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Self-growing nano-liquid-crystal film from dynamic swollen hydrogel substrates
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A hydrogel which spontaneously swells in an aqueous polymer solution was observed to produce a new
hydrogel film coated on its swollen surface. Here, inspired by this phenomenon, we theoretically formulate the
dynamics of isotropic-to-nematic (I-N) phase transition caused by swelling a hydrogel substrate (HS) in a dilute
nanoplatelet suspension, and quantitatively characterize a self-growing nano-liquid-crystal (NLC) film coated
on the swollen HS surface. We show that as the HS gets softer, the resulting NLC film can form earlier and
achieve greater thickness (up to hundreds of micrometers). Our results and the existing experiments confirm that
the growth dynamics of the NLC film or hydrogel film is exclusively regulated by the swelling behaviors of the
HS instead of suspension configurations, e.g., I-N phase transition or sol-gel transition, suggesting a universal
signature for the solutes ranging from molecules to colloids. However, both the maximum thickness of the NLC
film and the corresponding characteristic time rely highly on the inherent elasticity of the HS and nanoplatelet
aspect ratio. We demonstrate that the swelling quasiequilibrium state rather than the equilibrium state of the
HS is more qualified to formulate a condition which is practically significant in preestimating the moment
when the maximum thickness of the NLC film appears. Our theoretical framework serves as a robust paradigm
to extensively rationalize (bio)film coatings which self-integrate with diverse nanostructural configurations via
swelling-induced phase transition.
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I. INTRODUCTION

The depositions of solutes, such as (bio)macromolecules,
microparticles, and nanoparticles, with a homogenous mor-
phology to form functionalized membranes or coatings on
the substrate surface, are of widespread significance span-
ning the fields of soft condensed-matter physics [1], advanced
energy industrial technology [2,3], and biomedical materi-
als engineering [4,5]. A drying solvent (vertical [6,7] and
unidirectional types [8,9]), whereby the solutes undergo a
spontaneous migration toward the condensed regime, often
enables a formation of the thin-film-like coatings (ranging
from nanometers to micrometers in thickness), referred to
as the crust-skin formation [10]. Although such an approach
serves as a multistep-free process in conducting the condensed
films by forcing the solutes to autonomously accumulate near
the drying front (which gradually moves backward to the
substrate surface), it is not a robust paradigm in precisely
engineering the homogeneous thin-film coatings which are
particularly self-growing on soft substrates such as hydrogel-
like colloids.

Of note, increasing numbers of experiments [4,11] suggest
that for modern biotechnology applications, hydrogel-like col-
loidal particles, such as micro- or nanogels—which exhibit
more outstanding biocompatibility [12], penetration through
biological barriers [13], and metabolic circulation in vivo
[5,11]—have been widely employed as soft substrates to
carry diverse functionalized cargos assembled within the
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surface coatings. Exploring how to perform a simple and
biocompatible processing route (akin to the dryings) that
can spontaneously create considerable concentration gradient
microdomains to engineer the self-growing films (in which
the solutes ranging from molecules to colloids are of self-
assembly) coated upon the soft surface (hydrogel particles)
holds remarkable significance in advanced biomaterials de-
sign and synthesis.

Although the related studies are less reported, a recent ex-
periment has directly evidenced that a hydrogel substrate (HS)
which spontaneously swells in semidilute aqueous polymer
solutions [poly(vinylalcohol) (PVA)] allows the formation and
growth of a gel-like thin film coated on its swollen surface
[14]. This phenomenon can occur because (i) the crosslinked
polymer network in HS exhibits a strong affinity toward the
good solvent (such as water), and then it will autonomously
swell by taking in water from surroundings, resulting in the
solvent depletion near the swelling surface (similar to the
drying process); (ii) the swollen substrate has an effective
diffusivity much larger than that of the free polymer molecules
in the solution, suggesting that the free polymer molecules
pushed away by the swollen HS can accumulate near its
surface to increase the polymer concentration. As a conse-
quence, once the concentration increases above the critical
gelation concentration, a sol-gel transition is triggered to form
a gel-like (PVA) film. Importantly, unlike the drying process,
such a resulting gel film is allowed to grow directly on the
swollen HS surface, indicating that the self-growing film can
be peeled off from the substrate with any desirable thickness
and interior architectures, or as an alternative, a HS with gel
film coated can be prepared in bulk form for a drug delivery
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vehicle. This experiment highlighted that swelling-induced
sol-gel transition (gelation) is indicative of a strategy that is
soft, finely tunable, and in vivo friendly in fabricating hydrogel
film coatings.

As is well known, besides the gelation, the liquid crys-
talline (LC) phase transition of the shape anisometric, such
as rodlike and plateletlike, (bio)macromolecules, or colloids,
has also received a great deal of attention for years. As the
concentration increases above a transition threshold, these
anisometric colloids will alter their orientations from the ran-
dom state (isotropic phase) into the ordered state (nematic
phase), referred to as the isotropic-to-nematic (I-N) phase
transition [9,15–19]. This I-N phase transition, known as one
typical example of LC phase transition, is increasingly recog-
nized to be of pivotal importance in advanced (bio)materials
manufacturing [20], and self-integration of living organisms at
the cellular scale [21]. This naturally inspires our awareness of
whether a nano-liquid-crystal (NLC) film can be engineered
by using such a versatile strategy of a swelling HS in a di-
lute colloidal suspension. To our knowledge, processing the
self-growing NLC film coating at colloidal scale, such as con-
sisting of nanorods and nanoplatelets, via swelling-induced
I-N phase transition has remained largely unexplored despite
its significance.

In this paper, we theoretically quantify the self-growing
NLC film formed by orientationally assembled nanoplatelets
on a dynamic swollen HS surface, as depicted in Figs. 1(a)–
1(d). The nanoplatelets [Fig. 1(e)], also known as platelike
colloids with high surface area to volume ratio, are abundant
in gibbsite, clay, and biological macromolecules [9,17,18].
They have been extensively employed as the ideal agents
among a host of applications spanning the fields of energy
harvesting [22] and drug delivery [5]. In our study, an initially
dried HS is immersed in a dilute isotropic suspension of the
nanoplatelets, as shown in Figs. 1(a) and 1(c), wherein the
nanoplatelets initially hold random orientations. As discussed
above, a HS that swells its volume by absorbing water is
expected to increase the nanoplatelet concentration near its
surface, such that a NLC film coating is created once I-N
phase transition is triggered at the concentration larger than
the transition threshold, as shown in Figs. 1(b) and 1(d). A the-
oretical modeling, involving the polymeric gel dynamics and
I-N phase transition dynamics of the nanoplatelets, was de-
veloped to characterize the formation and the growth of NLC
film coating on the swollen HS surface. Furthermore, how
this growth dynamics of a NLC film correlates to the swelling
behaviors of a HS is rationalized, as is the nanoplatelet aspect
ratio (determination of I-N phase transition threshold).

II. THEORETICAL MODELING

A. I-N phase transition at thermodynamic equilibrium

A nematic (N) liquid crystal wherein the anisometric
colloids only hold the identical orientations (differing from
columnar and smectic phases) is one simple type of LC phase.
Onsager’s theory [15] is pioneering in predicting I-N phase
transition of plateletlike particles, suggesting that there ex-
ists a transition concentration threshold mainly depending on
platelet aspect ratio, above which the platelets in the isotropic

FIG. 1. Schematics of swelling a hydrogel substrate (HS) in a
nanoplatelet suspension. (a) Dried state and (b) swelling state of a
flat-type HS. (c) Dried state and (d) swelling state of spherical-type
HS. The red network denotes the polymeric matrix, and the gray
arrows indicate the radial swelling directions. The nematic phase
domain with the nanoplatelet assembling orientationally signifies the
NLC film coating. (e) Nanoplatelet modeled as a discotic particle;
the coordinate axes guide the nematic orientation. (f) Diagram of I-N
phase transition for the nanoplatelet with different aspect ratios.

phase can rapidly turn into the nematic phase to achieve I-N
phase transition. Such a theory was validated by experimental
observations from Lekkerkerker’s group for sedimenting the
discotic gibbsite particles and the clay particles [23]. A series
of experiments recently reported by Cheng’s team upon the
I-N phase transition of (charged)α-zirconium phosphate (ZrP)
provides many useful measurements for better understanding
LC phase behaviors of nanoplatelets [22,24].

Here, the nanoplatelet is modeled as a discotic-type colloid
with diameter 2a and thickness 2b [see Fig. 1(e)]. Its volume
and aspect ratio are then σp = 2πba2 and λ = a/b, respec-
tively. The nanoplatelet is simply assumed to take only three
orientations, in which the normal vector of the nanoplatelet is
parallel to the y, z, and r axes. Note that we let the radial axis r
indicate the one-dimensional (1D) swelling direction for both
flat and spherical HSs. The nanoplatelet concentration, de-
fined by volume fraction, is given by φp = φp,y + φp,z + φp,r

with φp,i (i = y, z, r) being the concentrations of each species
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which takes the respective direction along three coordinate
axes. The swollen HS surface is equivalent to the drying front
(edge) in regulating the nanoplatelet orientation in the nematic
phase; namely, the nanoplatelets collectively assemble with
their lateral surface parallel to the HS surface [they treat it
as a rigid wall; see Figs. 1(b) and 1(d)]. This scenario is also
supported by some recent experiments [7,21] and simulations
[9,25] on the rodlike (bio)molecules and colloids.

Herein, the oriented nanoplatelets in the nematic phase
have the symmetry around the radial r axis, giving φp,y = φp,z.
In this regard, the order parameter, also known as the discrete
Zwanzig model, can be well defined by

s = φp,r − φp,y

φp
. (1)

The order s can vary ranging from 0 (isotropic phase) to
1 (full nematic phase). We then easily express the concentra-
tions of each species in three directions as functions of the
bulk nanoplatelet concentration and the order parameter

φp,r = φp

3
(1 + 2s), φp,y = φp,z = φp

3
(1 − s). (2)

Of note, both the concentration φp(r, t ) and the order pa-
rameter s(r, t ) for the nanoplatelets affected by the swelling
of the HS vary spatially and temporally. Previous works [9,17]
have shown that ṡ is proportional to the time ratio tT /tR (tT is
a timescale of translational motion and tR is a timescale of
rotational motion for the nanoplatelets) which actually takes
a value much greater than 1, suggesting that the order pa-
rameter s(r, t ) relaxes very quickly to the equilibrium state.
Thereby, minimizing the free energy density f (φp, s) of the
nanoplatelet suspension with respect to the order parameter,
∂ f /∂s = 0, determines the equation of state for I-N phase
transition at the thermodynamic equilibrium.

The free energy density that is applicable to the discrete
order model was previously calculated by Hansen et al. [16],
and we here modify this function to rationalize the orien-
tational entropy and the excluded volume entropy for the
discotic nanoplatelets (please see Appendix A for details).
Due to the complexity in the f (φp, s) function, there does
not exist the exact analytical solution of ∂ f /∂s = 0, but the
numerical solutions are accessible for different nanoplatelet
aspect ratios, as shown in Fig. 1(f). One can see that as the
concentration increases above a transition threshold φI-N , the
order parameter rapidly converts its value from 0 (isotropic
phase) to a certain value (I-N coexisting phase), and further
to 1 (full nematic phase). As the aspect ratio increases, i.e.,
the nanoplatelet generally becomes thinner, the I-N transition
concentration threshold decreases obviously. Our data in the
phase diagram [Fig. 1(f)] are highly consistent with the phase
transition threshold measured by Cheng et al. for ZrP platelets
with aspect ratio 100 [22,24] (surface electrostatic interactions
are ignored here).

B. Swelling dynamics of hydrogel substrate

Considering that the hydrogel substrate (HS) is often
prepared as a spherical particle in biomedical applications
[4,5,12], and a hydrogel sphere can swell isotropically, we
take a spherical HS [Fig. 1(c)] as a paradigm in our modeling

framework. Let us consider an initially dried HS with an initial
radius R0 = 1 mm, which consists of the crosslinked polymer
network with the initial polymer concentration (volume frac-
tion) φg0 = 0.98. We shall address the 1D swelling dynamics
of HS by accessing the so-called diffusiomechanical coupling
(DMC) regime [26], which can strictly quantify the swelling
behaviors of the HS via the finely tunable elastic modulus
and affinity interactions to the solvent. Our model therefore
prevails over the simple scaling law of time evolution in em-
piricism for gel swelling which was used in the absence of a
well-defined physical parameter [14].

During the 1D swelling of the HS along the radial direction
in a nanoplatelet suspension, water is taken into the HS from
the surroundings, which gives the bulk volumetric flux inside
the HS,

φwvw + vgφg = 0, (3)

where φw and φg are the concentrations (volume fractions)
of water and the crosslinked polymers, and their respective
velocities (relative to lab) are vw and vg. The flow of wa-
ter through the crosslinked polymer matrix is determined by
Darcy’s law,

φw(vw − vg) = − κg

ηw

∇pin, (4)

where κg(φg) is the permeability of the polymer matrix ap-
pearing as a function of polymer concentration, ηw is the
dynamic viscosity of water, and ∇pin is the capillary pressure
drop arising from water flow through the percolating network
inside the HS. For the sake of simplicity, we suppose that the
swollen HS can retain internal thermodynamic equilibrium
such that the bulk pressure in this soft matter system, defined
as Pin = pin + 
g with 
g being the osmotic pressure induced
by crosslinked polymers (solid phase), remains constant. This
leads to the capillary pressure drop being balanced by the
osmotic pressure gradient, i.e., ∇pin = −∇
g.

For a neutral hydrogel material, the bulk osmotic pressure
simply comprises two contributions: Flory-Huggins entropic
mixing and rubberlike elasticity, 
g = 
mix + 
ela. The mix-
ing entropy part is written as


mix = −kBT

σw

[
φg + ln(1 − φg) + χφ2

g

]
, (5)

where σw = 4πR3
w/3 is the volume of the water molecule

with the molecule radius Rw = 0.2 nm, kBT is the thermal
energy, and χ is the Flory-Huggins parameter that accounts
for the affinity of the polymer with water (we take χ = 0.49
for a good solvent). Note that although Eq. (5), which fol-
lows Flory’s theory, is valid for the free polymers, it can
be approximately invoked here for the crosslinked polymers
with an assumption that the entropic contribution arising from
the crosslinks can be ignored, which is widely accepted in
previous theoretical works [26,27]. The elastic pressure part
is given by


ela = G(φg)

[
φg

2φgr
−

(
φg

φgr

) 1
3

]
, (6)

where φgr is a certain polymer concentration in a refer-
ence state, and G(φg) is the apparent elastic modulus of the
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hydrogel which generally takes a scaling law expression with
respect to the polymer concentration [28], G = G0( φg

φgr
)
α

with
index α = 1/2, in which the inherent elastic modulus reads
G0 = kBT Nc/V0 with Nc being the number of polymer chains
in the gel network, and V0 = 4πR3

0/3 being the initial volume
of dried HS. In this study, the reference state is specified as
the initially dried state of the HS, termed the collapsed state
of the hydrogel, and we then let φgr = φg0 = 0.98.

With the above set of equations, we then arrive at water
velocity relative to the gel network,

uw = 9

2

aκgDp,w

R3
wφw

∂
̃g

∂r
, (7)

where Dp,w = kBT/12ηwa accounts for the random-
orientation-averaged diffusivity of the nanoplatelet in water
[17–19], and 
̃g = 
gσw/kBT means the dimensionless
osmotic pressure. The permeability of the gel network is
formulated with a frequently used (semi)empirical form [10],

κg(φg) = ζ 2

Ag

1 − φg

φ2
g

, (8)

where Ag is a constant which often takes a large value deter-
mined by experiments, and the length scale is specified by the
average mesh size ζ which is well defined as a correlation
length between the point of entanglements in the crosslinked
polymer matrix. Such a mesh size is widely suggested to be a
power law function of polymer concentration, ζ = Rgφ

β
g with

index β = −0.75 in a good solvent [29]. It is indicated that the
mesh size gets smaller as the polymer concentration becomes
higher, especially ζ ∼ Rg a gyration radius of a crosslinked
polymer micelle at the reference state (collapsed state). From
the perspective of hydrogel materials synthesis [30], such a
Rg is related to the added polymer chains for crosslinking,

as determined by Rg
∼= ( 4R3

0
Nc

)
1
3
. In other words, the higher the

number of polymer chains is for crosslinking, the higher the
inherent elastic modulus gets, but the smaller the mesh size
in the collapsed state is, indicating that the hydrogel materials
become stiffer at the macroscopic level. We plot G0 and Rg

as functions of Nc in Figs. 7(a) and 7(b), and also plot G0

versus the mesh size at the reference state in Fig. 7(c) in
Appendix B, which consistently follows the experiment data
recently reported [30].

Substituting the equations mentioned above and the con-
dition φg = 1 − φw into Eq. (7), we ultimately derive the
expression of uw,

uw = 9Dp,w

2Ag
λpλ

2
g(1 − φw )2β−2 ∂
̃g(φw )

∂φw

∂φw

∂r
, (9)

where the size ratios are λp = a/Rw and λg = Rg/Rw. Con-
sidering the 1D spherical symmetry, we arrive at the evolution
equation of water inside the HS,

φ̇w = − 1

r2

∂ (r2Jw )

∂r
, (10)

where Jw = uwφw denotes the flux of water across the gel
network. Solving Eq. (10) with some appropriate boundary
conditions (which will be discussed in Sec. II D for details),
one can access the swelling dynamics of the spherical HS. Of

note, the swollen HS border indicates a moving boundary con-
dition described by the algebraic equation Ṙ(t ) = vg (which
is a complicated function of φw). This equation should be
solved at each time interval if performing a normal computa-
tion procedure in an Eulerian framework. Here, alternatively,
we developed a portable procedure, termed as the “soft-cell”
approach (SCA), in a Lagrangian framework to calculate the
current problem. The use of SCA has been validated to be ben-
eficial in tackling the gel dynamics with a moving boundary
(swelling or deswelling) owing to the elegant representation
and the efficient computations. The performance of SCA, as
well as the dimensionless process of the model, have been
elucidated upon in Appendix C with details.

C. Growth dynamic of NLC film of nanoplatelets

During the swelling process of the HS, water is imbibed
into the HS, but the nanoplatelets near the HS are pushed away
by the swollen surface. Once again, the bulk volumetric flux
in the suspension reads

φpvp + vout
w (1 − φp) = 0, (11)

where φp is the concentration (volume fraction) of the
nanoplatelet, and vp and vout

w are the average velocities (rel-
ative to lab) of the nanoplatelet and water outside the HS,
respectively. The assumption of constant bulk pressure is
similarly available in the ambient suspension, suggesting
−∇pout = ∇
p with pout being the pore pressure of water
flow through the nanoplatelets (involving the I-N coexist-
ing phase) and 
p being the osmotic pressure owing to the
nanoplatelets (solid phase). In this regard, the water flow in
the suspension can be determined by Darcy’s law,

(1 − φp)
(
vout

w − vp
) = − κp

ηw

∇pout, (12)

where κp is the permeability of water molecules penetrating
the nanoplatelets. The nanoplatelet velocity is therefore de-
rived as

vp = − κp

ηw

∇
p. (13)

Considering that the orientations of the nanoplatelets, es-
pecially in the resulting NLC film formed by orientationally
aligned nanoplatelets, can significantly affect water perme-
ation, an orientation-dependent expression of the permeability
can function. Here, we employ the 1D Nielsen’s formulation
for nonuniform orientation of nanoplatelets with the assump-
tion of no aggregation effect existing in the N phase [31]

κp = a2

Ap

1 − φp

1 + λ
3 φp

(
s + 1

2

) , (14)

where the length scale is regarded as a radius of the
nanoplatelet, and the constant Ap = 5 is often used for a
hard nanoparticle [8]. For a given nanoplatelet suspension,
the osmotic pressure can be explicitly expressed into the
function of the free energy density 
p(φp, s) = − f (φp, s) +
φp∂ f (φp, s)/∂φp. The free energy density used here has
been elucidated upon in Appendix A with details. With the
above set of equations, the time evolution equation of the
nanoplatelet affected by the swollen HS is obtained with 1D
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spherical symmetry,

φ̇p = − 1

r2

∂ (r2Jp)

∂r
, (15)

where Jp(φp, s) = vpφp denotes the flux of the nanoplatelets
outside the HS. With some appropriate boundary conditions,
as discussed in Sec. II D, Eq. (15) can be solved numerically,
whereby the growth dynamics of the NLC film coating on the
swollen HS is then accessed. The dimensionless process of
the model has been elucidated upon in the Appendix C with
details.

D. Boundary conditions

The use of SCA in resolving the swelling dynamics equa-
tion of the HS does avoid the appearance of the tedious
boundary equation Ṙ(t ) = vg(r = R, t ) in time iteration com-
putations. The moving boundary conditions, however, still
exist within the diffusiomechanical coupling regime for gel-
dynamics problems.

(i) At the HS center, r = 0, no water flux exists, i.e., Jw =
0.

(ii) At the periphery far from the swollen HS, r = R∞ (let
R∞ = 5R0), the nanoplatelet concentration takes the initial
value φp = φp0 because the nanoplatelets remain unaffected
from the swollen HS.

(iii) At the swollen border of the HS, r = R(t ), the swelling
equilibrium state is allowed to be maintained, indicating that
the bulk osmotic pressure inside the HS is equal to the osmotic
pressure in the nanoplatelet suspension, 
g(φw ) = 
p(φp, s).

(iv) At the swollen border of the HS, r = R(t ), the
nanoplatelet moves together with the swollen border, which
gives vp = Ṙ(t ). Note that Ṙ(t ) used here is an instantaneous
value calculated by SCA instead of solving the algebraic equa-
tion with respect to vg(φw ). Once again, the dimensionless
forms of the boundary conditions are presented in detail in
the Appendix C.

Here, we would like to interpret condition (iii) in detail.
The swelling equilibrium state at the swelling surface of the
HS can be expressed in the dimensionless form 
̃g(φw ) =
σw

σp

̃p(φp, s) with the volume ratio being σw/σp = 2

3λ( Rw

a )
3
.

Note that, when the solute in the surrounding suspension is
in the molecular scale, namely, its size is comparable to a
water molecule, the swelling behavior of the HS relies on
the solute concentration near the HS surface, which is the
case as shown in the experiments for free polymer molecules
[14]. However, when the solute increases to colloidal scale,
i.e., its size is much larger than a water molecule, σw/σp is
an extremely small value, which leads to an extremely small
value of 
̃g(φw ), for instance, 
̃g

∼= 10−7 with a = 150 nm
and λ = 100 for the range of 0.01 � φp � 0.6 and 0 � s � 1
involved in 
̃p. This result indicates that condition (iii) can
be approximately given by 
̃g(φw ) ∼= 0, suggesting that the
swelling behavior of the HS remains almost unaffected by
the ambient suspension configuration for the solute at the
colloidal scale like nanoplatelet.

III. RESULTS AND DISCUSSION

In our simple model, there are only two primary param-
eters, as said earlier, the inherent elastic modulus G0 of the

HS and the aspect ratio λ of the nanoplatelet, which prevail
in regulating the growth dynamics of NLC film coating on
a swollen HS. The modulus G0 tuned by Nc apparently repre-
sents the extent of the HS softness, which is therefore decisive
of the HS swelling ratio at the equilibrium. The aspect ratio
λ of the nanoplatelet plays an important role in modulating
the LC phase behaviors, such as the I-N phase transition con-
centration φI-N [Fig. 1(f)]. We fix the nanoplatelet diameter
as 300 nm [22], i.e., the radius a = 150 nm, and allow the
aspect ratio to change with the thickness, e.g., the thickness
varies from 3 nm (b = 1.5 nm) to 10 nm (b = 5 nm) as λ

decreases from 100 to 30, respectively. As one can see in
Fig. 1(f), the nanoplatelet with λ = 100 exhibits the smallest
I-N transition threshold φI-N = 0.037. To keep the suspension
initially isotropic for the range 30 � λ � 100, we take the
initial concentration of the nanoplatelets as φp0 = 0.03. The
constant Ag in the gel-network permeability κg is suggested
to be a quantity in determining the timescale of the swelling
process, and we assume Ag

∼= 104 which is comparable to the
experiment measurements [14,30]. In addition, as discussed
in the Introduction, the swelling-induced phase transition pro-
ceeds by requiring the much larger diffusivity of the hydrogel
substrate than that of the nanoparticles dispersed in an ambient
suspension. This is universally convincing in both current
work for nanoplatelets and the work of Moreau et al. for free
PVA molecules [14]. For instance, the diffusion constant Dp,w

of the nanoscale particle (300 nm in diameter) in the dilute (or
semidilute) aqueous solution is about 10−8 cm2 s−1, while
that of the swelling substrate (coupling with solvent hydro-
dynamics) is about 106 cm2 s−1 [14]. This means that the fact
that the substrate diffusivity due to gel-network swelling (cou-
pled with solvent hydrodynamics) significantly prevails over
that of the nanoparticles is a basic prerequisite for swelling-
induced phase transition in our work and also the work of
Moreau et al. [14].

We first present the swelling dynamics of the HS in Fig. 2.
Figure 2(a) shows the increase in radius of the HS, �R =
R − R0, as functions of immersion time in a nanoplatelet
suspension for different inherent elastic moduli. Obviously,
as G0 decreases, i.e., the gel network gets softer, the HS can
swell its volume much larger and then get the higher swelling
ratio at the equilibrium, and moreover, the time to reach the
swelling equilibrium becomes apparently shortened, which
can be noticed more directly in the inset in Fig. 2(a). The
purpose of plotting �R (instead of normalized R/R0) with
time is to argue the applicability of the scaling law of hydrogel
swelling dynamics invoked in the experiments [14]. We find
that in Fig. 2(a), the HS with small G0 can achieve the more
rapid increase in radius in early swelling time, indicating a
faster responsiveness of a softer polymeric matrix toward the
external osmosis in a short time. The swelling behaviors at the
early stage, such as t < 100 s, for a hydrogel sphere swelling
in a good solvent are less discussed. We are more concerned
with focusing on the swelling behaviors in the time ranging
from the intermediate stage to the equilibrium stage, e.g.,
swelling time from 100 s up to 105 s, wherein the simple time
scaling law of swelling dynamics, as given by �R ∼ t0.5, is
expected to work. Our results based on the DMC regime show
that the profile of �R in the intermediateswelling stage does
follow the linear dependence of time in the log-log plotting,
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FIG. 2. Dynamic profiles of the swelling HS. (a) Increase in HS radius is plotted against time for different inherent elastic moduli, and
the dashed lines guide the linear behaviors with the numbers being the corresponding slopes. Inset in (a) shows the normalized radius plotted
versus time. (b) Instantaneous swelling rate of the HS varying with time for variable G0. The green circles mark the positions where the rate
significantly collapses, which is defined as the swelling quasiequilibrium state. Inset in (b) shows the characteristic times for the HS, i.e.,
the swelling quasiequilibrium state tqeq and the swelling equilibrium state teq, plotted against G0. Parameters used are α = 0.5, β = –0.75,
λ = 100, χ = 0.49, Ag = 104, and φgr = φg0 = 0.98.

which supports the existing power law scaling �R ∼ tm, but
confirms a G0-dependent power index m. The hydrogel mate-
rials are commonly synthesized with 10 kPa < G0 < 300 kPa.
The power index m = 5 (used in the scaling law in Ref. [14])
only corresponds to the case of the softest HS (G0 =
10.11 kPa) used here. As the HS gets much stiffer, this index
m decreases, but in particular, for the stiff gel network with
G0 > 900 kPa, the swelling behavior of the HS is seen to
proceed in unison, namely, index m ∼= 0.43 holds unchanged.

Figure 2(b) illustrates the instantaneous swelling rate Ṙ(t )
for variable G0, all of which are shown to monotonically
decline with time. This result can be well understood by
recalling the swelling nature of the hydrogel material, as for-
mulated in Sec. II B. When an initially dried HS is exposed
to the osmosis from its surroundings, the mixing pressure
appears at its maximum value which is several orders of
magnitude higher than the elastic pressure which is at its
minimum value, i.e., |
mix| � |
ela|, such that the gel net-
work prefers to take in water to swell at a high rate. As the
swelling proceeds, however, the mixing pressure drops, while
the elastic pressure rises to impede the elastic deformation due
to the swelling, leading to a reduction in swelling rate over
time. It is found that Ṙ(t ) first decreases linearly with time
(in the log-log plot), followed by the sudden collapse which
markedly diverges from this linear trend as time goes on, as
seen in Fig. 2(b). This signature most deserves our concern
for which in such a stage, we conjecture, the elastic pressure is
starting to behave predominantly in hindering swelling of the

HS, or in other words, the mixing pressure has decayed to the
comparable magnitude to the elastic pressure (see Table I in
Appendix B). We take this stage, where the elastic pressure
prevails over the mixing pressure in dominating the swelling
process of the HS, as a swelling quasiequilibrium state. Ap-
parently, the swelling quasiequilibrium state is indicative of
the onset of a transition from swelling state toward swelling
equilibrium, which highly depends on the physicochemical
and mechanical properties of the polymeric gel network. We
can therefore specify two characteristic times for a swollen
HS: one is for the swelling quasiequilibrium state tqeq, defined
by the point at which Ṙ(t ) starts to diverge from the linear
trend, as marked by the small green circles in Fig. 2(b);
the other one is for the swelling equilibrium state teq, de-
fined by the point at which Ṙ(t ) reduces to the minimum
∼10−4 μm/s. These two characterization times are obviously
G0 dependent, which have been represented in the inset in
Fig. 2(b). The use of them to predict the moment when the
maximum thickness of NLC film appears will be discussed
later.

We next show in Fig. 3 the time evolution of water concen-
tration inside the HS, the nanoplatelet concentration outside
the HS, and the order parameter. As seen in Figs. 3(a) and
3(d), water flows from the HS surface toward its center to
gradually increase the bulk water content in the HS. The softer
gel network [Fig. 3(a)] allows more water content compared to
the stiffer gel network [Fig. 3(d)]. In fact, water concentration
varying with time is directly invoked to figure out the moving
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FIG. 3. Time evolutions of (a), (d) water concentration inside the HS, (b), (e) the nanoplatelet concentration, and (c), (f) the order parameter.
(a)–(c) are the data for the soft HS with G0 = 101.13 kPa, and (d)–(f) are the data for the stiff HS with G0 = 5.06 MPa. Parameters used are
α = 0.5, β = –0.75, λ = 100, χ = 0.49, Ag = 104, φgr = φg0 = 0.98, and φp0 = 0.03.

boundary, like swelling profiles [Fig. 2(a)], according to the
conservation law of crosslinked polymers (1 − φw) performed
with SCA per spatiotemporal step. As expected, Figs. 3(b)
and 3(e) show that as the HS swelling goes on, nanoplatelet
concentration increases above φI-N to trigger I-N phase tran-
sition on the HS surface, while it can decrease sharply toward
φp0 signifying a periphery regime in which the nanoplatelets
are unaffected by the HS. We shall point out that there is
lack of the complex strong interactions, such as electrostatic
interaction, adherence, etc., between the nanoplatelets and the
HS surface (or said interfacial gel network) in our simple
modeling framework, suggesting that the nanoplatelets near
the HS surface are freely diffusive due to colloidal Brownian
diffusion. In other words, the nanoplatelet concentration near
the HS surface evolves as the result of competitions between
HS swelling behavior and the nanoplatelet Brownian diffu-
sion. In this regard, one can naturally understand the results
in Figs. 3(b) and 3(e), that the increase in the nanoplatelet
concentration can be finally followed by the decreasing trend,
accounting for the fact that as the swelling rate of the HS
gradually decays a certain degree over time, the weakened
water depletion interaction hardly enables the nanoplatelets to
accumulate near the HS surface, and instead the nanoplatelets
prefer to take the new thermodynamic equilibrium that is the
same as the initial state.

Figures 3(c) and 3(f) illustrate the evolution of the order
parameter with time for the softer and the stiffer HS, re-
spectively. Comparing with the stiffer HS, swelling the softer
HS enables a much faster increment in the order parameter,
suggesting a rapid formation of nanoplatelet nematic phase,

i.e., a resulting NLC film. In order to visually quantify the
growth dynamics of NLC film formed by the full nematic
phase of the nanoplatelets, we extract the locations of s = 0.7
at which the NLC film is considered to form with time. To this
end, Fig. 4(a) shows the growth profiles of the NLC film con-
sisting of the thin nanoplatelets λ = 100 for different G0. The
swelling of the softer HS allows the NLC film to form earlier,
as well as to enable the thicker thickness L. We also find that,
similar to �R, the NLC film also grows linearly with time (in
a log-log plot) during the intermediate stage of HS swelling,
namely L ∼ tm, and moreover the power index for L is seen to
be almost equal to that for �R for every G0. Furthermore, we
also examine the effect of aspect ratio on the growth dynamics
of the NLC film in Fig. 4(b) for a certain HS. With a decreas-
ing λ, i.e., the nanoplatelet gets thicker, the NLC film forms
later, and its thickness becomes thinner, the occurrence of
which is due to the thick nanoplatelet (with a small λ) having
the higher I-N phase transition threshold φI-N [see Fig. 1(f)].
Once again, the NLC film formed by the nematic phase of
the nanoplatelets with different aspect ratios is seen to grow
linearly (in a log-log plot) with time, while these lines appear
with the same slope, or as said the same power index, without
the influence from λ. Similar phenomena were also supported
by the recent experiments for producing the hydrogel film
coated on the swollen HS by swelling-induced gelation at
the molecular scale [14]. These results raise our awareness
of a signature that the swelling behavior of the HS strik-
ingly prevails in conducting the growth dynamics of the NLC
film or the gel-like film coatings, like growth rate, in a way
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FIG. 4. Growth dynamics of the self-growing NLC film. (a) Time evolution of NLC film thickness for the thinnest nanoplatelet λ = 100 by
swelling the HS with variable inherent elastic moduli. The solid lines with different colors guide the linear growth behaviors with the numbers
being the corresponding slopes. (b) Time evolution of NLC film thickness for the nanoplatelet with different aspect ratios by swelling the HS
with G0 = 101.13 kPa. Other parameters are the same as in Fig. 3.

independent of suspension configurations, for instance, types
of molecules or colloids, I-N phase transition, and sol-gel
phase transition.

However, it is noteworthy that the static characteristic
quantities for the resulting NLC film, for instance, the maxi-
mum thickness Lmax and the characteristic time tmax to arrive at
Lmax, are highly correlated to both the HS mechanics property
and the nanoplatelet size (or as is said the I-N phase transition
property). Figures 5(a) and 5(b) depict how the maximum

FIG. 5. Plot of (a) maximum thickness of the NLC film Lmax

and (b) characteristic time tmax corresponding to Lmax within a broad
range of the G0−λ plane. Other parameters are the same as in Fig. 3.

thickness Lmax and the characteristic time tmax vary within a
broad range of the G0−λ plane, respectively. It is indicated
that either swelling the softer HS or making the nanoplatelets
thinner can attain the larger Lmax, as well as the lengthened
time tmax. In addition, Fig. 5(a) shows that the maximum thick-
ness varies nonlinearly with both G0 and λ and, particularly, it
decays quickly with G0, indicating that when swelling a stiffer
HS, the maximum thickness of film coating remains almost
unaffected by the aspect ratio of the nanoplatelets. As seen
in Fig. 5(b), tmax can decrease with G0 in an approximately
linear way for the thinner nanoplatelets (a larger λ), while it
decreases in a nonlinear way for the thicker nanoplatelets (as
λ decreases).

Recalling the two characteristic times for a swollen HS:
tqeq (swelling quasiequilibrium state) and teq (swelling equi-
librium state), it is interesting to reaccess the quantitative
relationship between HS swelling behavior and NLC film
growth by comparing them with time tmax for the resulting
NLC film. Figure 6 illustrates the comparisons between these
characteristic times which are all plotted as functions of G0.
One can clearly see that, for the HS with the full range of G0,
the NLC film achieves its maximum thickness long before the
swelling equilibrium state of the HS for the nanoplatelet with
full range of λ. However, the profile of swelling quasiequilib-
rium state tqeq is found to intersect with the profiles of tmax for
all λ, suggesting that both G0 and λ play roles in determining
whether the maximum thickness of the NLC film appears
before or after the swelling quasiequilibrium state of the
HS. For example, for the thinnest nanoplatelet with thickness
3 nm (λ = 100), the resulting NLC film can achieve its maxi-
mum thickness after the swelling quasiequilibrium state of the
HS when the inherent elastic modulus is smaller than G0

∼=
4383 kPa, while when G0 is larger than 4383 kPa the Lmax

emerges before the swelling quasiequilibrium state. More-
over, the threshold in G0 (the intersection points between
tehprofiles of tqeq and tmax) which distinguishes the magnitude
between tqeq and tmax noticeably varies with the aspect ratio λ.
The inset in Fig. 6 exhibits the threshold value of G0 plotted

054701-8



SELF-GROWING NANO-LIQUID-CRYSTAL FILM FROM … PHYSICAL REVIEW E 106, 054701 (2022)

FIG. 6. Comparisons between the characteristic times, teq and
tqeq, for swelling the HS and the characteristic time tmax for the NLC
film, all of which are plotted as functions of G0. The intersection of
the tqeq profile (swelling quasiequilibrium state) versus tmax profiles
for different λ determines a condition border, a curve of threshold
G0 versus λ, which specifies different regimes for tmax > tqeq and
tmax < tqeq in the G0−λ plane, as illustrated in the inset.

as a function of λ, which clearly identifies different regimes
for tmax > tqeq and tmax < tqeq. Quantitating the magnitudes
between these characteristic times, especially between tqeq and
tmax, as presented in Fig. 6, is practically significant. Com-
monly, the dynamic detection of the thickness of a growing
NLC film coating would be inaccessible on a dynamic swollen
HS surface. In this problem, due to the colloidal size of the
nanoplatelet, the bulk swelling behavior of the HS merely
correlates to its mechanics property instead of the suspen-
sion configurations, as discussed in Sec. II D, such that the
characteristic times for a swollen HS, i.e., tqeq and teq, can be
predetermined in the hydrogel swelling experiments. Herein,
the results in Fig. 6 are helpful in preestimating the moment
when the NLC film can achieve its maximum thickness, which
is expected to assist with direct manipulation (e.g., peeling the
film off from the substrate) on a film coating with the desirable
thickness.

IV. CONCLUSIONS

We have theoretically modeled the process that swelling
a neutral hydrogel substrate in a dilute nanoplatelet suspen-
sion can trigger I-N phase transition of the nanoplatelets, and
consequently achieve a self-growing nano-liquid-crystal film
coated on the dynamically swollen surface. We show that
swelling behavior of the HS meets the power law scaling of
the immersion time (the linear scaling law in a log-log plot),
and likewise the growth of the resulting NLC film coating (up
to hundreds of micrometers in thickness) also follows simi-
lar linear behavior. Importantly, they share the same power
index for different G0 and λ. Similar results were also sup-
ported by the experiments for hydrogel film production via
swelling-induced sol-gel transition [14]. We therefore arrive
at the universal signature that the growth dynamics of a self-

growing NLC film or gel-like film is exclusively conducted
by the swelling behaviors of the HS instead of the surround-
ing suspension configurations, e.g., the types of molecules or
colloids, I-N phase transition, and sol-gel transition.

However, the static characteristic quantities, i.e., the maxi-
mum thickness Lmax and the corresponding characteristic time
tmax, for the resulting NLC film are determined as the results
of the mechanical property of the HS and nanoplatelet sus-
pension configurations. For instance, either swelling the softer
HS (a decreasing G0) or making the nanoplatelet thinner (an
increasing λ) enables the thicker Lmax and the longer tmax.
Furthermore, we demonstrate that the NLC film achieves its
maximum thickness long before the swelling equilibrium state
of the HS, while the swelling quasiequilibrium state tqeq, well
defined by the state at which the swelling rate significantly
collapses due to the elastic pressure beahving dominantly, can
serve as a criterion (a borderline between threshold G0 and λ)
in specifying the regimes for tmax > tqeq and tmax < tqeq, which
helps preestimate the moment when the maximum thickness
appears.

Our theoretical framework was developed, instead of by a
simple scaling law in empiricism, by incorporating the dif-
fusiomechanical coupling regime for hydrogel-like materials
and by SCA which can efficiently address the diffusive mov-
ing boundary. It would be highly beneficial to extend our
model toward the hydrogel substrate with diverse architec-
tures in a polymeric matrix [32], and also different suspension
configurations, e.g., bioactive compounds (proteins, DNA)
[21,33], and nanoparticles with other anisometric shapes,
phase behaviors, and bulk softness [5,13]. These extensive
studies based on our model are expected to bring insights into
exploring the underlying universal nature and specific princi-
ples in precisely engineering the self-growing film coatings
by swelling-induced phase transition, such as functionalized
biofilm synthesis and design of polymer-based carriers with
drug molecules or colloid coating [34].
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APPENDIX A: FREE ENERGY DENSITY AND OSMOTIC
PRESSURE FOR NANOPLATELET

In this work, the nanoplatelet which is modeled by thin
discotic colloid with a limit of large aspect ratio a/b � 1 has
been assumed to take only three orientations along the y, z,
and r axes, termed the Zwanzig model. The free energy func-
tion for this model was previously reported by Hansen et al.
[16], and we modify the part of excluded volume interactions
between nanoplatelets for the discotic-type colloid used here.

The free energy density (per unit volume) at the thermody-
namic equilibrium can be simply given by

f (φp, s) = kBT

(
2

σp
φp,y ln φp,y + 1

σp
φp,r ln φp,r

)
+ fexc(φp, s). (A1)

054701-9



JIZE SUI PHYSICAL REVIEW E 106, 054701 (2022)

The first term on the right side in Eq. (A1) accounts for the
entropy-driven contribution, and the second term is the excess
part of free energy density accounting for both the excluded
volume entropy and orientational entropy. The excess free
energy density is then modified as

fexc(φp, s)

= kBT

[
−φp

σp
ln(1 − φp) + n1 · n2

1 − φp
+ n2,rn2,yn2,z

(1 − φp)2

]
, (A2)

where n1 and n2 are the vectors comprising the components
n2,r , n2,y, and n2,z along the three coordinate axes. These two
vectors are expressed as follows for the present problem:

n1 = 1

σp

⎛
⎝bφp,z + aφp,y + aφp,r

aφp,z + bφp,y + aφp,r

aφp,z + aφp,y + bφp,r

⎞
⎠, (A3)

n2 = a

σp

⎛
⎝aφp,z + bφp,y + bφp,r

bφp,z + aφp,y + bφp,r

bφp,z + bφp,y + aφp,r

⎞
⎠. (A4)

Recalling Eqs. (1) and (2), we substitute Eqs. (A2)–(A4)
into Eq. (A1), and then obtain the total free energy density
f (φp, s) as the function of the nanoplatelet concentration and
the order parameter.

For a given colloidal system at thermodynamic equilib-
rium, the bulk osmotic pressure is functionally correlated
with the free energy density by 
p(φp, s) = − f (φp, s) +
φp∂ f (φp, s)/∂φp, as discussed in the main text. Its dimen-
sionless form then reads 
̃p(φp, s) = − f̃ + φp∂ f̃ /∂φp with
f̃ = f (φp, s)σp/kBT being the dimensionless free energy den-
sity. With the above set of equations, we then arrive at the
dimensionless bulk osmotic pressure of the nanoplatelet sus-
pension used in our problem:


̃p(φp, s) = φp

27π2λ(1 − φp)3

{
27π2λ(1 − φp)2

+ 2φ2
p[2s3(λ − 1)3 − 3s2λ(λ − 1)2 + (λ + 2)3]

+ 9πφp[2s2(λ − 1)2(φp − 1)

+ λ(5 + 2λ − 3φp − 2λφp)]
}

(A5)

APPENDIX B: SOME SUPPLEMENTAL RESULTS

1. Relationships between G0, Rg, and Nc

From the perspective of hydrogel materials synthesis, the
inherent elastic modulus and the mesh size both rely on the
polymer chain number used for crosslinking. As discussed in
the main text, the inherent elastic modulus is defined by G0 =
kBT Nc/V0 with V0 = 4πR3

0/3 being the initial volume of the
dried HS, and then the gyration radius of the polymer coil,
i.e., the mesh size at the fully collapsed state of the HS, is

derived by Rg
∼= ( 4R3

0
Nc

)
1
3
. Figures 7(a) and 7(b) show the plots

of G0 and Rg as the functions of Nc, respectively. We can also
express G0 as a function of the mesh size at the fully collapsed
state of HS, G0 = kBT × 1024 × R−3

g , as shown in Fig. 7(c).
All these trends in Fig. 7 show qualitative consistency with
the experimental measurements for hydrogel materials [30].

FIG. 7. Plot of (a) inherent elastic modulus G0 and (b) gyration
radius of polymer coil at collapsed state of the gel network as func-
tions of polymer chain number. (c) G0 is plotted versus the mesh size
at the collapsed state of the gel network.

2. Swelling quasiequilibrium state

As discussed in the main text, the swelling quasiequilib-
rium state is well defined by the state in which the swelling
rate of the HS first noticeably collapses from the linear varia-
tion (in a log-log plot). Recalling the bulk osmotic pressure
inside the HS, the occurrence of this stage, we conjecture,
is because the elastic pressure starts to behave dominantly in
hindering the swelling of the HS. In other words, the mixing
pressure decays into a magnitude comparable to that of the
elastic pressure. We then calculate the dimensionless mix-
ing pressure 
mix

σw

kBT and the dimensionless elastic pressure

ela

σw

kBT by using the radius-average concentration of water

φ̃w = 3 ∫R
0 φwr2dr

R3 , and compare them in Table I. As one can
see, these data can support our above discussions, and help
determine the swelling quasiequilibrium state for variable G0.

APPENDIX C: SOFT-CELL APPROACH (SCA)
WITH DIMENSIONLESS PROCEDURE

SCA is developed based on a Lagrangian framework, and
is capable of addressing the gel dynamics which involves
the coexistence of multicomponent diffusion and elastic de-
formation of thegel network, termed the diffusiomechanical
coupling (DMC) regime [26]. One outstanding advantage of
employing SCA is that the resulting moving border of the gel
materials can be directly determined via the conservation law
of the crosslinked polymers (or colloids) retained in the gel
instead of solving an additional boundary condition which is
often derived with a complex function of the multicomponent
concentrations.
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TABLE I. Comparisons between the mixing pressure and the elastic pressure for the swollen HS with different elasticities.

G0 = 10.11 kPa G0 = 101.13 kPa

Time Mixing Elastic Time (s) Mixing Elastic

100.74 4.651×104 –1.126 × 105 100.74 2.818 × 102 –2.704 × 104

305.10 3.140×105 –5.668 × 106 305.10 4.917 × 103 –1.932 × 104

415.66 1.588 ×105 –4.727 × 106 714.09 1.105 × 103 –1.384 × 104

524.16 9.996 ×106 –4.172 × 106 1024.31 9.167 × 104 –1.325 × 104

644.16 4.606 ×106 –3.664 × 106 1165.58 2.934 × 104 –1.056 × 104

791.63 1.400 ×106 –3.527 × 106 2107.59 1.628 × 104 –8.678 × 105

In short, the use of SCA not only enables a dynamic
modeling framework to read elegantly, but also achieves the
convenience in performing the numerical procedures with
moving boundary conditions.

The SCA is implemented by conducting the dimensionless
process for the governing equations by invoking the simple
variables as follows,

r̃ = r

R0
, τ = t

Dp,w

R2
0

, (C1)

where R0 = 1 cm is the initial radius of the HS, and the
variable r̃ means the dimensionless radial direction inside
the HS with the range 0 � r̃ � R(t )/R0. Considering the 1D
configuration, as shown in Fig. 8, we first divide the domain
ranging from the center to the border of the microgel into n
cells with uniform size, i.e., the concentric circular shells with
a width per shell �r̃0(i) = 1/n (the gel domain has been scaled
by the initial radius R0). Water flux proceeds across every cell
as the HS swells, while the polymer concentration occupying
each cell is conserved. As a result, the width of the cell i at the
current state of time τ is updated by �r̃i.

FIG. 8. Schematic illustration of SCA for the diffusive flux of
water component. Water diffuses inward to the HS center from the
reservoir; the diffusive flux relative to the crosslinked polymer matrix
is indicated by the black arrow. φw(i) and φw, f (i) are the concentrations
at the master node in the center of cell i and at the face of cell i,
respectively.

As seen in Fig. 8 for the cross section of the concentric cir-
cular shells, the current cell i has two faces located by point r̃i

(left) and r̃i+1 (right), and has also two sorts of concentrations:
the one at the master node φw(i) which occupies the cell i, and
another one locates at the configured nodes, such as φw, f (i)

at the left face and φw, f (i+1) at the right face. Based on the
derivations in the main text, the water flux across the current
face i is given by

J̃w(i) = 9φw, f (i)

2Ag
λpλ

2
g(1 − φw, f (i) )

2β−2 ∂
̃g(φw, f (i) )

∂φw

∂φw

∂ r̃

∣∣∣∣
i

,

(C2)
where the dimensionless fluxes are obtained by J̃w(i) =

R0
Dp,w

Jw(i).

The water concentration involved in J̃w(i) should be the
value at face i, i.e., φw, f (i), which can be approximately de-
termined by the linear interpolation of the concertation at the
master nodes in the neighboring cells i−1 and i, yielding

φw, f (i) = �r̃i−1φw(i) + �r̃iφw(i−1)

�r̃i−1 + �r̃i
. (C3)

Moreover, the concentration gradients over face i in
Eq. (C2) can be simply given by the differential rule,

∂φw

∂ r̃

∣∣∣∣
i

= φw(i) − φw(i−1)

(�r̃i + �r̃i−1)/2
. (C4)

We can subsequently solve the time evolution equation of
water with respect to the current cell i at the current state τ+ =
τ + �τ with the time interval �τ :

φw(i) (τ+) = φw(i) (τ ) + 3�τ
J̃w(i)r̃2

i (τ+) − J̃w(i+1)r̃2
i+1(τ+)

r̃3
i+1(τ+) − r̃3

i (τ+)
.

(C5)
Herein, as the deswelling proceeds, the width �r̃i = r̃i+1 −

r̃i of cell i must alter over time, meaning the “soft-cell” nature
which differs from the conventional finite volume method, and
the variation in size of the current cell is determined by the
conservation law of the crosslinked polymers retained in the
cell �r̃i with respect to that in the initial cell �r̃0(i),(

r̃3
i+1 − r̃3

i

)
φg(i)(τ+) = (

r̃3
0(i+1) − r̃3

0(i)

)
φg0, (C6)

where φg(i)(τ+) = 1 − φw(i)(τ+) and φg0 are the polymer
concentrations at the current state and the initial state, re-
spectively. Note that all the variables on the right side of
Eq. (C6) are the constants initially assigned, and particularly
the first cell (i = 1) has been regarded as a complete sphere
instead of the spherical shell (i > 1); hence the conservation
law applied to this cell (i = 1) reads r̃3

1φg(1) = r3
0(1)φg0 with
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φg(1) = 1 − φw(1). Performing the time iteration calculations
using the above set of equations, i.e., the SCA, with the ap-
propriate boundary conditions discussed in the main text, we
can produce two desirable spatiotemporal variables φw (τ, r̃)
and r̃n(τ ) = R(τ )/R0 simultaneously. As discussed earlier,
the moving border of the HS can be directly accessed by
Ṙ(t ) = dr̃n(τ )/dτ .

In addition, as discussed in the main text, the governing
equation for the nanoplatelets in the ambient suspension is
a diffusion-type equation which can be solved using a nor-
mal finite difference procedure. We introduce the following
dimensionless variables,

r̃− = r− − (R∞ − H )

H
, τ = t

Dp,w

R2
0

, (C7)

where R∞ = 5R0 is assumed to be the periphery of the
nanoplatelet suspension, beyond which the nanoplatelets are
unaffected by the swollen HS, and r− is the radial coordinate
outside the HS, i.e., R(t ) � r− � R∞; in consequence, r̃−
varies in the range 0 � r̃− � 1, and H (t ) = R∞−R(t ) is a
time-dependent variable.

Hence, we can write the diffusion equation (15) in the main
text into its dimensionless form,

∂φp

∂τ
+ ∂φp

∂ r̃−

1 − r̃−
H̃

∂H̃

∂τ

= 3

5

λ

H̃2

[
2H̃

r̃−H̃ + m − H̃
κ̃pφp

∂
̃p

∂ r̃−
+ ∂

∂ r̃−

(
κ̃pφp

∂
̃p

∂ r̃−

)]
,

(C8)

where H̃ = H/R0 is a dimensionless variable, dimension-
less permeability is κ̃p = 1−φp

1+ λ
3 φp(s+ 1

2 )
, and the dimensionless

osmotic pressure of the nanoplatelet suspension is 
̃p =

p(φp, s)σp/kBT . Here, we assume R∞ = 5R0; hence H̃ =
5−R(τ )/R0. It is indicated that the regime of nanoplatelet sus-
pension surrounding a swollen HS equivalently shrinks at the
same rate at which the HS swells; namely, the time-dependent
variable H̃ used in Eq. (C8) shares the same information
determined by the SCA for the swelling of the HS at every
computed time interval �τ .

The dimensionless boundary conditions corresponding to
the original ones given in the main text for our problem are
listed as follows:

(i) ∂φw

∂ r̃ |i =1 = 0 at the first cell r̃1, meaning the zero fluxes
at the center of the HS.

(ii) φp = φp0 at the periphery of the suspension far from
the swollen HS, r̃− = 1.

(iii) At the swollen border r̃n(τ ), the swelling equilibrium
of the HS allows to be remained, namely the bulk osmotic
pressures inside and outside the HS are balanced, 
g(φw ) =

p(φp, s). The dimensionless form is obtained as 
̃g(φw ) =
σw

σp

̃p(φp, s). Due to the ratio σw/σp being an extreme value

for the nanoplatelet, as discussed in the main text, this bound-
ary condition can be approximately written as 
̃g(φw ) ∼= 0.

(iv) At the swollen border r̃n(τ ), the nanoplatelet velocity
is equal to the swelling rate of the HS, vp = Ṙ(t ). The cor-

responding dimensionless form is obtained as ∂
̃p

∂ r̃−
= H̃

3λ
∂H̃
∂τ

.
Note that the dimensionless rate ∂H̃/∂τ has been calculated
by SCA for the swelling HS.
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