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Distance-as-time in physical aging
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Although it has been known for half a century that the physical aging of glasses in experiments is described
well by a linear thermal-history convolution integral over the so-called material time, the microscopic definition
and interpretation of the material time remains a mystery. We propose that the material-time increase over a
given time interval reflects the distance traveled by the system’s particles. Different possible distance measures
are discussed, starting from the standard mean-square displacement and its inherent-state version that excludes
the vibrational contribution. The viewpoint adopted, which is inspired by and closely related to pioneering works
of Cugliandolo and Kurchan from the 1990s, implies a “geometric reversibility” and a “unique-triangle property”
characterizing the system’s path in configuration space during aging. Both of these properties are inherited from
equilibrium, and they are here confirmed by computer simulations of an aging binary Lennard-Jones system. Our
simulations moreover show that the slow particles control the material time. This motivates a “dynamic-rigidity-
percolation” picture of physical aging. The numerical data show that the material time is dominated by the
slowest particles’ inherent mean-square displacement, which is conveniently quantified by the inherent harmonic
mean-square displacement. This distance measure collapses data for potential-energy aging well in the sense that
the normalized relaxation functions following different temperature jumps are almost the same function of the
material time. Finally, the standard Tool-Narayanaswamy linear material-time convolution-integral description
of physical aging is derived from the assumption that when time is replaced by distance in the above sense, an
aging system is described by the same expression as that of linear-response theory.
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I. INTRODUCTION

What is the relevant measure of time during aging? This
is the guiding question of the present paper. When material
properties change gradually as a consequence of molecular
reorganization, the term “physical aging” is used [1–23]. An
example is that of a glass kept for a long time slightly be-
low its glass-transition temperature. As pointed out by Simon
long ago [1], such a system slowly approaches the equilib-
rium metastable liquid state. Physical aging is important in
both production and subsequent use of three large classes
of materials: covalently bonded inorganic glasses [4–6,9,24],
polymers [3,7,10,17,25–28], and metallic glasses [20,29–35].
Besides these very different materials, similar aging phenom-
ena have been reported for, e.g., spin glasses [36,37], relaxor
ferroelectrics [38], soft glassy materials like colloids and gels
[39–41], and active matter [42,43].

The properties of a glass depends on its thermal history
after falling out of equilibrium at the glass transition, and
the rate of physical aging is also a function of this history
[9,17,44–47]. From a theoretical perspective, physical aging
may be regarded as an instance of response theory that con-
siders how a given physical quantity, the “output,” responds
to an externally controlled “input,” which in aging is usually
the temperature history but also can be, e.g., the pressure
history or a combination thereof. Close to the glass transition
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temperature, even small temperature changes result in several
orders of magnitude variation of the average relaxation time.
Physical aging is therefore strongly nonlinear in the sense
that property changes cannot be calculated from a linear con-
volution integral over the temperature variation (unless the
magnitude of this is much smaller than one percent) [9,17,21].

Examples of properties monitored in experimental studies
of physical aging are: density, enthalpy, viscosity, index of
diffraction, dc conductivity, frequency-dependent or nonlin-
ear dielectric properties, elastic moduli, and structure probed
by x-rays [3,4,7,29,48–58]. The simplest protocol for study-
ing physical aging is that of a temperature jump. An ideal
temperature jump subjects the system to an instantaneous
temperature change from a state of (metastable) thermal equi-
librium, after which the system is monitored until it reaches
equilibrium at the so-called annealing temperature [3,4,9].
The responses to both up and down jumps are generally
nonexponential in time [9]. Comparing jumps to the same
temperature, a jump from above approaches equilibrium much
faster and more stretched than one from below [3,9,28,59,60].
The former is referred to as self-retarded, the latter as self-
accelerated [28]. This “asymmetry of approach” [3,17] has
long been understood as an effect of the so-called fictive tem-
perature, a quantity that reflects the structure and is equal to
the temperature for a system in thermal equilibrium [9,17,59].
The fictive temperature decreases following a down jump in
temperature, which results in aging that gradually decreases.
For an up jump the opposite happens [3,9,10,17]. Only for
very small temperature jumps does one enter into a linear
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regime for which up and down jumps are close to being mirror
images of one another; here standard linear-response theory
applies as recently demonstrated experimentally by data for
jumps of down to 2 mK amplitude [23,61].

In 1971 the Ford Motor Company engineer
Narayanaswamy proposed to rationalize the asymmetry of
approach by replacing the actual time t by what became
known as the “material” time ξ [4,9]. The beauty of
Narayanaswamy’s idea is that the function ξ (t ) embodies
all nonlinear effects [9]. Thus if ξ instead of t is used
as the time variable, a linear description is arrived at,
i.e., almost miraculously the asymmetry between up
and down jumps disappears [4,8,9]. The formalization of
Narayanaswamy’s seminal discovery is nowadays referred
to as the Tool-Narayanaswamy (TN) formalism [4,9,59]. It
not only accounts for the above-mentioned asymmetry of
approach [3,17], but also for all other generic characteristics
of physical aging, e.g., the noted Ritland-Kovacs crossover
effect [3,9,62].

The TN formalism was devised for optimizing the cooling
rate of windshields during production [4]. A few years later, a
mathematically equivalent approach was introduced for poly-
mers [8], which had turned out to have aging characteristics
very similar to those of oxide and other covalently bonded
glasses. Because of its good description of physical aging,
the TN formalism has been used in industry for decades.
In academia, on the other hand, there has been only modest
interest in developing and further refining this description of
physical aging [17]. This is the case even though many aspects
of physical aging are still not well understood, one challenge
being to explain why the TN formalism works so well.

Aging papers often focus on identifying how the aging
rate dξ/dt varies with macroscopic quantities like density, en-
thalpy, configurational entropy, high-frequency plateau shear
modulus, etc. [4,9,17,63,64]. The present paper does not
address this important problem, but focuses instead on the
material-time concept itself. The TN-formalism raises a num-
ber of fundamental questions that even after 50 years remain
unanswered, for instance: Why can the highly nonlinear
physical-aging phenomenon be described by linear mathe-
matics? How can the material time be related to microscopic
quantities? Why is the aging of different quantities often
controlled by the same material time? Why does the TN for-
malism work best for relatively small temperature variations?
We do not provide conclusive answers to these questions
below, but hope to throw some light on them by connecting
a number of ideas that have been around for many years.

Our main proposition is that the material time is a mea-
sure of the distance traveled of the system in configuration
space. As discussed in Sec. V A, related “distance-as-time”
ideas have been proposed throughout the years in various
contexts [65–69]. To the best of our knowledge, however, a
distance-as-time approach has not been related to the TN for-
malism. The material-time concept is known to work best for
relatively small temperature variations, i.e., for systems that
are only moderately perturbed from equilibrium [9,17,61].
This is the present focus; thus, we are not attempting to
construct a completely general theory of physical aging. It is
important to note, however, that the regime of relatively mild
thermodynamic perturbations is still strongly nonlinear in the

mathematical sense and, moreover, that this is the relevant
regime for the modeling of many experiments, e.g., involving
a continuous cooling through the glass transition.

We find below that the standard mean-square displace-
ment is not the quantity that controls the material time.
The inherent distance traveled by the slowest particles, as
quantified in the harmonic mean, is a significantly better
candidate. Our simulations of a binary Lennard-Jones liquid
demonstrate a nontrivial “geometric reversibility” of physi-
cal aging, which is closely related to the triangular relation
between aging time-autocorrelation functions of spin-glass
models that was discussed long time ago by Cugliandolo,
Kurchan, and coworkers [65,66,70]. After discussing different
distance-as-time measures for the material time and compar-
ing to simulations, in the final part of the paper we rewrite
standard linear-response theory in terms of the relevant dis-
tance measure. By doing so it is demonstrated that the TN
formalism follows from the Occam’s razor assumption that
the very same equation applies for physical aging.

II. DISTANCE-AS-TIME IN THERMAL EQUILIBRIUM

This section motivates the use of displacement to define
the material time of an aging system. This is done by first
discussing equilibrium results that are trivial in the sense that
they are straightforward to prove rigorously.

Consider a system of N particles in volume V in ther-
mal equilibrium. The particle positions define the collective
3N-dimensional coordinate vector R ≡ (r1, ..., rN ) and the
system traces out a trajectory in configuration space denoted
by R(t ). For any two times t1 and t2 we define the distance d12

between the configurations R1 = R(t1) and R2 = R(t2) by the
mean-square displacement (MSD)

d12 = (R2 − R1)2

N
. (1)

In the thermodynamic limit (N → ∞) the relative fluctua-
tions of (R2 − R1)2 deriving from finite size effects go to
zero and d12 is a unique function of |t2 − t1|; henceforth,
we always have this limit in mind. Note that although this
from a configuration-space viewpoint means that no ensemble
averaging is implied, we still use the familiar term MSD.

The above distance measure has the property that it for
widely separated times is proportional to the time difference,
i.e.,

d12 ∝ |t2 − t1| for |t2 − t1| → ∞. (2)

Since d12 is an increasing function of |t2 − t1|, |t2 − t1| is
a unique function of d12. All distance measures discussed
below obey Eq. (2), which is crucial for deriving the TN
equation (Sec. V B).

For any three times t1 < t2 < t3 the configurations R1, R2,
and R3 define a triangle in configuration space. Because the
MSD increases monotonically with time, each side length
determines the corresponding time difference. This implies
that the triangle has the “unique-triangle property” [71] that
a knowledge of any two of its side lengths determines the
third. Thus if d12 and d23 are known, t2 − t1 and t3 − t2 are
known, which implies a knowledge of t3 − t1 = t3 − t2 + t2 −
t1 and thereby of d13. The unique-triangle property may be
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FIG. 1. Geometry of equilibrium dynamics. Panels (a), (b), and (c) are schematic drawings of the positions in configuration space at times
t1 < t2 < t3; the numerical results reported in panels (d), (e), and (f) were obtained at T = 0.60 and density 1.2 for the modified Kob-Andersen
binary Lennard-Jones system (mbLJ) [72]. Panel (a) shows the ballistic regime, i.e., the case of very short time intervals. Panel (b) illustrates
the case in which the time intervals are comparable to the average relaxation time. As explained in the text, the angle between the vectors R12

and R23 is larger than π/2, while the length of the vector R13 is larger than that of both vectors. The dashed lines mark the circle with center
at R1 and the tangent at R2; R3 must be between these. Panel (c) shows the situation for large time intervals in which case the vectors R12

and R23 are uncorrelated and perpendicular. This corresponds to times at which the mean-square displacement (MSD) is linear in time. Panel
(d) shows the squared lengths of the vectors R12, R23, and R13, denoted by d12, etc., plotted in a “heat map” that for each value of d12 and d23

is colored according to the value of d13. The diagonal symmetry is a manifestation of the time-reversal invariance of equilibrium dynamics.
(e) A plot of the coefficient of variation (CV) (relative standard deviation) of d13 for given values of d12 and d23. The fact that this quantity is
small throughout shows that d12 and d23 determine d13, i.e., that the unique-triangle property applies. Panel (f) shows d13 as a function of d12

for given values of d23 (colors). Time reversibility implies that “forward” and “reverse” follow the same curves.

summarized by writing (in which F is a function that may
depend on the system and the thermodynamic state point)

d13 = F (d12, d23) = F (d23, d12). (3)

The second equality sign follows from the fact that equilib-
rium dynamics is time reversible.

Equation (3) applies for all systems in thermal equilibrium
and all times t1 < t2 < t3. Figure 1(a) illustrates the short-time
ballistic case in which d13 is trivially determined by d12 and
d23 because

√
d13

∼= √
d12 + √

d23. A more interesting situa-
tion involves time differences of the same order of magnitude
as the average relaxation time (b). In that case, while the
length of R13 is always larger than that of the two other vec-
tors, the angle between R12 and R23 is larger than π/2 because
the velocity autocorrelation function for any highly viscous
liquid is generally negative in this region of time, leading to a
negative second time derivative of the MSD. A third case (c)
arises when all three time differences are much larger than the
average relaxation time, which results in a right-angle triangle
and d13

∼= d12 + d23.
We proceed to present equilibrium simulation results for

a Kob-Andersen type modified binary Lennard-Jones (mBLJ)
liquid [72–75]. A system of 10 000 particles was simulated
using the GPU software RUMD [76]. The standard Nose-

Hoover thermostat was employed with relaxation time 0.2τ

and time steps of 0.005τ in which τ is the A particle LJ time
unit. Data analysis was done using Julia by taking snapshots
every 10 time steps.

Figure 1(d) shows a “heat map” of d13 as a function of
d12 and d23. As required by time reversibility, the figure is
symmetrical about the d12 = d23 axis [compare Eq. (3)]. Fig-
ure 1(e) shows the relative standard deviation of d13 for
given values of d12 and d23, denoted by CV for coefficient
of variation. The fluctuations are minute. This confirms the
unique-triangle property which, as mentioned, always applies
in equilibrium. Based on the same data, Fig. 1(f) shows how
d13 depends on d12 (circles) for given values of d23 (different
colors) and how d13 depends on d23 for given values of d12

(squares). The collapse is a consequence of time reversibil-
ity. These results apply rigorously so the simulations merely
illustrate well-known facts.

Other distance measures than the instantaneous MSD may
be used. In particular, we shall focus on measures based on
the inherent dynamics [77]. Recall that any configuration R(t )
may be quenched to the nearest potential-energy minimum
by following the steepest descent downhill. This results in
the configuration’s so-called inherent state [78]. In this way
the “inherent dynamics” RI (t ) is defined [77], in terms of
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which one may define the alternative distance dI
12 between

configurations at times t1 and t2,

dI
12 =

(
RI

2 − RI
1

)2

N
. (4)

Our simulation results for the equilibrium inherent MSD are
entirely similar to those of Fig. 1 for the equilibrium MSD by
obeying geometric reversibility and the unique-triangle prop-
erty (not shown). For simplicity of notation, we henceforth
drop the superscript “I” and denote any distance measure by
d12 or just d .

III. PHYSICAL AGING

According to the TN formalism, in a specific sense an
aging material responds linearly to external stimuli like a
temperature variation. Suppose the externally controlled in-
put “effort” (field) is denoted by eb(t ) (e.g., temperature,
electric field, shear stress,...) while the output “charge” is
denoted by qa(t ) (e.g., heat/entropy, dipole moment, shear
displacement,...). We allow for a �= b, corresponding to dif-
ferent so-called energy bonds [79–82]. The TN equation is
the following Stieltjes-type convolution integral in which ξ =
ξ (t ) is the material time, ψab(ξ − ξ ′) is the response function,
and it is assumed that 〈qa〉 = 0,

qa(t ) =
∫ ξ (t )

−∞
ψab[ξ (t ) − ξ ′] δeb(ξ ′). (5)

This kind of integral is defined by chopping up the path in
configuration space into infinitesimal pieces, each of which
has the change of field δeb(ξ ′). The Stieltjes integral can be
rewritten in the following more familiar form [4,9]:

qa(t ) =
∫ ξ (t )

−∞
ψab[ξ (t ) − ξ ′]

deb(ξ ′)
dξ ′ dξ ′. (6)

As mentioned, the TN description accounts for characteristics
of aging like the asymmetry of approach and the Ritland-
Kovacs crossover effect [3,9,62]. The most commonly used
versions of TN assume that the aging rate dξ/dt is a function
of the property monitored [4,5,9,17,83,84]. In the simplest
“single-parameter-aging” case, this function is an exponential
[61,84–86].

Previous publications focused more on applying the TN
formalism than on understanding the origin of the material
time. The present paper investigates the possibility of defin-
ing ξ from a distance measure in configuration space. In
the 1990s Kurchan and Cugliandolo proposed closely related
ideas in the context of spin glass models studied by means
of sophisticated theoretical techniques [65,66,70]; these au-
thors, however, did not discuss the connection to the TN
material-time description. More recently, Schober interpreted
and discussed aging simulations in terms of the mean-square
displacement (MSD) [67–69]. In Sec. V A we return to the
relation between these and other works and the present con-
siderations.

Suppose the material time is controlled by a distance
measure d12 such that the difference in material time corre-
sponding to the actual times t1 < t2 is a function of d12,

ξ (t2) − ξ (t1) = f (d12). (7)

Here d12 may be defined in terms of the MSD of Eq. (1),
the inherent MSD of Eq. (4), or some other distance mea-
sure. How can one in a simulation test whether Eq. (7) is
a consistent assumption? We proceed to show that Eq. (7)
implies the unique-triangle property [71] [the first equality
sign of Eq. (3)], as well as the symmetry expressed by the
second equality sign that will be referred to as “geometric re-
versibility.” Consider an aging system at three times t1 < t2 <

t3 with corresponding material times ξ (t1) < ξ (t2) < ξ (t3).
Then Eq. (7) implies

ξ (t2) − ξ (t1) = f (d12),

ξ (t3) − ξ (t2) = f (d23), (8)

ξ (t3) − ξ (t1) = f (d13).

Since ξ (t3) − ξ (t1) = ξ (t3) − ξ (t2) + ξ (t2) − ξ (t1), the two
distances d12 and d23 determine the third, d13. This establishes
the first equality sign of Eq. (3), the unique-triangle property.
A special case is that of thermal equilibrium for which the ma-
terial time is proportional to the actual time. This implies that
the function F in Eq. (3) can be determined from equilibrium
simulations.

To prove the second equality sign of Eq. (3), the symmetry
of the function F (x, y), we note that a time t4 exists such
that ξ (t4) − ξ (t1) = ξ (t3) − ξ (t2). This implies d14 = d23, and
because ξ (t3) − ξ (t4) = ξ (t2) − ξ (t1) one likewise has d43 =
d12. Since ξ (t3) − ξ (t1) = ξ (t3) − ξ (t4) + ξ (t4) − ξ (t1), the
distances d14 and d43 determine d13, i.e., d13 = F (d14, d43) =
F (d23, d12). Alternatively, one can derive the symmetry of
F (x, y) simply by referring to the time reversibility of equi-
librium dynamics.

Which measure of the material time should be used, the
standard MSD, a measure based on the inherent particle dis-
placements, or something else? If the temperature is changed
discontinuously as in a temperature jump, the MSD changes
within picoseconds because the vibrational degrees of free-
dom thermalize quickly. The physical idea behind the material
time, however, allows only for slow and gradual changes
because ξ variations are assumed to reflect structural changes
[4,9]. The issue associated with using the standard MSD is
avoided by using an inherent displacement measure because
the inherent state does not change on the vibrational timescale.
Consequently, we henceforth focus on inherent displacement
measures.

Turning to physical-aging numerical data for the inherent
dynamics, Fig. 2(a) shows two time-asymmetric cyclic tem-
perature protocols between T = 0.50 and T = 0.70 with a
period that is of the same order of magnitude as the average
relaxation time at T = 0.60. To get good statistics, we have
averaged over many periods. Figure 2(b) shows the heat map
of the inherent MSD for the fast-heating protocol. The picture
is very similar to that of thermal equilibrium. In particular, the
data demonstrate geometric reversibility, which is not trivial
due to the irreversible nature of physical aging. Similar data
are obtained for the yellow slow-heating protocol (not shown).
Figure 2(c) shows the analog of Fig. 1(e) for both temperature
protocols of Fig. 2(a). We see a good data collapse as indicated
by a small CV. Finally, Fig. 2(d) shows d13 as a function of
d12 for different fixed values of d23. The gray lines are the
equilibrium curves at T = 0.50. Other equilibrium as well

054615-4



DISTANCE-AS-TIME IN PHYSICAL AGING PHYSICAL REVIEW E 106, 054615 (2022)

FIG. 2. Geometry of aging inherent dynamics. Panel (a) shows two time-asymmetric temperature protocols with, respectively, fast heating
and fast cooling, working between the temperatures 0.5 and 0.7. The period was chosen to be comparable to the average relaxation time at
T = 0.60, implying that the system is virtually in equilibrium at the higher temperatures but essentially frozen at the lower temperatures during
the cycles. Panel (b) shows a heat map like that of Fig. 1 for the fast-heating protocol. This is not time-reversible so the observed geometric
reversibility is not a given. Panel (c) reports the CV for both temperature protocols. The fact that the CV is small demonstrates that that the
unique-triangle property applies to a good approximation. Panel (d) shows a plot like that of Fig. 1(f) of d13 as a function of d12 for given
values of d23. Data for both aging protocols of panel (a) are shown here together with equilibrium data at T = 0.5, T = 0.6, and T = 0.7. The
data collapse demonstrates the unique-triangle property that the relation between the lengths of the 1-2-3 triangle are the same during aging as
in equilibrium.

as aging data follow these lines. This confirms the unique-
triangle property Eq. (3) for aging and shows, in particular,
that the same relation between the three distances applies in
equilibrium and during aging.

Having established the unique-triangle property and ge-
ometric reversibility for aging using the distance measure
derived from the inherent MSD, we proceed to interpret aging
data using the distance-as-time approach. The property mon-
itored is the potential energy U , which plays the role of the
“charge” on the left-hand side of Eq. (5) while temperature
is the externally controlled field (the “effort”). Temperature
jumps imposed at t = 0 were studied for the mBLJ system.
After a jump one monitors how U (t ) approaches the equilib-
rium value. For a jump at t = 0 of magnitude �T from the
initial temperature Ti to the “annealing” temperature T , we
define the normalized relaxation function R(t ) by

R(t ) ≡ U (t ) − Ueq(T )

Ueq(Ti ) − Ueq(T )
. (9)

By construction, R(t ) goes from unity at t = 0 to zero as t →
∞. The prediction of the TN formalism Eq. (5) is that R(t )
is the same function of the material time for all temperature
jumps, i.e., that a unique function RT N (ξ ) exists such that for

all jumps

R(t ) = RT N (ξ ). (10)

Here ξ is the increase in material time after the jump was
initiated, i.e., ξ ≡ ξ (t ) − ξ (0), and by reference to Eq. (5)
RT N (ξ ) ≡ ψab(ξ )/CV (in the present case of just a single en-
ergy bond, a = b; the specific heat CV = �U/�T is moreover
assumed to be temperature independent).

Figure 3(a) presents data for U (t ) following jumps of mag-
nitudes ±0.05 and ±0.10 to T = 0.45, 0.50, 0.55, and 0.60,
plotted as functions of the time after each jump was initiated.
Jumps from higher temperatures thermalize more quickly
than those coming from below; this is the above-mentioned
“asymmetry of approach” reported in numerous experiments
[9,17]. Also as in experiments, the system takes much longer
time to equilibrate if the annealing temperature T is lowered;
this reflects the well-known slowing down of the dynamics
of glass-forming liquids, in this case the supercooled Kob-
Andersen model [73]. Figure 3(b) shows the corresponding
normalized relaxation functions R(t ). These do not start in
unity because there is a large, almost instantaneous change
of the potential energy coming from the vibrational degrees
of freedom that thermalize very quickly.
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FIG. 3. Results from temperature-jump simulations monitoring the potential energy U . The color signals the annealing (final) temperature
of the jump, T . Jumps of magnitude ±0.05 and ±0.10 were studied (no jump starts at Ti = 0.35 due to a lack of equilibrium data). (a) The
potential energy as a function of the time after each jump was initiated where the dashed line represents the equilibrium value approached as
t → ∞. (b) The corresponding normalized relaxation functions R(t ) [Eq. (9)]. The data cover roughly 3.5 decades of relaxation times. (c) R
plotted as a function of the standard MSD. (d) R plotted as a function of the inherent MSD.

Figure 3(c) uses the standard MSD for defining the material
time via Eq. (1) by plotting the normalized relaxation function
as a function of the MSD to investigate whether the data col-
lapse [Eq. (10)]. Although the data now vary just one decade
compared to the 3.5 decades in time [Fig. 3(b)], one cannot
say that there is a good collapse. Besides, as already men-
tioned, a material time defined from the standard MSD jumps
virtually discontinuously in a temperature jump, and for this
reason alone, the standard MSD is not a good candidate for a
distance-as-time measure of the material time.

Figure 3(d) shows the same data plotted versus the inher-
ent mean-square displacement that eliminates the vibrational
contribution very close to t = 0. This does not provide a much
better data collapse, however, although one notes a differ-
ent shape of the curves at short times compared to those of
Fig. 3(c): an approach to short-time plateaus is now visible.
Nevertheless, we conclude that neither the MSD nor the in-
herent MSD provide a satisfactory measure of the material
time.

IV. ROLE OF DYNAMIC HETEROGENEITIES

This section discusses a possible explanation for why nei-
ther of the above two “distance-as-time” definitions of ξ work
well for collapsing the normalized relaxation functions. It is
known that relaxation in supercooled liquids and glasses does
not take place in a spatially homogeneous fashion [87,88].
For the equilibrium viscous liquid, over time intervals of or-
der the average relaxation time there are regions with many
particle rearrangements and regions with few. After some

time fast regions become slow and vice versa. This “dynamic
heterogeneity” has been documented in several experiments
and computer simulations over the last 25 years [87–89].
Dynamic heterogeneity has also been discussed in connection
with theories for physical aging [24,26,41,66,83,90]. A simple
way to understand how spatial heterogeneity may influence
the dynamics is via elastic models of glass-forming liquids
[91–93]: Because a liquid is disordered, there must be regions
of varying softness [94,95]; this leads to different barriers for
molecular rearrangements [83,96] and, consequently, spatially
varying levels of activity in the form of molecular rearrange-
ments.

The material-time concept was devised long before dy-
namic heterogeneity came into focus. Attempts have been
made to model physical aging in terms of a local material
time with an aging rate that varies in space (and time) [66,97].
We here adopt a simpler and more “global” path of rea-
soning, however. As long as a percolating structure exists
of particles that have not—or almost have not—moved in
a given time interval, a structural memory is largely main-
tained. This suggests that the slowest moving particles control
the material time, while clusters or strings [98–101] of fast-
moving particles are less important for structural relaxation.
For instance, the movement of a string of particles in a fixed
structure will not change the system’s potential energy very
much or relax significantly an overall shear stress. Quoting
Higler et al. [102], the assumption is that “the presence of
long-lived bonded structures within the liquid may provide
the long-sought connection between local structure and global
dynamics.” We identify these long-lived structures as the par-
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FIG. 4. Slow-particle control of the dynamics. (a) The slowest 25% of particles as defined by the inherent displacement from an initial
configuration on a timescale corresponding to the plateau region (equilibrium data at T = 0.50). The cluster is seen to percolate the sample.
(b) Normalized relaxation function for jumps to different temperatures (indicated by the color) as functions of the (inherent) slowest 10th
(left) and 90th (right) percentile of particle displacement. The case of fewer slow particles collapses the curves better than when almost all
particles are taken into account. (c) The spread of curves as in panel (b) as a function of the slow-particle inherent MSD percentile. The spread
is measured at the three levels 0.05, 0.1, and 0.2. The spread obtained using the harmonic (inherent) MSD [Eq. (11)] at R = 0.10 is marked by
the black dashed line.

ticles that over a given time interval have moved the shortest
distance in their inherent motion. A related idea based on a
machine-learned softness parameter was recently discussed
by Schoenholz et al. [83], and the importance of the slowest
particles was also emphasized earlier by Szamel and cowork-
ers [103,104]. In fact, the idea that the slowest particles
dominate structural relaxation is more than 30 years old; see,
e.g., Ref. [99] and references therein. Thus Stillinger in 1988
proposed a picture according to which a glass-forming liquid
“is viewed as a dynamic patchwork of relatively strongly
bonded (but amorphous) molecular domains that are separated
by irregular walls of weakened bonds” [105]. He argued that,
as a consequence, the Stokes-Einstein relation between vis-
cosity and diffusion coefficient (see, e.g., Ref. [106] and its
references) is violated by predicting too large a diffusion co-
efficient because fast particles contribute a lot to the MSD, but
not much to overall stress relaxation. This was subsequently
confirmed [87,107–110].

As an illustration of the above, Fig. 4(a) shows a picture
of the slowest 25% of particles (determined by the inherent
displacement over a time interval corresponding to the MSD
plateau region). The slow particles percolate and maintain the
overall structure to a large extent. It is only when the slow
particles start to move and break up the percolating structure
that significant relaxation takes place. This argument refers
to equilibrium relaxation, but the same reasoning applies for
aging following, e.g., a temperature jump.

When a rigid structure percolates, one speaks of “rigidity
percolation” as first discussed in connection with chalco-
genide and other covalently bonded glasses [111–113].
Inspired by this, the name “dynamic rigidity percolation” was
introduced in 1989 (to explain the frequency dependence of
the sound velocity in a system of inverted micelles) [114].
This name signals what we propose controls the physical ag-
ing. Note that that the percolating rigid structure changes with
time as reflected by the fact that the collection of slow parti-
cles changes continuously. Enhanced packing or a low value
of the “softness” [83] leads to local structures that are more
stable against rearranging than the surrounding, average liq-
uid. In a flow situation, the rheological response is controlled

by long-lived structures, i.e., the rearrangement and breaking
of locally strong cages of nearest neighbors [105,115] (see
also Ref. [116] for thermodynamic consequences).

How many slow particles should be included in the dis-
tance measure controlling physical aging? We considered a
quarter in Fig. 4(a) because 25% is a typical percolation
threshold in three dimensions. Figure 4(b) investigates how
well the normalized relaxation functions for different tem-
perature jumps collapse as a function of the 10th and 90th
percentile of the inherent MSD (the colors represent the an-
nealing temperatures). We see that the 10% fraction collapses
the R(t ) data better than the 90% fraction. A systematic in-
vestigation is provided in Fig. 4(c), which reports the spread
(width) of figures like those of Fig. 4(b) as a function of the
fraction of slow particles. The spread depends on at which
value the normalized relaxation functions are considered: blue
corresponds to the spread at R = 0.05, orange to 0.1, and
green to 0.2. In all cases, the fewer slow particles are consid-
ered, the smaller is the spread. This could be taken to suggest
that the very slowest particle controls the overall aging. That
would make little sense, however, and this is a wrong way
of thinking about Fig. 4(c). It is more likely that the motion
of the slowest particle is controlled by the overall structural
relaxation than the other way around. In other words, once
enough time has passed that there is little structural memory,
even the slowest particles move.

The above does not answer the questions: How large a
fraction of the slowest particles controls the aging? At what
level of the normalized relaxation function R(t ) should one
minimize the spread of curves like those in Fig. 4(b)? A
pragmatic way of addressing this is to consider the (inherent)
harmonic MSD defined by averaging over all particles i as
follows [117]:

1

〈�r2〉IHMSD
≡

〈
1

�r2
i

〉
i

. (11)

This quantity is marked by the horizontal black dashed curve
of Fig. 4(c), which is clearly a good choice for minimizing the
spread and thus for a distance measure controlling the physical
aging.
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FIG. 5. Inherent harmonic MSD (IHMSD) control of the material time. (a) The normalized relaxation function of the data of Fig. 3(a) plot-
ted as a function of the inherent harmonic MSD. There is a good, but not perfect, overall collapse. (b) Different distance measures in equilibrium
at T = 0.50 plotted as a function of time in a log-log plot. The blue curve is the standard MSD for which one observes a short-time ballistic
regime of slope 2, a “vibrational” plateau at intermediate times, and a diffusive regime at large times for which the MSD is proportional to
time, leading to a slope of unity as indicated by the black dashed line. The inherent MSD is the yellow curve that has no ballistic regime and
follows the standard MSD at long times. The green curve is the inherent harmonic MSD [Eq. (11)] that uses the harmonic instead of the usual
mean. Finally, the red curve is the inherent MSD of the single slowest particle, which has the same shape as the inherent harmonic MSD. At
long times we find slope unity for all four curves, showing that distance measures based on any of them obey Eq. (2).

The conjecture that the inherent harmonic MSD (IHMSD)
controls aging is tested in Fig. 5(a), which plots the aging
data as a function of 〈�r2〉IHMSD. We see a nice, but not
perfect collapse. The bifurcation of the responses at small
displacements is greatly reduced for jumps to lower tem-
peratures, becoming nonexistent at T = 0.50. The spread of
the normalized relaxation functions has been reduced from
3.5 decades [Fig. 3(b)] to 0.3 decades. There is, however, a
systematic trend in the deviations from perfect collapse: Using
a material time based on the inherent harmonic MSD, jumps
to higher temperatures are consistently faster than those to
lower temperatures. A possible cause of this could be that
the system at higher temperatures can thermalize by moving
a shorter distance than at lower temperatures, which would
make sense since there are fewer states available at lower
temperatures. A back-of-an-envelope calculation assuming a
homogeneous distribution of states with density given by the
inherent entropy, however, shows that this can only explain a
spread of about 15%, not the observed factor of two.

Figure 5(b) shows the different mean-square displacement
measures in equilibrium at T = 0.50: The standard MSD, the
inherent MSD, the inherent harmonic MSD, and the inher-
ent MSD of the single slowest particle. At long times these
measures are all proportional to time, i.e., have the slope of
unity required for a material-time to be defined via Eq. (2).
Interestingly, the slowest particle MSD is similar in shape to
that of the inherent harmonic MSD. The same applies, e.g.,
for the slowest 10% or 20% (data not shown).

V. DISCUSSION

We proceed to put the above findings into perspective
by discussing their relation to related ideas; also, the TN
equation is derived below from minimal assumptions. First,
however, we summarize this paper’s main result in Fig. 6,
which shows the normalized relaxation function for the jumps
to the lowest annealing temperature studied (T = 0.45). The

relaxation functions are plotted as a function of time (blue)
and of the inherent harmonic MSD (orange). Clearly, the latter
quantity captures the essence of the physical aging.

A. Relation to previous time-as-distance proposals

As mentioned, it is not a new idea to quantify a time inter-
val in terms of how far the system’s particles have moved. This
section discusses relevant previous works by first considering
the linear-response case, followed by that of physical aging.

Linear-response theory is founded in the well-established
fluctuation-dissipation (FD) theorem according to which
the response is determined by a thermal-equilibrium time-
correlation function [118]. In the simplest case, that of a
single energy bond [79–82], the response is determined by

FIG. 6. The normalized relaxation function R for the three jumps
to T = 0.45 as functions of time (blue) and of the proposed material-
time candidate: the inherent harmonic MSD (orange).
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an equilibrium time-autocorrelation function of some quantity
A, denoted by 〈A(t )A(t ′)〉. For instance, if the externally con-
trolled field is an electric field and the output is the current, A
is the current. Another familiar example is when the externally
controlled variable is the shear rate and the measured quantity
is the shear stress, in which case A is the shear stress.

According to the FD theorem, the convolution kernel of
the linear-response integral is the relevant equilibrium time-
autocorrelation function. For a glass-forming liquid, the linear
responses of different quantities slow down dramatically when
the temperature is lowered, often in such a way that the ratio of
their average relaxation times is independent of temperature
[119,120]. Another characteristic feature often observed is
time-temperature superposition (TTS). We proceed to argue
that these characteristics find a natural explanation in the
distance-as-time approach [121,122].

The fact that any equilibrium time-autocorrelation function
〈A(t1)A(t2)〉 (t1 < t2) goes to zero as t2 − t1 → ∞ has the
simple “geometric” interpretation that the memory of a sys-
tem’s properties at time t1 fades as the particles move away
from their positions at t1. Because of this, an obvious idea is
to regard the convolution kernel of linear-response theory as a
function of the distance traveled in configuration space [122].
This line of thinking is present already in a paper by Haan
from 1979 [121], who proposed to describe particle motion in
a liquid by means of a Smoluchowski equation in which the
role of time is played by the MSD over the time interval in
question.

In thermal equilibrium the distance traveled is in a one-to-
one correspondence with the time that has passed (Sec. II),
implying that the geometric viewpoint must be correct in the
sense that any time-autocorrelation function 〈A(0)A(t )〉 is a
unique function of the distance traveled in time t . If the cor-
responding “geometric” equilibrium autocorrelation function
is denoted by φA(d ), then 〈A(0)A(t )〉 = φA(d (t )), in which
d (t ) is the distance between two points along the equilibrium
trajectory the time t apart [122]. As formulated here, this is a
tautology. Nevertheless, it provides a simple rationalization of
TTS because TTS will apply for any quantity A if (1) the MSD
obeys TTS, and (2) φA(d ) is temperature independent. The
fact that different linear-response quantities slow down in a
concerted fashion [119,120] follows if the relevant geometric
autocorrelation functions are all temperature independent, in
which case the slowing down is controlled entirely by the
slowing down of the particle motion. Two interesting spe-
cial cases are the following [122]. (1) If there is a Gaussian
long-distance decay of the “geometric” equilibrium autocor-
relation function, i.e., if ln(φA(d )) ∝ −R2 for R → ∞ where
R is the geometric distance, then the time-autocorrelation
function has a long-time simple exponential decay because
R2(t ) ∝ t as t → ∞. Such a decay corresponds to a Debye
frequency-dependence of the linear response, which in the
frequency domain is often observed below the relevant loss
peak [120,123]. (2) If there is an exponential long-distance de-
cay of the geometric equilibrium autocorrelation function, i.e.,
ln(φA(d )) ∝ −R for R → ∞ [124,125], then the long-time
behavior corresponds to a stretched exponential with exponent
1/2, which fits many experiments well [126–128].

Turning now to aging, as previously mentioned the main
ingredients of Sec. III are present in pioneering papers by

Cugliandolo, Kurchan (CK), and coworkers from the 1990s
[65,70,129]. These authors developed a theory of physi-
cal aging of the infinite range Sherrington-Kirkpatrick spin
glass based on Schwinger-Dyson equations for both corre-
lations and susceptibility, utilizing the fact that mean-field
theory is exact for this model [66,130]. The results ob-
tained, which generalize to finite-range spin glasses [66], are
based on a demonstration of timescale separation and time-
reparametrization invariance of the effective dynamical action
describing the slow degrees of freedom; we note that the latter
symmetry was recently applied to models of black holes and
“strange” quantum liquids [131]. The physical idea is that the
proper measure of the time interval between t1 and t2 is not
the “wall clock in the laboratory,” t2 − t1, but the value of the
spin autocorrelation function 〈S(t1)S(t2)〉 [66]. For Ising spins
with values ±1, the spin autocorrelation function of two con-
figurations is in a one-to-one relation to the Euclidean distance
squared between the two configurations. This means that, just
as above, time intervals are quantified in terms of the distance
in configuration space. Moreover, time-reparametrization in-
variance implies the “triangular relation” according to which
for times t1 < t2 < t3 the two spin autocorrelation functions
〈S(t1)S(t2)〉 and 〈S(t2)S(t3)〉 determine 〈S(t1)S(t3)〉. Because
the spin autocorrelation function determines the distance, this
is equivalent to the unique-triangle property Eq. (3). The
analog of the above discussed geometric reversibility of aging
[the second equality sign of Eq. (3)] was also derived by CK
in the form of commutativity of an algebraic relation defined
from the spin autocorrelation functions [65].

Despite these similarities between the ideas of the present
paper and those of CK, our emphasis is different. CK in-
troduced the concept of a waiting time tw and made the
important discovery that the spin autocorrelation function
factorizes as follows C(tw, tw + τ ) = F [h(tw )/h(tw + τ )] for
some functions F and h(t ); this is equivalent to Eq. (7) if the
material time is controlled by a distance and it is assumed that
the autocorrelation function is determined by the difference
in material time. CK focused on quenching a system from
thermal equilibrium to a low temperature, however, not on
how the system approaches equilibrium. In contrast, that is
the focus of the material-time description, which was devised
for relatively small temperature perturbations. In fact, the TN
description often breaks down for larger perturbations, both
in experiment [9,17,61] and in simulations [75], leading to
an interesting question for future work: Why does a material-
time description work well both for modest perturbations of
equilibrium (TN) and for extreme perturbations (CK)—but
often not in the intermediate regime? Related to this ques-
tion is an additional important difference between the CK
and present approaches: Refs. [65,66,97,129,130] emphasize
that spatial heterogeneities lead to local clocks ticking with
different rates: “A region looks older than another one when
observed on a given time window” [66]. In contrast, we define
a single global material time and take dynamic heterogeneities
into account by the finding that the material time is controlled
by the slowest moving particles.

Schober studied the aging of pressure and potential en-
ergy of the Kob-Andersen (KA) binary LJ system and
found that these quantities age “in parallel,” i.e., have
the same normalized relaxation functions [67] (this result,
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incidentally, follows from the fact that the KA system has
strong virial potential-energy correlations [132–135]). He
showed that both quantities age following an exponential
function of the single-particle MSD minus the vibrational
MSD, which is similar to the above discussed inherent MSD.
He also found that pressure and energy follow the drop in
diffusivity. A few years later, in a study of the breakdown of
the Stokes-Einstein relation between viscosity and diffusion
coefficient, Schober and Peng [68] proposed to use the van
Hove self-correlation function to distinguish between slow
and fast particles because the latter are seen mainly in the
non-Gaussian tail of the displacement distribution. The con-
tribution of slow particles to the viscosity increases upon
cooling, a result that demonstrates their importance for the
highly viscous liquid phase and which is consistent with
the above discussed dynamic-rigidity-percolation picture. Re-
cently, Schober studied numerically the physical aging of
liquid and amorphous selenium [69] and found that also for
this system, the pressure and potential energy age with a relax-
ation function that at long times is described by an exponential
function of the MSD minus the vibrational MSD.

B. The Tool-Narayanaswamy description

This section proposes an Occam’s-razor type justification
of the TN Eq. (5). In the process we relate to TTS and to
the experimental fact that different linear-response functions
often have the same temperature dependence. Note that TTS
follows rigorously from the TN formalism, i.e., that TTS is a
necessary condition for TN to apply.

We start by expressing linear-response theory in terms of
any distance measure d obeying Eq. (2). If the externally
controlled input is eb(t ) and the output is qa(t ), standard
linear-response theory is expressed by the Stieltjes integral
(assuming 〈qa〉 = 0)

qa(t ) =
∫ t

−∞
φab(t − t ′) δeb(t ′). (12)

Here, as is well known, linearity is reflected by the fact that
only the first power of the field appears, causality by the
fact that qa(t ) is a function of δeb(t ′) for t ′ < t , and time-
translational invariance by the fact that the convolution kernel
φab is a function of the time difference t − t ′.

Whenever Eq. (2) applies, t − t ′ in Eq. (12) may be re-
placed by a distance measure d by proceeding as follows. If
one picks a fixed time in the far distant past, t0, Eq. (2) implies
that two constants α and β exist such that

d (t0, t ) = αt + β. (13)

This means that t − t ′ = [d (t0, t ) − d (t0, t ′)]/α. When substi-
tuted into Eq. (12) this leads to [with ψab(x) ≡ φab(x/α)]

qa(t ) =
∫ t

−∞
ψab[d (t0, t ) − d (t0, t ′)] δeb(t ′). (14)

Equation (14) is merely a reformulation of linear-response
theory and, as such, rigorously obeyed for any sufficiently
small perturbation applied to a state of thermal equilibrium.
We emphasize that any distance measure d obeying Eq. (2)
may be used in Eq. (14).

Next we assume that Eq. (14) not just applies in equilib-
rium at the single temperature T , but also for aging systems
subject to temperatures varying around T , in or out of equilib-
rium. Whether or not this is a realistic assumption depends, of
course, on the choice of the distance measure. This assump-
tion has three consequences:

(1) TTS for the equilibrium linear response
In equilibrium at temperature T , Eqs. (13) and (14) lead to

qa(t ) =
∫ t

−∞
ψab[α(T )(t − t ′)]

deb(t ′)
dt ′ dt ′. (15)

Writing qa(t ) = qa(ω) exp(iωt ) and eb(t ) = eb(ω) exp(iωt ),
Eq. (15) implies qa(ω) = Rab(ω)eb(ω) in which

Rab(ω) = iω
∫ ∞

0
ψab(α(T )t ′′) e−iωt ′′

dt ′′. (16)

This implies that Rab is a function of iω/α(T ), i.e., TTS.
(2) Proportional timescales for different linear-response

functions in thermal equilibrium
It follows from the above that the temperature dependence

of the response function Rab(ω) is determined by α(T ). This
number depends only on how fast the particles move in
equilibrium at temperature T , not on the generalized charge
qa or the external field eb. Consequently, the timescales of
different linear-response functions are the same. This means
that all linear-response functions controlled by geometry in
the above sense must have the same temperature dependence
of their characteristic relaxation times, i.e., a temperature-
independent ratio of their average relaxation times [119,120].

(3) The TN formalism
Defining the material time by

ξ (t ) ≡ d (t0, t ), (17)

and substituting into Eq. (14), one arrives at the TN Eq. (5).
To summarize, if the material time via Eq. (17) is defined

in terms of a distance measure obeying Eq. (2) in which t0 is
a time in the far distant past, then the TN formalism follows if
the equation describing the equilibrium linear response also
applies for out-of-equilibrium situations. This “derivation”
may explain why the TN formalism works best for relatively
small temperature variations [9,17,61]. Thus, our suggestion
for why the TN formalism works well in the latter situation is
that this regime is pseudolinear in the sense that the geometry
of particle motion is the same as that of thermal equilibrium,
which is indeed the finding of Fig. 2(d). From this point of
view, it is only when the “wrong” time variable is used—the
laboratory time—that physical aging is strongly nonlinear and
violates time-translational invariance.

VI. SUMMARY

Although the TN formalism for the description of physical
aging has been around for half a century and is used routinely
in industry, there have been few attempts to justify it theo-
retically. We propose that the inherent harmonic mean-square
displacement, which emphasizes the role of the slowest parti-
cles, is the quantity that controls the material time according
to a dynamic-rigidity-percolation picture. The physics is that
little overall relaxation takes place as long as a percolating
structure of particles, which have barely moved, is maintained.
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None of the ingredients of our approach are new, compare
Sec. V A, but they have here been combined with a focus
on defining the material time and explaining the origin of
the TN linear convolution integral Eq. (6). We hope that the
considerations presented in this paper may inspire to works
aimed at further elucidating the physical origin of the material
time and why TN works so well.
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