolyte solutions in contact with nonuniformly
charged substrates are summarized in Sec. IV.

II. MODEL AND FORMALISM

A. Nonuniformly charged substrate

We consider a flat substrate with dielectric constant εs,
the surface of which coincides with the x-y plane of a three-
dimensional Cartesian coordinate system; the z-direction is
pointing towards the fluid at z > 0 (see Fig. 1). The substrate
is nonuniformly charged with the surface charge density σ (u)
at the lateral position u = (x, y). In the present study, periodic
surface charge densities of the form

σ (u) =
∑

k,�∈Z
σ̂k� exp

(
2π i

L
(kx + �y)

)
(1)

are analyzed. The Fourier coefficients σ̂k� ∈ C, which fulfill
the constraints σ̂ ∗

k,� = σ̂−k,−� for σ (u) ∈ R, and the lateral
length scale L > 0 are free parameters. It will turn out that
the periodicity of the lateral surface charge distribution is of
no physical relevance, but it is technically convenient.

B. Charged hard spheres

The charged substrate is in contact with a dilute univalent
electrolyte solution comprising three species of charged hard
spheres: the solvent (species i = 0), cations (species i = +),
and anions (species i = −). Each species i is characterized by
its hard-core radius Ri and the valency Zi with Z0 = 0, Z+ =
1, Z− = −1. For simplicity, all radii are chosen to be equal,

i.e., R0 = R+ = R− =: R. The bulk number densities of the
electrolyte solution are given by �0 and �+ = �− =: I , which
is called the ionic strength. This leads to the packing fraction
η = 4π

3 R3(�0 + 2I ). From the Bjerrum length �B := βe2

4πε0ε f
,

which is expressed in terms of the thermal energy β−1 =
kBT , the elementary charge e, the vacuum electric permit-
tivity ε0, and the fluid dielectric constant ε f , one obtains the
Debye length κ−1 with κ2 = 8π�BI . In the following, an aque-
ous solution (�0 ≈ 56 M, R ≈ 0.13 nm, �B ≈ 0.7 nm, ε f ≈
80) with ionic strength I ≈ 8.5 mM, i.e., κ ≈ 0.3 nm−1, is
considered. Note that number densities are specified as mo-
lar concentrations in moles per liter: 1 M = 1 mol dm−3 ≈
0.6022 nm−3.

C. Density functional method

Close to the substrate, the number density profile �i(r)
of the fluid species i varies as a function of the position
r = (x, y, z) = (u, z), whereas �i(u, z → ∞) → �i. The set
of all three number density profiles is abbreviated by � :=
(ρ0, ρ+, ρ−). The equilibrium number density profiles min-
imize the grand potential density functional �[�] [30–32],
which, in the present investigation, is approximated by

β�[�] =
∫

d3r

{∑
i

�i(r)

[
ln

(
�i(r)

ζi

)
− 1 + βVi(z)

]

+(n(r)) + βε0ε(z)

2
[∇ψ (r)]2

}
. (2)

Here and in the following, the common convention is in place
that a d-dimensional integration runs over Rd unless the inte-
gration domain is specified. Equation (2) is to be understood
as an asymptotic relation in the thermodynamic limit, i.e.,
first all calculations are performed in a finite domain, which
is extended to R3 subsequently. The thermodynamic limit is
guaranteed to exist, i.e., β�[�] scales as the volume of the
system, because the number density profiles ρi(r) are bounded
due to the imposed lateral periodicity of the system [see
Eq. (1)] and due to the bulk limits �i(z → ±∞). In Eq. (2),
ζi = �−3

i exp(βμi ), with the thermal wavelength �i and the
chemical potential μi, denotes the (bulk) fugacity of species
i ∈ {0,+,−}. The hard-wall potential

Vi(z) =
{∞ for z � Ri,

0 for z > Ri
(3)

implies that the fluid particles cannot penetrate into the sub-
strate. The hard-core interaction among the fluid particles is
described in terms of the White-Bear (mark I) excess free
energy [33], which is given by an excess free-energy density
(n(r)) expressed in terms of 10 weighted densities

nα (r) =
∑

i

∫
d3r′ ωα,i(r − r′)�i(r′) (4)

that are indexed by α and that follow from the number density
profiles �i via the weight functions ωα,i. The White Bear fun-
damental measure theory of a pure hard-sphere fluid leads to
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an equation of state very close to the Carnahan-Starling equa-
tion of state, and the bulk as well as the surface structure are
in excellent agreement with MC simulations [33]. On length
scales above the particle size, it is conceivable to describe hard
cores within a lattice-gas model. However, this is inadequate
for the present study, as also structural details such as the
layering close to a solid surface should be resolved. Finally,
modeling spherical particles is only a matter of convenience;
fundamental measure theories for nonspherical particles are
available [34], which can be used to describe more general
molecular shapes.

The electrostatic potential ψ (r) fulfills Gauss’s law,

∇ · [−ε0ε(z)∇ψ (r)] = σ (u)δ(z) + Q(r), (5)

where Q(r) := e
∑

i Zi�i(r) and

ε(z) =
{
εs for z � 0,
ε f for z > 0, (6)

with the boundary conditions

∂ψ

∂z

∣∣∣∣
(u,z=−∞)

= 0, (7)

−ε0

(
ε f

∂ψ

∂z

∣∣∣∣
(u,z=0+ )

− εs
∂ψ

∂z

∣∣∣∣
(u,z=0− )

)
= σ (u), (8)

ψ |(u,z=∞) = 0 (9)

for all u ∈ R2 in the lateral direction. The dielectric constant
[see Eq. (6)] of the substrate (εs for z < 0) and of the fluid
(ε f for z > 0) is modeled to be constant up to the surface at
z = 0. This turned out to be sufficient in a previous study,
in which a comparison with a density-dependent expression
for ε(z) was made [29]. To guarantee the existence of the
thermodynamic limit, we consider a globally charge-neutral
system; actually, Lebowitz and Lieb have shown that slightly
weaker but rather artificial conditions would also suffice [35].
Globally charge-neutral systems exhibit the gauge symme-
try ψ �→ ψ + const, which is used to fix the value of the
electrostatic potential at z = ∞ by means of the Dirichlet
boundary condition [see Eq. (9)]. This implies the Neumann
boundary condition ∂ψ

∂z |(u,z=∞) = 0. For a globally charge-

neutral system, the electric displacement −ε0ε
∂ψ

∂z has to be
the same at z = −∞ and at z = ∞, which leads to Eq. (7).
Finally, Eq. (8), which is obtained by integrating Eq. (5)
over an infinitesimally small box around the point (u, z = 0),
describes the discontinuity of the electric displacement at
the charged surface z = 0. More sophisticated descriptions
of the electrostatic interaction than within the random phase
approximation (RPA) in the last term of Eq. (2) are avail-
able, e.g., the functionalized mean-spherical approximation
(MSA) [36] and modified Bazant-Storey-Kornyshev (BSK)
approaches [37,38], which apply to dense ionic fluids. How-
ever, for dilute electrolyte solutions, all those approaches are
expected to share the same general features.

The equilibrium number density profiles �i(r) vanish for
z � Ri due to the hard wall [see Eq. (3)], whereas for z > Ri

they fulfill the Euler-Lagrange equations

0 = δβ�

δρi(r)
[�]

= ln

(
�i(r)

ζi

)
+ βeZiψ (r)

+
∑

α

∫
d3r′ ∂

∂nα

[n(r′)] ωα,i(r′ − r). (10)

The set of equations (5) and (7)–(10) is technically too
demanding to be solvable numerically for an arbitrary lateral
length scale L. To proceed, Eqs. (5) and (7)–(10) are first
solved for the laterally uniform charge distribution σ (1) :=
σ̂00, which renders the quasi-one-dimensional number density
profiles, the weighted densities, and the electrostatic potential
denoted as �

(1)
i (z), n(1)

α (z), and ψ (1)(z), respectively.
The quadratic expansion of the density functional in Eq. (2)

about �
(1)
i (z) in terms of ��i(u, z) := �i[r = (u, z)] − �

(1)
i (z)

yields the approximation �[�] ≈ �[�(1)] + ��[��] with
�� := (��0,��+,��−), where

β��[��]

= 1

2

∫
d3r

( ∑
i

[��i(r)]2

�
(1)
i (z)

+ βε0ε(z) [∇�ψ (r)]2

+
∑
α,α′

∂2

∂nα∂nα′
[n(1)(z)] �nα (r)�nα′ (r)

)
(11)

with �nα (u, z) = nα (u, z) − n(1)
α (z) and �ψ (u, z) =

ψ (u, z) − ψ (1)(z). (Note that here “�” is not the Laplace
operator ∇2).

The equilibrium profiles �ρi(r) fulfill the Euler-Lagrange
equations

0 = δβ��

δ�ρi(r)
[��]

= ��i(r)

ρ
(1)
i (z)

+ βeZi �ψ (r)

(12)

+
∑
α,α′

∫
d3r′ ∂2

∂nα∂nα′
[n(1)(z′)] ωα,i(r′ − r)�nα′ (r′)

for z > Ri.
Introducing the lateral Fourier-transform

f̂ (q) :=
∫

d2u f (u) exp(−iq · u), q ∈ R2, (13)

for functions f (u) of the lateral coordinates u ∈ R2, from
Eq. (12) one obtains

0 = ��̂i(q, z)

ρ
(1)
i (z)

+ βeZi �ψ̂ (q, z)

+
∑
α,α′

∫
dz′ ∂2

∂nα∂nα′
[n(1)(z′)] ω̂α,i(q, z′−z)�n̂α′ (q, z′)

(14)
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for z > Ri with

�n̂α (q, z) =
∑

i

∫
dz′ ω̂α,i(q, z − z)��̂i(q, z′). (15)

Moreover, the lateral Fourier transformation of Gauss’s law
[see Eq. (5)] leads, due to Eq. (6), to the Helmholtz equations

∂2�ψ̂ (q, z)

∂z2
− |q|2�ψ̂ (q, z)

= −�Q̂(q, z)

ε0ε f
for z > 0, (16)

∂2�ψ̂ (q, z)

∂z2
− |q|2�ψ̂ (q, z)

= −�Q̂(q, z)

ε0εs
= 0 for z < 0, (17)

where �Q̂(q, z) = e
∑

i Zi��̂i(q, z). Finally, the boundary
conditions Eqs. (7)–(9) take the form

∂�ψ̂

∂z

∣∣∣∣
(q,z=−∞)

= 0, (18)

ε f
∂�ψ̂

∂z

∣∣∣∣
(q,z=0+ )

− εs
∂�ψ̂

∂z

∣∣∣∣
(q,z=0− )

= −�σ̂ (q)

ε0
, (19)

�ψ̂ |(q,z=∞) = 0. (20)

Here �σ̂ (q) is the lateral Fourier transform of the nonuniform
contribution �σ (u) := σ (u) − σ (1) to the surface charge den-
sity.

The Helmholtz equation at z < 0 [see Eq. (17)] and the
Neumann boundary condition at z = −∞ [see Eq. (18)] lead
to solutions of the form �ψ̂ (q, z) = �ψ̂ (q, 0) exp(|q|z) for
z < 0. Then, from Eq. (19) one obtains the Robin boundary
condition

ε f
∂�ψ̂

∂z

∣∣∣∣
(q,z=0+ )

− εs|q|�ψ̂

∣∣∣∣
(q,z=0)

= −�σ̂ (q)

ε0
, (21)

which, together with the Dirichlet boundary condition at z =
∞ [see Eq. (20)], determines the solution of the Helmholtz
equation in Eq. (16). Note that in the first term of Eq. (21), the
upper limit of ∂�ψ̂

∂z occurs, because this quantity is discontinu-
ous at the surface z = 0 due to Eq. (19), whereas in the second
term of Eq. (21), �ψ̂ can be evaluated at the surface, because
the electrostatic potential is continuous everywhere.

In the set of equations (14)–(21), the individual Fourier
modes, indicated by q, are decoupled, and the remaining
z-coordinate normal to the substrate leads to a quasi-
one-dimensional problem, which can be efficiently solved
numerically.

Moreover, any function f (u) with f (x + L, y) = f (x, y +
L) = f (x, y) for all u = (x, y) ∈ R2 can be written as

f (u = (x, y)) =
∑

k,�∈Z
fk� exp

(
2π i

L
(kx + �y)

)
(22)

with the Fourier transform

f̂ (q = (qx, qy))

=
∑

k,�∈Z
(2π )2 fk� δ

(
qx − 2πk

L

)
δ

(
qy − 2π�

L

)
, (23)

which can be nonzero only for lateral wave numbers q =
qk� := 2π

L (k, l ) with k, � ∈ Z. Therefore, the determination
of the (approximate) equilibrium number density profiles
�i(r) merely requires us to calculate the Fourier transforms
��̂i(q, z) as solutions of Eqs. (14)–(21) for q = qk� with
k, � ∈ Z.

D. Interfacial tension

In addition to the profiles �i(r) = �
(1)
i (z) + ��i(r),

Q(r) = Q(1)(z) + �Q(r), and ψ (r) = ψ (1)(z) + �ψ (r),
from Eqs. (14)–(21) the following discussion also addresses
the interfacial tension γ as a common surface quantity. Here it
is defined with respect to the geometrical substrate surface at
z = 0. If γ (1) is the interfacial tension of a uniformly charged
substrate with surface charge density σ (1), one obtains the
deviation �γ := γ − γ (1) due to nonuniformities within the
quadratic approximation [see Eq. (11)] as

�γ = ��L[��]

L2
= 1

2L2

∫
[0,L)2

d2u �σ (u)�ψ (u, 0), (24)

where ��L means integration over r = (u, z) ∈ [0, L)2 × R
in Eq. (11), i.e., over one lateral periodic image. This expres-
sion can be obtained by multiplying Eq. (12) with ��i(r),
summing over i, integrating with respect to r, and inserting
the resulting equation into Eq. (11).

E. Parameters

The main focus of the present study is the dependence of
the profiles �i(r), Q(r), and ψ (r) as well as of the interfacial
tension γ on the characteristic length scale L of the lateral
charge nonuniformities. The remaining numerous model pa-
rameters are fixed to certain realistic values.

As a nontrivial surface structure, we choose a two-
dimensional square lattice with periodicity L > 0 such that
the surface charge density takes the constant value σmax for
one-half of the surface and 0 for the other half. This leads to
an average surface charge density σ (1) = σmax

2 and in Eq. (1) to
the Fourier coefficients

σ̂k� = σ (1) (−1)k+� sinc

(
πk√

2

)
sinc

(
π�√

2

)
, (25)

where the sinc function is defined as sinc(t ) = sin(t )
t for t �=

0 and sinc(t ) = 1 for t = 0. However, in order to limit the
computational demand, only Fourier modes with |k|, |�| � 5
are used here. The resulting surface charge density

σ (u) :=
5∑

k,�=−5

σ̂k� exp

(
2π i

L
(kx + �y)

)
(26)

is a continuous approximation of the actually considered step-
like structure (see Fig. 2).

In addition to the thermal energy β−1 as the energy unit and
the elementary charge e as the charge unit, the Debye length
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FIG. 2. The nonuniform surface charge density σ (x, y) com-
prising 25 Fourier modes [see Eq. (26)] considered in the present
investigation is a continuous approximation of a substrate with half
of its area being charge-neutral and the other half being made up
of charged square patches of side length L/

√
2 (indicated by the

double arrows in the lower left corner) with surface charge density
σmax. The restriction to a finite number of Fourier modes gives rise to
slight artifacts such as smooth instead of steplike variations as well as
undulations (see the apparent substructure in the dark square areas)
instead of plateaus. The mean surface charge density is σ (1) = σmax

2 .
The charged patches are arranged on a (two-dimensional) square
lattice with periodicity L, which sets the lateral length scale of this
structure. Figure 3 displays the number density profiles �i(u, z) along
the z-direction at three lateral positions u = (x, y): u = (0, 0) (blue
diamond), u = (L/2, 0) (green triangle), and u = (L/2, L/2) (white
dot).

κ−1 is chosen as the length unit. Setting the fluid particle radii
to be equal, i.e., R0 = R+ = R− = R, the model comprises the
following six dimensionless parameters:

L∗ := κL, σ ∗ := σ (1)

eκ2
,

η = 4π

3
R3(�0 + �+ + �−), κR, κ�B, and

εs

ε f
. (27)

In the following, the dependence of structural quantities on
L∗ over two decades in the range L∗ ∈ [0.6, 60], i.e., L ∈
[2 nm, 200 nm], is discussed, and two values of the parameter
σ ∗ ∈ {−1.1,−3.3} are considered. Note that considering the
length scale L larger than the particle size R, i.e., L � R,
is natural for real systems, but it is not necessary for the
formalism in Sec. II C to work.

For the remaining parameters in Eq. (27), fixed values are
chosen according to the aqueous electrolyte solution specified
in Sec. II B in contact with a substrate with dielectric constant
εs ≈ 8:

η ≈ 0.3, κR ≈ 0.039, κ�B ≈ 0.21, and
εs

ε f
≈ 0.1.

(28)

Given an aqueous electrolyte solution in contact with a uni-
formly charged surface, the saturation surface charge density
σsat = eκ

π�B
denotes the crossover between a weakly charged

surface with |σ (1)| < σsat, for which the linearized Poisson-
Boltzmann (i.e., Debye-Hückel) equation is applicable, and

a strongly charged surface with |σ (1)| > σsat, for which the
full nonlinear Poisson-Boltzmann equation is required [39].
For the aqueous electrolyte solution specified above, the
saturation surface charge density is given by σsat ≈
2.2 μC cm−2, which corresponds to a crossover value σ ∗

sat :=
σsat
eκ2 = 1

πκ�B
≈ 1.5. The two values σ ∗ = −1.1 and −3.3,

which will be considered in the following, have been chosen to
represent the cases of weakly and strongly charged surfaces,
respectively.

III. RESULTS AND DISCUSSION

A. Normal profiles

Figure 3 displays the number density profiles ρi(u, z), i ∈
{0,+,−}, as functions of the normal coordinate z > 0 for
three characteristic lateral positions u = (x, y) = (0, 0) (blue
curves, blue diamond in Fig. 2), (L/2, 0) (green curves, green
triangle in Fig. 2), and (L/2, L/2) (red curves, white dot
in Fig. 2) at a corner, at an edge, and at the center of the
lateral elementary cell [0, L) × [0, L) ⊆ R2, respectively, for
L∗ = 6. Panels (a)–(c) show the case σ ∗ = −1.1, whereas
panels (d)–(f) show the case σ ∗ = −3.3. For comparison, the
corresponding profiles �

(1)
i (z) close to a uniformly charged

substrate are depicted (see the thin black curves). It can be
observed that the solvent number density profiles �0(u, z)
[see Figs. 3(a) and 3(d)] are largely insensitive to the lateral
position u and to the magnitude of the surface charge density
|σ ∗|, because the solvent particles in the present model are
electrically neutral and nonpolar. Within a model for a polar
solvent, one can expect variations of �0(u, z) to occur upon
changing u or σ ∗.

As the surface charge is negative, the cation number den-
sities �+(u, z) close to the substrate surface are larger than in
the bulk, whereas the anion number density profiles �−(u, z)
close to the substrate are smaller than in the bulk. As expected,
these trends are particularly pronounced for highly charged
surfaces, i.e., large values of |σ ∗|, and at lateral positions u
corresponding to highly charged regions on the substrate.

According to Eq. (14), the lateral structure, expressed in
terms of ��̂i(q, z), is determined by the electrostatic poten-
tial, represented by �ψ̂ (q, z), as well as by the hard-core
interaction, given by the third expression in Eq. (14). Upon
ignoring the hard-core contribution, one obtains approximate
lateral number density variations

��̂i(q, z) ≈ ��̂DH
i (q, z) := −βeZi�

(1)
i (z)�ψ̂ (q, z), (29)

which resemble those within linear Poisson-Boltzmann (i.e.,
Debye-Hückel) theory. The inverse Fourier transformation
leads to

��DH
i (u, z) = −βeZi�

(1)
i (z)�ψ (u, z) (30)

so that

�DH
i (u, z) := �

(1)
i (z) + ��DH

i (u, z)

= �
(1)
i (z)[1 − βeZi�ψ (u, z)]. (31)

Figure 4 compares the full number density profiles �i(u, z)
(solid curves) with the corresponding Debye-Hückel approx-
imations �DH

i (u, z) (circles) according to Eq. (31) at the
lateral positions u = (0, 0), i.e., at the origin (in green), and
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FIG. 3. The plots show the number density profiles �i(u, z) of the solvent (i = 0) [see panels (a) and (d)], of the cations (i = +) [see panels
(b) and (e)], and of the anions (i = −) [see panels (c) and (f)] close to a planar, nonuniformly charged substrate corresponding to Fig. 2 with
periodicity L∗ = κL = 6 and mean surface charge σ ∗ = σ (1)

eκ2 = −1.1 [see panels (a)–(c)] and −3.3 [see panels (d)–(f)]. The number density
profiles �i(u, z) are given as functions of the normal coordinate z > 0 for three representative lateral positions in the lateral elementary cell
[0, L) × [L, 0) (see Fig. 2): at the origin u = (0, 0) (blue curves corresponding to the blue diamond), close to an edge u = (L/2, 0) (green
curves corresponding to the green triangle), and at the center point (L/2, L/2) (red curves corresponding to the white dot). For comparison,
the number density profiles �

(1)
i (z) for a uniform charge distribution with surface charge density σ (1) is shown (thin black curves). For z → ∞,

all profiles approach the corresponding bulk number densities �i. Close to the substrate, the typical layering due to the hard cores of the fluid
particles is clearly visible. Whereas the solvent number density �0(u, z) [see panels (a) and (d)] varies barely as a function of the lateral position
u or the surface charge σ ∗, the cation number density �+(u, z) [see panels (b) and (e)] and the anion number densities �−(u, z) [see panels
(c) and (f)] are sensitive to both u and σ ∗. Note that the surface charge is negative here, i.e., σ ∗ < 0, so that the cations accumulate at and the
anions are depleted from lateral positions close to the charged square patches of the substrate (see Fig. 2).

at u = (L/2, L/2), i.e., in the center of the elementary cell
(in red), for lateral length scales L∗ ∈ {0.6, 60}, and surface
charges σ ∗ ∈ {−1.1,−3.3}. It turns out that the approxima-
tion �i(r) ≈ �DH

i (r) is reliable to a high degree, i.e., the
hard-core contribution as the last term in Eq. (14) can be safely
ignored. Whereas the hard-core interaction plays an important
role for the number density profiles �

(1)
i (z) close to laterally

uniformly charged substrates, it does not influence the lateral
structure formation significantly.

Since the hard-core contribution as the last term in Eq. (14)
is quantitatively negligible, one ends up with the approxima-
tion

�Q̂(q, z) ≈ e
∑

i

Zi
(−βeZi�

(1)
i (z)

)
�ψ̂ (q, z)

= − βe2
∑

i

Z2
i �

(1)
i (z)�ψ̂ (q, z)

= − βe2(�(1)
+ (z) + �

(1)
− (z))�ψ̂ (q, z), (32)

which is equally valid.

Upon inserting Eq. (32) into the Helmholtz equation for
z > 0 [see Eq. (16)], one obtains

∂2�ψ̂ (q, z)

∂z2
= (|q|2 + κ̃ (z)2)�ψ̂ (q, z) (33)

with the abbreviation

κ̃ (z) :=
√

4π�B(�(1)
+ (z) + �

(1)
− (z)). (34)

For z → ∞, the quantity κ̃ (z) approaches the inverse Debye
length, i.e., κ̃ (z) → κ , as in this limit �

(1)
± (z) → I . Figure 5

shows that κ̃ (z)/κ attains its bulk value 1 already a few parti-
cle radii R away from the substrate.

Hence beyond a few particle radii R away from the sub-
strate, i.e., at z � R, Eq. (33) reduces to

∂2�ψ̂ (q, z)

∂z2
� (|q|2 + κ2)�ψ̂ (q, z), (35)

with the solution

�ψ̂ (q, z) ∝ exp

(
− z

λ(|q|)
)

, z � R, (36)
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FIG. 4. To assess the approximation �i(r) ≈ �DH
i (r) for the full number density profiles �i(r) (solid curves) by the Debye-Hückel profiles

�DH
i (r) (circles) as defined in Eq. (31), the cation profiles (i = +) are shown for the two values L∗ = 0.6 [see panels (a) and (c)] and L∗ = 60

[see panels (b) and (d)], the two values σ ∗ = −1.1 [see panels (a) and (b)] and σ ∗ = −3.3 [see panels (c) and (d)], as well as for two lateral
positions u = (0, 0) (green curves) and (L/2, L/2) (red curves). We find excellent quantitative agreement. For the large length L∗ = 60, the
number densities �+(u, z) are close to the bulk number density �+ at the lateral position u = (0, 0), where the substrate is uncharged within a
radius of a few Debye lengths [see the green curves and circles in panels (b) and (d)].

with the normal decay length

λ(q) := 1√
q2 + κ2

. (37)

z/R

κ
(z

)/
κ

σ∗ = −3.3

−1.1

20100

11

1
0

FIG. 5. For z → ∞, the function κ̃ (z), defined in Eq. (34), ap-
proaches the inverse Debye length κ . Beyond the hard-core layering
range, κ̃ (z)/κ attains unity within a few particle radii R.

According to Eq. (29), in the range z � R the modes of the
lateral structure ��̂i(q, z) decay on the same normal length
scale λ(|q|). Whereas the decay length λ(q) is a bulk quantity,

L∗/(2π)

κ
λ

m
a
x

1001010.10.01

1

0.1

0.01

FIG. 6. At L∗ = κL ≈ 2π , the largest normal decay length λmax

of the laterally nonuniform modes [see Eq. (39)] crosses over from a
linear regime at short length scales L∗ � 2π to λmax � κ−1 (i.e., the
Debye length) at large length scales L∗ � 2π .
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FIG. 7. The reduced electrostatic potential βeψ (u, z) as a function of the lateral position u for fixed distances z � 0 from the substrate
determines, and hence represents, the lateral structure of the electrolyte solution [see Eq. (31)]. The left column corresponds to the case
L∗ = 0.6 (short lateral length scale) and the right column to the case L∗ = 60 (large lateral length scale). For each case, the lateral structure
decays in the normal direction on the length scale of λmax [see Eq. (39)]. The contrast between charged and neutral parts of the substrate at
z = 0 is clearly visible [see panels (a) and (b)]. In the first contact layer of the fluid at z = R [see panels (c) and (d)], the contrast is still present,
but slightly blurred. At the distance z = λmax [see panels (e) and (f)] the contrast is diminished substantially and even more so at z = 2λmax

[see panels (g) and (h)]. The decay of the lateral structure as a function of z/λmax is similar, irrespective of the lateral length scale L∗. Upon
increasing z, for L∗ = 0.6 the rectangular shape of the charged pattern is washed out in favor of circular patterns. For L∗ = 60 the rectangular
shape of the patterns remains even for z = 2λmax.

the proportionality prefactor of the asymptotics in Eq. (36)
depends on the surface charge density [see Eq. (21)] as well
as on details of the ion number density profiles �

(1)
+ (z) and

�
(1)
− (z) [see Eqs. (33) and (34)].

B. Lateral profiles

The length scale on which the lateral modes q decay in the
normal direction is given by λ(|q|) [see Eq. (37)]. It attains
its maximum value κ−1, i.e., the Debye length, at q = 0.
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Accordingly, the normal decay length λ(|q|) is not larger than
the Debye length κ−1. Upon increasing |q|, the normal decay
length λ(|q|) decreases monotonically.

Since σ (1) = σ̂00 and

�σ (u = (x, y)) = σ (u) − σ (1)

=
∑

k, �∈Z
(k, �) �= (0, 0)

σ̂k� exp

(
2π i

L
(kx + �y)

)
,

(38)

i.e., �σ̂ (q = q00 = 0) = 0 due to Eq. (23), the smallest wave
number |q| = |qk�| = 2π

L

√
k2 + �2 contributing to a lateral

structure is qmin = |q±1,0| = |q0,±1| = 2π
L . Hence the lateral

structure induced by a nonuniformly charged substrate decays
in the normal direction on the length scale

λmax = λ(qmin) = 1√(
2π
L

)2 + κ2
= L√

(2π )2 + (L∗)2

�
{

L
2π

for L∗ � 2π ,
κ−1 for L∗ � 2π .

(39)

Figure 6 displays the dependence of λmax on the length-scale
parameter L∗ = κL. At short length scales L∗ � 2π a linear
dependence is found, which crosses over to λmax � κ−1 (De-
bye length) at large length scales L∗ � 2π .

From the quantitatively reliable approximation �i(r) ≈
�DH

i (r) (see Sec. III A, and in particular Fig. 4) one can in-
fer that the lateral structure of the electrolyte solution, i.e.,
�i(r), is determined by the lateral structure of the electrostatic
potential ψ (r) [see Eq. (31)]. Accordingly, Fig. 7 displays
two sequences of lateral profiles of the electrostatic potential
ψ (u, z), i.e., functions of u with z fixed, at the normal posi-
tions z = 0, R, λmax, and 2λmax for L∗ = 0.6 [left column: (a),
(c), (e), and (g)] and 60 [right column: (b), (d), (f), and (h)].
Qualitatively, the difference of the electrostatic potential be-
tween lateral positions associated with large and small surface
charge densities diminishes with increasing distance from the
substrate. However, although the normal decay length λmax is
very different for the two cases (κλmax ≈ 0.1 for L∗ = 0.6 and
κλmax ≈ 1 for L∗ = 60), the decay of the lateral structure of
the two as a function of z/λmax is similar.

C. Interfacial tension

The findings discussed so far lead to the picture of a surface
layer of thickness λmax in which a nonuniform surface charge
density, characterized by a lateral length scale L, can be sensed
by the electrolyte solution. This thickness λmax is found to
increase as a function of L as long as L∗ = κL � 2π , whereas
it is approximately constant for L∗ � 2π . Therefore, one can
expect that the interfacial tension γ (see Sec. II D) exhibits
the same trend. This is indeed the case, as is shown in Fig. 8
for the surface charges σ ∗ = −3.3 (red curve) and −1.1 (blue
curve). However, the interfacial tension γ of a nonuniformly
charged substrate turns out to be limited to at most a few per-
cent above the interfacial tension γ (1) of a uniformly charged
substrate with the same mean surface charge density.

FIG. 8. Upon increasing the lateral length scale L∗, the interfacial
tension γ increases with respect to its value γ (1) of a uniformly
charged substrate. In sync with the behavior of the normal decay
length λmax [see Eq. (39) and Fig. 6], the interfacial tension γ levels
off for L∗ � 2π .

IV. SUMMARY, CONCLUSIONS, AND OUTLOOK

The present investigation is devoted to the structure forma-
tion in a dilute electrolyte solution close to a nonuniformly
charged planar substrate (see Fig. 1). In dilute electrolyte
solutions, the Debye screening length κ−1 is substantially
larger than the size of the fluid molecules R so that, in prin-
ciple, the spatial region of according thickness κ−1 close to
a charged substrate can be sensitive to the surface charge
distribution. However, the lateral length scale L of the charge
distribution on the substrate turns out to play a role, too. In
the present study, periodic charge distributions with period-
icity L of arbitrary magnitude are considered (see Fig. 2),
and the corresponding laterally nonuniform number density
profiles of the fluid particles are calculated via expansion
about the profiles of a uniform substrate with the same
mean surface charge density (see Fig. 3). It is found that
the lateral structure is mainly determined by the electro-
static potential, i.e., not by molecular-ranged forces like
the hard-core interaction, so that the laterally nonuniform
contributions of the number density profiles can be accu-
rately approximated by a Debye-Hückel-like expression [see
Eq. (31)], disregarding hard-core contributions (see Fig. 4).
As a consequence, for normal distances not too close to
the substrate, i.e., at z-coordinates with κ̃ (z)/κ in Fig. 5
close to unity, the lateral contributions of the electrostatic
potential, and hence of the number densities, decay on the
scale λmax given in Eq. (39) (see Fig. 6). For lateral length
scales L with L∗ = κL � 2π , the normal decay length is
varying with L according to λmax ≈ L/(2π ), whereas for
L∗ � 2π it levels off at the value of the Debye length,
λmax ≈ κ−1. As shorter length scales L∗ � 2π decay more
rapidly than larger ones, a washing out of fine details at
increasing distance from the surface occurs (see Fig. 7). Ul-
timately only structures at length scales L∗ � 2π contribute
to the lateral structure. In terms of the interfacial tension
of the nonuniformly charged substrate, an increase with L

054801-9



BIER, MUßOTTER, AND DIETRICH PHYSICAL REVIEW E 106, 054801 (2022)

is observed for L∗ � 2π , which saturates for L∗ � 2π (see
Fig. 8).

Equation (36) in conjunction with Eq. (31) states that at
distances z � λ(q) [see Eq. (37)], details of a surface charge
distribution with wave number q = |q| become irrelevant for
the lateral structure of an adjacent electrolyte solution. Hence,
at larger distances from the substrate, only fewer fine details
of a surface charge distribution can be resolved. Ultimately, at
distances z � κ−1, details with wave numbers q = |q| � κ ,
i.e., with lateral length scales L � 2πκ−1, are washed out
so that only surface structures with lateral length scales L �
2πκ−1 matter. The strength of the influence of these large-
scale structures decays exponentially with a decay length
given by the Debye screening length κ−1. Therefore, when
modeling electrolyte solutions with molecular length scale
R, one can safely ignore surface nonuniformities at length
scales L � 2πR, which, for molecular fluids, can be close to a
nanometer. Finally, the present study shows that macroscopic
descriptions of electrolyte solutions, i.e., on length scales
larger than the Debye length κ−1, are carried out consistently
by considering surface details on lateral length scales larger
than 2πκ−1 only.

Two main conclusions can be drawn from the present
study: (i) Microscopic hard-core interactions have a negligi-
ble influence on the lateral structure formation of electrolyte
solutions close to nonuniformly charged substrates. (ii) Fine
details of lateral nonuniformities have a negligible influence
beyond a certain (short) distance from the substrate. Accord-
ingly, the approach of disregarding the size of molecules and
treating them as point particles (see many previous theoreti-
cal studies concerning the interaction between nonuniformly
charged colloidal particles) can be justified or readily ad-
justed. That hard-core interactions of the fluid particles are

irrelevant for the laterally nonuniform contributions to the
fluid structure is a general feature, which does not depend
on particular properties of the fluid. Generally, the present
study shows that on macroscopic length scales, only macro-
scopically large features of the surface structure are visible.
This allows for local descriptions of fluids in terms of partial
differential equations, e.g., the Young-Laplace equation in
hydrostatics. The dominant correlation length of a fluid, which
for a dilute electrolyte solution of a noncritical solvent is the
Debye length, separates length scales into macroscopic and
microscopic ones. From a microscopic point of view, there
is a smooth crossover of the fluid structure from small to
large length scales, whereas microscopic details can be safely
ignored from a macroscopic point of view.

Several directions of applications of the gained insight are
conceivable: The presented approach, i.e., to consider devia-
tions from laterally uniform reference density profiles and to
ignore hard-core interactions, could be exploited in various
numerical analyses of fluid structures, including computer
simulations. This way studies of large laterally nonuniform
systems could become feasible. Furthermore, given a certain
length scale, the above insight is useful in order to distinguish
relevant from irrelevant surface details. This is of importance
not only for theoretical considerations or numerical appli-
cations, but also for efficiently solving practical problems,
such as guiding flows in nanochannels, patterning surface
structures of catalytic reactors, or designing electrochemical
devices. Finally, a common understanding of the small effect
microscopic features have on macroscopic length scales (and
vice versa) could be helpful for the scientific discourse by
avoiding confusion when comparing experimental or theoret-
ical results obtained within methods whose spatial resolution
is associated with incompatible length scales.
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