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Near- and far-field hydrodynamic interaction of two chiral squirmers
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Hydrodynamic interaction strongly influences the collective behavior of microswimmers. With this work, we
study the behavior of two hydrodynamically interacting self-propelled chiral swimmers in the low Reynolds
number regime, considering both the near- and far-field interactions. We use the chiral squirmer model [see
Burada et al., Phys. Rev. E 105, 024603 (2022)], a spherically shaped body with nonaxisymmetric surface
slip velocity, which generalizes the well-known squirmer model. The previous work was restricted only to the
case, while the far-field hydrodynamic interaction was influential among the swimmers. It did not approach the
scenario while both the swimmers are very close and lubrication effects become dominant. We calculate the
lubrication force between the swimmers when they are very close. By varying the slip coefficients and the initial
configuration of the swimmers, we investigate their hydrodynamic behavior. In the presence of lubrication force,
the swimmers either repel each other or exhibit bounded motion where the distance between the swimmers alters
periodically. We identify the possible behaviors exhibited by the chiral squirmers, such as monotonic divergence,
divergence, and bounded, as was found in the previous study. However, in the current study, we observe that
both the monotonic convergence and the convergence states are converted into divergence states due to the
arising lubrication effects. The lubrication force favors the bounded motion in some parameter regimes. This
study helps to understand the collective behavior of dense suspension of ciliated microorganisms and artificial
swimmers.
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I. INTRODUCTION

The swimming behavior of microorganisms differs from
that of the macro world [1]. In the former case, viscous forces
dominate over the inertia of the body. It belongs to the low
Reynolds number swimming [1,2]. Different microorganisms
employ various propulsion mechanisms, e.g., Escherichia coli
uses a run and tumble mechanism to propel in a fluid [3]; cili-
ated microorganisms swim with the help of the metachronal
waves generated by the synchronous beating of cilia [4,5],
and sperm cells move with the flagella attached to its body
[6]. To understand the propulsion mechanism of microswim-
mers, various models are available in the literature [4–9].
Though the microorganisms are smaller in size, collectively,
they can influence the climate and human life in various
ways. For example, massive plankton blooms in the ocean,
harmful red tides along the coastline, bioconvection [10],
nutrient uptake [11], active turbulence [12], and they may
even influence the viscosity of the surrounding medium in
which they swim [13,14]. In the past, the suspension of mi-
croswimmers was studied using a continuum model [15–18],
which works well for dilute suspensions only and is generally
not applicable for larger cell concentrations. For a denser
system, near-field interactions are vital. The hydrodynamic
interaction among the microswimmers has been extensively
studied both experimentally [19–23] and theoretically [19,24–
29]. Some of the former theoretical [21,24,27] and numerical
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studies [19,20,22,27] are devoted to the two swimmers’ sys-
tems. Indeed, all these studies consider pure hydrodynamic
interaction among the microswimmers. When the swimmers
are far from each other, their interaction can be expressed
in terms of a multipole expansion. Conversely, while the
swimmers are very close, one needs to use the lubrication
theory to calculate their near-field interaction. The former
studies revealed that the inclusion of near-field interaction
in pair swimming is crucial as it changes the orientation of
the swimmers. The theoretical works calculated the near-field
interaction using the lubrication theory. On the other hand, the
numerical studies used various schemes, namely, Stokesian
dynamics [19], boundary element method [22], and lattice
Boltzmann simulations [27], to capture the near- and far-
field interaction among the swimmers. Several studies on the
near- and far-field hydrodynamic interaction between two or
more axisymmetric swimmers [19,24] are available where the
swimmers change their direction of movement, exhibiting at-
tractive or repulsive behavior depending upon their respective
velocity field strengths. The former theoretical works offering
accurate calculations of near-field interactions are an essen-
tial step toward understanding swimmers’ suspension under
the nondiluted limit. However, the former studies addressed
swimmers with no rotational motion. In contrast, the present
study considers the rotational motion of the swimmer as well.
The rotational motion causes the nonaxisymmetric part of the
flow field in the lubrication region.

In the earlier studies, the popular squirmer model [4,5] has
been used to understand the hydrodynamic interactions among
swimmers. However, the squirmer model is limited as it can
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be associated only with the translational motion of the body.
Consequently, the body’s direction of motion changes either
due to the rotational diffusion or the hydrodynamic interaction
with another squirmer. In general, many microorganisms can
change their direction of movement by rotation of the ori-
entational vector giving rise to helical motion [30]. Notably,
the nonaxisymmetric flow feature of a swimmer is common
in literature [31–34]. Henceforth, the chiral squirmer model
[29,31–36], which is a generalization of the squirmer model,
is more applicable for studying the collective behavior of the
swimmers. In the latter model, the tangential slip velocity on
the surface of a nondeformable spherical body is nonaxisym-
metric. As a result, the swimmer can generate chiral flows and
helical paths.

Similar to simple squirmers, it has been reported that a
pair of chiral squirmers also portray various behaviors, e.g.,
monotonic divergence, divergence, monotonic convergence,
convergence, and even a bounded state [29,37,38] as a result
of their mutual hydrodynamic interaction. The helical propul-
sion of the swimmers leads to this peculiar bounded state,
where the swimmers periodically come closer to and distant
from each other. It was reported in our earlier work [29]. The
later study considered only the far-field hydrodynamic inter-
actions among the squirmers for simplicity, which may not be
sufficient to understand the complete interactions among the
swimmers. As previously mentioned, the lubrication forces
arise when the swimmers are very close to each other, and
this influences the collective behavior of the swimmers.

In this article, as an extension of our earlier work [29],
we study the combined behavior of two chiral swimmers
considering both the near- and the far-field hydrodynamic
interactions. We compute the lubrication force between two
swimmers when they approach very close to each other.
Further, we investigate the complete hydrodynamic behavior
of two swimmers. The article is organized as follows. The
general chiral squirmer model is briefly discussed in Sec. II.
The lubrication force between two swimmers is calculated
in Sec. III. The hydrodynamic interaction, both in the near
and the far fields, between two swimmers, is discussed in
Sec. IV. The influence of the initial conditions of swimmers
on their hydrodynamic behavior is explained in Sec. V. The
main conclusions are provided in Sec. VI.

II. THE CHIRAL SQUIRMER MODEL

The flow field generated by the low Reynolds number
swimmers obeys the Stokes equation [2],

η∇2u = ∇p, (1)

where η is the viscosity, u is the velocity field, and p is
the pressure field which plays the role of a Lagrange mul-
tiplier to impose the incompressibility constraint ∇ · u = 0.
A chiral squirmer is assumed to be a rigid spherical body of
radius a. On its surface, we prescribe a surface slip velocity
S(θ, φ) which is tangential to the surface and parametrized
by the polar and azimuthal angles θ and φ, respectively, in
a body-fixed frame defined by three orthogonal unit vectors
attached to the sphere center n, b, and t (see Fig. 1). It is
convenient to express this surface slip pattern using gradients
of spherical harmonics that form a basis for tangential vectors

FIG. 1. (a) Example of surface slip velocity patterns of a chiral
squirmer in the body-fixed reference frame n, b, and t. Here, we set
the velocity and rotation rate of the swimmer as V = v(0, 0, 1) and
� = v(1/

√
2, 0, 1/

√
2)/a, respectively. The slip coefficients of the

second mode are chosen as βr
20 = v/3, γ r

20 = v/3, and the others are
zero. (b) Schematic of the body frame of reference (n, b, t) and the
corresponding polar and azimuthal angles. The angle between the
swimming velocity and the rotation rate is χ .

on the surface [2]. The slip velocity can then be expressed in
the form [29,35,36]

S(θ, φ) =
∞∑

l=1

l∑
m=−l

[ − βlm∇s
[
Pm

l (cos θ ) eimφ
]

+ γlm r̂ × ∇s
[
Pm

l (cos θ ) eimφ
]]

, (2)

where ∇s is the gradient operator on the surface of the
sphere defined as ∇s = eθ ∂/∂θ + (1/ sin θ )eφ∂/∂φ, r̂ is the
unit vector in radial direction, and Pm

l (cos θ )eimφ are non-
normalized spherical harmonics, where Pm

l (cos θ ) denotes
associated Legendre polynomials of order m and degree l .
The complex coefficients βlm and γlm are the mode ampli-
tudes of the prescribed surface slip velocity. We introduce
the real and imaginary parts of these amplitudes as βlm =
βr

lm + imβ i
lm and γlm = γ r

lm + imγ i
lm with complex conjugates

β∗
lm = (−1)mβl,−m and γ ∗

lm = (−1)mγl,−m, respectively.
The velocity V and the rotation rate � of the swimmer can

be determined directly using the surface slip velocity, Eq. (2)
[39]. They can be expressed in the body-fixed reference frame
as V = 2(βr

11, β
i
11, β

r
10)/3 and � = (γ r

11, γ
i
11, γ

r
10)/a, respec-

tively. Without loss of generality, the body-fixed reference
frame (n, b, t) can be chosen such that t points in the direction
of motion. Accordingly, we have βr

11 = β i
11 = 0 and we write

βr
10 = 3v/2 such that v = |V| is the speed of the swimmer.

Thus, the velocity and rotation rate of the chiral swimmer read
[29]

V = vt, (3)

� = γ r
11

a
n + γ i

11

a
b + γ r

10

a
t. (4)

Also, for simplicity, we choose that the swimmer has rota-
tion rate in the n-t plane only. With this choice, we have
γ i

11 = 0. In addition, we choose the magnitude of the rota-
tion as |�| = v/a such that the components of the rotation
rate are expressed as γ r

11/a = (v/a) sin χ, γ i
11/a = 0, and

γ r
10/a = (v/a) cos χ , where χ is the angle between V and

�. The corresponding flow field and the pressure field of the
swimmer can be obtained by solving Eq. (1) with the surface
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FIG. 2. Chiral flow pattern exhibited by a pusher and a puller
type chiral squirmer in three dimensions, for λ = 3βr

20 = 3γ r
20 in

Eq. (5), and the chiral squirmer’s path for different angles χ be-
tween the velocity V and the rotation rate �. The initial velocities
and rotation rates of both the swimmers are set to v(0, 0, 1) and
v(sin χ, 0, cos χ )/a, respectively. For the flow patterns we set χ =
π/4 and λ = v for puller, and χ = π/4 and λ = −v for pusher.

slip [Eq. (2)] in the laboratory frame of reference (lf). They
read [29]

ulf (r) =3v

2

a3

r3

[
P1(t · r̂) r̂ − t

3

]
+ 3βr

20

(
a4

r4
− a2

r2

)
P2(t · r̂) r̂

+ βr
20

a4

r4
P′

2(t · r̂)[(t · r̂)r̂ − t]

− γ r
20

a3

r3
P′

2(t · r̂)t × r̂, (5)

plf (r) = −2ηβr
20

a2

r3
P2(t · r̂), (6)

where t is the swimming direction, r is the distance from the
center of the swimmer where the flow field is determined,
r̂ = r/r is the radial vector, P2(x) denotes a second-order Leg-
endre polynomial, and P′

2 = dP2/dx with x = t · r̂ = cos θ .
Note that in Eq. (5) the higher order terms l > 2 are being
ignored as their contribution is negligible in the current study.
To have a minimal model, in Eq. (5) we have ignored l = 2
modes with m �= 0. However, it is straightforward to include
the additional terms in the analysis. Depending on the sign
of the ratio β = βr

20/β
r
10, the swimmer can be classified as

a puller (for β > 0) or pusher (for β < 0) type (see Fig. 2).
While pullers have an extensile force dipole, resulting, e.g.,
from the front part of the body, pushers have a contractile
force dipole arising, e.g., from the rear part of the body [9]
(see Fig. 2). Note that the flow field in the body frame (bf)
can be obtained from that in the laboratory frame (lf) as
ubf (r) = ulf (r) − V − � × r.

The equations of motion of the swimmer can be obtained
using the force and torque balance conditions [40]. They read

q̇ = V, ṅ = � × n, ḃ = � × b, ṫ = � × t, (7)

where q is the position of the swimmer in the laboratory
frame of reference and the dot represents the derivative with
respect to time. For V ‖ �, we get χ = 0, and the resulting
swimming path of the swimmer is a straight line. In this case,
the swimmer rotates around the axis of motion. For χ = π/2,
the swimmer moves in a circular path in a plane. For other
values of χ , the path is a helix (see Fig. 2) [29]. Note that

FIG. 3. Schematic representation of two chiral squirmers in the
laboratory frame of reference. When swimmers are close to each
other, i.e., the distance between them R = |qi j | = r � 2(a + ε),
where a is the radius of the swimmer, then the lubrication forces
control the hydrodynamic behavior of the swimmers. Otherwise, the
far-field hydrodynamic interactions dominate.

Eq. (7) determines the motion of a single isolated squirmer,
whereas for a pair of squirmers we need to take into account
the hydrodynamic interaction between them which we study
in the following.

III. LUBRICATION FORCE BETWEEN TWO
CHIRAL SWIMMERS

Substantial work has been done in low Reynolds number
swimming near an air-liquid interface [41–44]. To find the
force on the body near the air-liquid interface, considering
perfect slip, a mirror image technique has been used [43,44].
To calculate the lubrication force between two swimmers, a
similar approach can be adapted. Here, in place of an image,
both the swimmers are real, and their dynamics is controlled
by the Stokes equation (see Fig. 3). However, in the lubrica-
tion region, the Stokes equation is modified (see Appendix A).
Taking into account the active surface velocity of both the
squirmers as boundary conditions, we can find the lubrication
flows around the squirmers from the solution of the modified
Stokes equation. The lubrication force acting on a swimmer
can be calculated by knowing the velocity field of the nearby
swimmer (for details, see Appendix A). The component of
the lubrication force acting on a swimmer along its swimming
direction reads

FZ ≈ 3πBa2

2
ln ε, (8)

where B = βr1
10t13 − βr2

10t23, ε is half the distance between
the swimmers, t13 = t1 · eZ , t23 = t2 · eZ , eZ is the unit vector
along the Z direction, and t1 and t2 are the orientation vec-
tors of swimmers one and two, respectively (for details, see
Appendix A). Taking into account the solution for squeezing
motion of two rigid spheres, we can find the velocity of the
axisymmetric squirmer in the lubrication region as U ∼ ε ln ε

[43,45]. Similarly, the velocity of the chiral squirmer can be
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obtained as

U = −2a2Bε ln ε. (9)

Also, note that the lubrication torques are of the order O(ε1/2),
and can be neglected in the limit ε → 0.

Notably, the results obtained here agree with those by
Wang and Ardekani [43]. However, the latter is the case of
axisymmetric squirmers, whereas the present study deals with
chiral squirmers. The flow field in the narrow gap between
the axisymmetric squirmers contains only radial and polar
components. However, for the chiral squirmers, the flow field
in the lubrication region contains an azimuthal component in
addition to the radial and polar components. Note that the
lubrication force acting on the case of axisymmetric squirmers
contains the polar slip coefficients only. On the other hand, the
lubrication torque contains the azimuthal slip coefficients for
a chiral squirmer. However, the contribution from the lubri-
cation torque is insignificant in the hydrodynamic interaction
of chiral squirmers. Consequently, the calculated lubrication
forces are the same for both axisymmetric and chiral squirm-
ers despite having different flow fields.

In the presence of the lubrication force, the corresponding
equations of motion of the swimmers are given by

q̇i = Vi + Ulub
i +

2∑
j=1 ; i �= j

u j (qi j, n j, b j, t j ),

⎡
⎣ṅi

ḃi

ṫi

⎤
⎦ =

⎡
⎢⎢⎣�i +

2∑
i �= j
j=1

ω j (qi j, n j, b j, t j )

⎤
⎥⎥⎦

⎡
⎣ni

bi

ti

⎤
⎦, (10)

where Ulub
i = UZ (cos θ ′ti − sin θ ′ni ) is the additional ve-

locity contribution arising due to the other swimmer in
the lubrication region, θ ′ = cos−1(ti · eZ ), and the vorticity
field ω = (∇ × u)/2. Note that Ulub

i = 0 for R > 2(a + ε),
and Vi + ∑2

j=1; i �= j u j = ∑2
j=1; i �= j ω j = 0 for R � 2(a + ε),

where ε � a and R = |qi j | is the radial distance between the
squirmers.

IV. HYDRODYNAMIC BEHAVIOR OF TWO
CHIRAL SWIMMERS

To study the hydrodynamic interaction between two
swimmers we numerically solve Eq. (10), using ode15s in
MATLAB software, to calculate the trajectories of two chi-
ral swimmers and investigate their combined behavior. For
simplicity, we consider chiral swimmers having translational
velocities of equal magnitudes, i.e., |V1| = |V2| = v. The ro-
tation rates of the swimmers are, in general, different and
read �1 = v(sin χ1, 0, cos χ1)/a for swimmer one and �2 =
v(sin χ2, 0, cos χ2)/a for swimmer two. Note that changes in
χ1 and χ2 modify the corresponding torsion and curvature of
the swimmers’ helical trajectories. Also, l > 1 modes in the
velocity field Eq. (5) play a crucial role in the hydrodynamic
interaction between the swimmers. As mentioned earlier, we
consider up to l = 2 modes in the flow field. We choose l = 2
modes corresponding to swimmer one as 3βr

20 = 3γ r
20 = λ1

and similarly for swimmer two as 3βr
20 = 3γ r

20 = λ2. Note
that for λ1 �= λ2, the swimmers differ in their chiral flows that

FIG. 4. Panel (a) shows the trajectories of two converging (C)
swimmers in the absence of near-field interaction (green and black
helices shifted by 70 units along the x direction) and in the presence
of it (purple and red). Similarly, panel (b) shows the trajectories
of two monotonically converging (MC) swimmers in the absence
and in the presence of near-field interactions. Panel (c) shows the
corresponding distance R between two hydrodynamically interacting
swimmers as a function of time both in the absence and in the
presence of the lubrication force. Here, lengths are scaled by the
radius of the swimmer a and time scaled by τ = v/a. Note that
lubrication forces convert the monotonic convergence (MC) and
convergence states (C) into divergence state (D). Here, for the state
C, we choose χ1 = χ2 = π/6, λ1 = −2.5, and λ2 = 2.5. For MC,
we choose χ = π/6, λ1 = −2, and λ2 = 2

they generate. Thus, variation in χi and ±λi (i = 1, 2) deter-
mines the nature of the interaction between the swimmers and
gives rise to several interesting swimming characteristics. As
mentioned earlier, the sign of λi [see Eq. (5)] decides the na-
ture of the swimmer, i.e., pusher or puller type. Accordingly,
we consider the subcases, i.e., pusher-pusher: (−λ1,−λ2);
puller-puller: (λ1, λ2); pusher-puller: (−λ1, λ2); and puller-
pusher: (λ1,−λ2). We have considered various possible initial
configurations for the swimmers. Out of all, in this article, we
present only the planar configuration, where both the swim-
mers start initially on the xy plane, by a distance R0, moving in
the positive z direction. In the planar configuration, swimmers
get enough time to interact with each other, whereas it may not
be the case in other configurations. This particular choice of
the configuration recovers the known behaviors exhibited by
two simple squirmers (without chirality) and some additional
exciting behaviors discussed below.

Note that the hydrodynamic interaction between two chi-
ral swimmers in the far-field limit has been explored in the
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FIG. 5. (a)–(d) Swimming states of two hydrodynamically interacting chiral swimmers of various combinations, i.e., pusher or puller.
Hollow circles: Divergence (D); solid circles: Monotonic divergence (MD); squares: Bounded (BS), cross: Parallel swimming; and plus:
Forbidden states. (e) The corresponding distance R between the swimmers is plotted as a function of time t . (f)–(h) Swimming trajectories
corresponding to different states, for the values χ = π/3 and (λ1, λ2) = v(1, −1) for BS, χ = π/3 and (λ1, λ2) = v(−1, 1) for MD, and
χ = 5π/12 and (λ1, λ2) = v(−1, −1) for D. Here, lengths are scaled by radius of the swimmer a, time scaled by τ = v/a, and velocity with
v. The initial position of swimmer one is (9, 9, 0)a and for swimmer two is (3, 3, 0)a. The initial velocities and rotation rates of both the
swimmers are set to v(0, 0, 1) and (v/a)(sin χ, 0, cos χ ), respectively.

previous work [29]. Five different swimming states were
observed: (i) bounded (BS) [see Fig. 5(h)], in which the swim-
mers oscillate around an average trajectory, (ii) monotonic
divergence (MD) [see Fig. 5(i)], in which the swimmers drift
away from each other from the beginning, (iii) divergence (D)
[see Fig. 5(j)], in which initially the swimmers are attracted
to each other, but in the long-time limit, they move away
from each other due to the growing repulsion between them,
(iv) monotonic convergence (MC) [Fig. 4(b)], in which the
swimmers due to strong attraction monotonically approach
each other at a distance where near-field interaction is more
crucial than the far-field interaction, and (v) convergence (C)
[Fig. 4(a)], in which the swimmers initially oscillate about
an average trajectory and then converge towards each other
due to the hydrodynamic attraction between them. However,
if the near-field interactions are dominant, as in the case of
a dense suspension, then the fate of the last two states, say,
MC and C, were unknown. In this work, as mentioned earlier,
we consider both the near- and the far-field interactions to get
the complete hydrodynamic behavior of two chiral swimmers.
Figure 4 depicts the behavior of two chiral swimmers, which
exhibit attractive behavior in the absence and in the presence
of the lubrication forces. Due to the lubrication force, the C
[Fig. 4(a)] and MC [Fig. 4(b)] states are converted into the D
state (see Fig. 4). Note that the lubrication force is repulsive in
nature. As a result, as the swimmers approach each other, i.e.,
as R � 2(a + ε) [see Eq. (10)], they start to repel each other
and diverge.

Figure 5 shows the hydrodynamic behavior of two iden-
tical chiral swimmers. Here, we set χ1 = χ2 = χ and |λ1| =

|λ2| = λ, i.e., the relative orientations of the swimmers with
respect to their motion and the strength of the hydrodynamic
flow fields of both swimmers are identical. As mentioned ear-
lier, due to the lubrication force, which is repulsive in nature,
MC and C states do not survive, leaving mainly D, MD, and
BS states in the state diagrams. Note that for the pusher-pusher
combination, for χ = 0, we obtain forbidden states (black
plus). Two pushers swimming in parallel lines attract each
other and may converge to a locked state, considered as a
numerical artifact. However, for χ �= 0, the pushers move in a
helical path, and the locked state does not appear.

Note that in the case of axisymmetric swimmers (simple
squirmers), the combination of pusher-puller and puller-
pusher-type swimmers would exhibit similar hydrodynamic
behavior. However, in the case of nonaxisymmetric swimmers
(chiral squirmers), the same combination would not exhibit a
similar hydrodynamic behavior [29]. It is because the flow
pattern of a puller-type chiral swimmer is different from
a pusher-type chiral swimmer, which makes the squirmers’
bounded motion depend on the pusher’s relative position and
puller. The parameters λ1, λ2, χ1, and χ2 can be varied to
study the hydrodynamic behavior of two chiral swimmers (see
Fig. 9 in Appendix B for more details).

For the choice χ1 = χ2 = π/2, swimmers move in a plane.
In this case, an isolated swimmer moves in a closed circular
path with no net displacement [see Fig. 6(a)]. However, the
presence of a second swimmer in its proximity changes its
movements dramatically. The hydrodynamic forces from the
second swimmer convert the two-dimensional circular swim-
ming into three-dimensional helical swimming [see Figs. 6(b)
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FIG. 6. (a) Circular motion of two swimmers in the absence
of the lubrication force. (b) Bounded motion of two swimmers in
the presence of the lubrication force. The corresponding distance
between the swimmers as a function of time is shown in (c). The
dashed line in (c) indicates the minimum distance that the swimmers
can approach. Here, we set λ = 55/12 and χ = π/2 and the initial
positions of the swimmers as (3,3,0) (puller) and (9,9,0) (pusher).
Here, lengths are scaled by radius of the swimmer a and time scaled
by τ = v/a.

and 6(c)]. Though in some situations, the pair of swim-
mers perform a bounded motion; however, in other situations,
they drift away from each other in the long-time limit (see
Fig. 5). These behaviors are therefore sensitive to the strength
of the flow fields (λ) and the associated lubrication force.
Note that the origin of the bounded motion, in this situation,
is the lubrication force acting between the swimmers. How-
ever, the bounded motion is less stable here, and in some
cases, the swimmers diverge from each other in drifting circu-
lar paths. Note that, for other values of χ , the bounded motion
occurs due to the helical propulsion of the swimmers, and
χ plays a more crucial role than λ there. Consequently, the
former bounded motion is more stable compared to the ones
observed due to the lubrication forces.

Notably, a bound state was observed experimentally for a
pair of spinning bottom-heavy Volvox due to the combined
interface effect, gravity, and lubrication forces [20–22]. Here,
the bound state is observed for three-dimensional chiral swim-
mers due to far-field hydrodynamic interaction among them.
Note that the bounded motion is restricted to parallel swim-
ming with equal strength of flow field of chiral swimmers,
i.e., swimmers with identical χ and λ (see Figs. 5 and 9).
However, for certain situations, say, χ1 = χ2 = π/2, we en-
counter bound states originating from the combined effect of
lubrication force and hydrodynamic attraction.

FIG. 7. Numerically obtained swimming behaviors of pusher-
puller-type chiral swimmers with different initial positions. The
corresponding initial distance is R0. (a) For q1 = (9, 9, 0)a and
q2 = (3, 3, 0)a [as in Fig. 5(c)], (b) for q1 = (12, 12, 0)a and q2 =
(3, 3, 0)a, (b) for q1 = (20, 20, 0)a and q2 = (3, 3, 0)a, and (b) for
q1 = (60, 60, 0)a and q2 = (3, 3, 0)a. Swimmers have the same
initial velocity V1 = V2 = v(0, 0, 1) and rotation rate �1 = �2 =
v (cos χ, 0, sin χ )/a, which depends on the angle χ . Symbols are the
same as in Fig. 5.

V. INFLUENCE OF THE INITIAL CONFIGURATION
OF THE SWIMMERS

In this section, we study the impact of the initial distance
R0 between the swimmers on their hydrodynamic behavior.
As a test case, we consider the pusher-puller combination
(see Fig. 7). The nature of hydrodynamic interaction between
the swimmers changes with varying R0. As R0 increases,
swimmers exhibit mainly BS, D, and MD states. Due to the
lubrication forces, the states C or MC do not appear in the
state diagrams. As R0 increases, swimmers tend to exhibit BS
states more than MD. The general tendency of the swimmers
is to be repulsive or attractive. For purely repulsive situations,
swimmers exhibit an MD state. If swimmers tend to exhibit
attractive behavior, then based on their near-field interactions,
the swimming behavior can be classified as D or BS. With
increasing R0, the flow field of the swimmers prohibits them
from approaching close to each other. Thus, swimmers exhibit
bounded states only. Note that the lubrication forces become
redundant for higher R0 values. For χ = π/2, swimmers ex-
hibit bounded states between the MD states, depending on the
strength of λ, at lower R0 values. However, as R0 increases,
these D states are converted into BS states. In the other combi-
nation of swimmers, e.g., pusher-pusher or puller-puller, MD
states do not alter with respect to R0. However, for smaller
R0, swimmers mostly remain in the D state. With increasing
R0 (intermediate region), the probability that the swimmers
will be bounded to each other increases (see Fig. 7). If R0
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is very high (∼103), the swimmers never approach each other
very close, so they cannot interact effectively. Also, swimmers
moving in straight lines or having no stresslet do not interact
with each other (gray cross symbols in the state diagrams).
Note that for R0 ∼ 103, the hydrodynamic interaction be-
comes ineffective.

Note that, as reported in our earlier work [29], the
bound state is stable even with a small perturbation to their
initial orientation, say, (−0.006π/24) � ψ1 � (0.007π/24),
(−0.007π/24) � ψ2 � (0.007π/24), and (−1.4π/24) �
ψ3 � (π/24). Beyond this range, the BS states are converted
into divergence states. Here, ψ1, ψ2, and ψ3 are initial
rotations about t2, b2, and n2 axes, respectively. Notably,
(n1, b1, t1) and (n2, b2, t2) are material frames of reference
of the first and second swimmers. While the first swimmer is
initially aligned along the z axis, the initial orientation of the
second swimmer is perturbed by (ψ1, ψ2, ψ3). Note that D
and MD states are not influenced by the initial perturbation in
the orientation of the swimmers.

VI. CONCLUSIONS

In this article, we have determined the near-field interaction
between the two chiral swimmers using the lubrication theory.
The hydrodynamic force and the torque on a swimmer due
to the presence of another swimmer have been determined
analytically in the lubrication region. The hydrodynamic be-
havior of a pair of swimmers has been analyzed by solving
their respective equations of motion numerically using the
ode15s in MATLAB. When the swimmers approach very close,
the lubrication force drives the swimmers away from each
other within the long-time limit. Consequently, due to near-
and far-field hydrodynamic interactions, two chiral swimmers
exhibit only monotonic divergence, divergence, and bounded
states. We find that the coupling of near- and far-field hydro-
dynamic interactions converts the planar circular movement
of a swimmer, observed for χ = π/2, into three-dimensional
helical swimming. It leads to an unstable bounded motion of
a pair of swimmers. However, the stable bounded motion of
the swimmers, observed for χ < π/2, is solely due to the far-
field hydrodynamic interaction between the swimmers. This
study helps to understand the collective behavior of ciliated
microorganisms and artificial swimmers [46–50].
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APPENDIX A: LUBRICATION FORCE

We briefly explain here the lubrication calculations [43].
When the spherical swimmers approach each other, i.e., R <

2(a + ε), the narrow gap between them forms a cylindrical
region (see Fig. 8). Here, R is the distance between the swim-
mer, a is the radius of the swimmer, and ε is half of the
distance between the swimmers. Note that we assume the thin
interaction layer near the surface, over which the slip bound-
ary condition is assumed, is thin compared to the gap size
[24]. Both the squirmers are situated on two opposite sides

(a) (b)

FIG. 8. (a) Schematic diagram of the lubrication region.
(b) Schematic of the cylindrical region of length 2ε between the
spherical swimmers. Here, ρ is the radius of the cylinder; X , Y ,
and Z form the Cartesian frame whose origin is at the middle of
the parabolic surfaces h1 and h2 (h2 = −h1) of swimmers one and
two, respectively. The corresponding radial vector is defined as ρ =
XeX + Y eY = ρ eρ , where eρ is the unit radial vector, and eφ is the
unit vector along the azimuthal direction (on the XY plane) in the
cylindrical region. t1 and t2 are the orientations of the swimmers.

of an imaginary plane and generate surface motion relative
to that plane. We consider the coordinate system lying on
this plane. The flow fields generated by the swimmers obey
the Stokes equation, Eq. (1), in this region. The surfaces of
the two spherical swimmers in the narrow gap region can be
considered as parabolic surfaces having the form

h1 = ε + ρ ′ 2

2
+ · · · , (A1)

h2 = −h1, (A2)

where ρ ′ is the dimensionless radius in cylindrical coordi-
nates. We set the origin at the midpoint between two spherical
squirmers. The stretched coordinates (X,Y, Z) [43] used here
are defined as [see Fig. 8(b)],

√
εX = x,

√
εY = y, εZ = z,

ρ ′ =
√

x2 + y2,
√

ερ = ρ ′. (A3)

Accordingly, the scaled surfaces are defined as H1 = h1/ε

and H2 = h2/ε = −H1. The radial vector in the stretched
coordinates is defined as ρ = XeX + Y eY = ρeρ , where eρ

is the unit radial vector. The Stokes equation, Eq. (1), in the
stretched coordinates can be expressed in dimensionless form
as
[
ε

(
∂2

∂X 2
+ ∂2

∂Y 2

)
+ ∂2

∂Z2

]
u = ε

(
ε1/2 ∂ p

∂X
, ε1/2 ∂ p

∂Y
,
∂ p

∂Z

)
,

(A4)

ε1/2

(
∂u

∂X
+ ∂v

∂Y

)
+ ∂w

∂Z
= 0, (A5)

where u, v, and w are the components of the velocity field,
and p is the pressure field.

The surface slip [Eq. (2)] of swimmer one, for the l = 1
mode, is given by

us1 = −βr1
10[(t1 · er )er − t1] − (t1 × er )γ r1

10 , (A6)

where t1 is the swimming direction and er is the unit radial
vector measured from the center of swimmer one. Similarly,
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for swimmer two,

us2 = −βr2
10[(t2 · e′

r )e′
r − t2] − (t2 × e′

r )γ r2
10 , (A7)

where t2 is the swimming direction and e′
r is the unit radial

vector measured from the center of swimmer two. Following
the procedure given by Ishikawa et al. [24], we expand the
velocity and pressure fields on the surface of the swimmer in
terms of ε1/2 as

us = us
0 + ε1/2us

1 + · · · , (A8)

p = p∞ + ε−3/2(p0 + ε1/2 p1 + · · · ). (A9)

Similarly, the surface slip of swimmers one and two can be
expanded in terms of ε1/2 as us1 = us1

0 + ε1/2us1
1 + . . . and

us2 = us2
0 + ε1/2us2

1 + . . ., respectively, where

us1
0 = βr1

10[(t1 · ez)ez − t1] + (t1 × ez)γ r1
10 , (A10)

us1
1 = βr1

10[(t1 · ρ) ez + (t1 · ez) ρ] − (t1 × ρ)γ r1
10 , (A11)

us2
0 = −βr2

10[(t2 · ez)ez − t2] − (t2 × ez)γ r2
10 , (A12)

us2
1 = βr2

10[(t2 · ρ) ez + (t2 · ez)ρ] − (t2 × ρ)γ r2
10 . (A13)

Here, t1 = t11eX + t12eY + t13eZ and t2 = t21eX + t22eY +
t23eZ. Note that eX , eY , and eZ are the unit vectors along the
stretched coordinates X, Y , and Z , respectively.

Following the procedure by Wang and Ardekani [43], we
get the solutions for the velocity and pressure fields in the lu-
brication region. We found that, in the lubrication region, only
the first-order term survives in the solution of the pressure
field, and the contribution from the other terms is negligible in
the limit ε → 0. To the first order, the lubrication equations for
the given system are

∂ p1

∂X
= ∂2u1

∂Z2
, (A14a)

∂ p1

∂Y
= ∂2v1

∂Z2
, (A14b)

∂ p1

∂Z
= 0, (A14c)

where u1, v1, and p1 are the components of the velocity and
pressure fields, respectively, corresponding to the first terms
[see Eqs. (A8) and (A9)].

As the velocity field is equal to the active slip at the surface
of the swimmer, the corresponding components (first order) of
the surface slip of swimmer one read

u11 = us1
1 · eX = βr1

10t13X + γ r1
10 t13Y, (A15a)

v11 = us1
1 · eY = βr1

10t13Y − γ r1
10 t13X, (A15b)

w11 = us1
1 · eZ = βr1

10 (t1 · eρ )ρ + γ r1
10 ρ(t1 · eφ ), (A15c)

where eφ is the unit vector along the azimuthal direction (on
the XY plane) in the cylindrical region. Similarly, the compo-
nents of the surface slip of swimmer two read

u21 = us2
1 · eX = −βr2

10t23X + γ r2
10 t23Y, (A16a)

v21 = us2
1 · eY = −βr2

10t23Y − γ r2
10 t23X, (A16b)

w21 = us2
1 · eZ = −βr2

10 (t2 · eρ )ρ + γ r2
10 ρ(t2 · eφ ). (A16c)

Note that, in a laboratory frame of reference, the velocity field
is zero, i.e., u = 0, far away from the swimmers. Integrating
Eq. (A14) twice, we get

u1 = Z2 − H2
1

2

∂ p1

∂X
+ Z

2H1
(u11 − u21) + 1

2
(u11 + u21),

(A17a)

v1 = Z2 − H2
1

2

∂ p1

∂Y
+ Z

2H1
(v11 − v21) + 1

2
(v11 + v21).

(A17b)

Now, differentiating Eq. (A17a) with respect to X and
Eq. (A17b) with respect to Y , we get

∂u1

∂X
= Z2 − H2

1

2

∂2 p1

∂X 2
− H1X

∂ p1

∂X
+ 1

2

(
βr1

10t13 − βr2
10t23

)

+ Z

(2 + X 2 + Y 2)2

[
− (

βr1
10t13 + βr2

10t23
)
(−2 + X 2)

+ 2
( − γ r1

10 t13 + γ r2
10 t23

)
XY + Y 2

(
βr1

10t13 + βr2
10t23

)]
,

(A18a)

∂v1

∂Y
= Z2 − H2

1

2

∂2 p1

∂Y 2
− H1Y

∂ p1

∂Y
+ 1

2

(
βr1

10t13 − βr2
10t23

)

+ Z

(2 + X 2 + Y 2)2

[(
βr1

10t13 + βr2
10t23

)
(2 + X 2)

+ 2
(
γ r1

10 t13 − γ r2
10 t23

)
XY − Y 2

(
βr1

10t13 + βr2
10t23

)]
.

(A18b)

Adding Eqs. (A18a) and (A18b) we get

∂u1

∂X
+ ∂v1

∂Y
=Z2 − H2

1

2
∇2 p1 − H1(ρ · ∇)p1

+ B + 4Z

(2 + X 2 + Y 2)2
D1, (A19)

where B = βr1
10t13 − βr2

10t23 and D1 = βr1
10t13 + βr2

10t23. Integrat-
ing Eq. (A19) with respect to Z between the two surfaces, and
using the incompressibility condition, we get∫ H2

H1

(
∂u1

∂X
+ ∂v1

∂Y

)
dZ = −

∫ H2

H1

∂w1

∂Z
dZ, (A20)

2H3
1

3
∇2 p1 + 2H2

1 (ρ · ∇)p1 − 2BH1

= ρ(E12 · eρ + E′
12 · eφ ), (A21)

where E12 = βr1
10t1 + βr2

10t2 and E′
12 = γ r1

10 t1 − γ r2
10 t2. Using

the operators ∇2 and ∇ in a cylindrical coordinate system,
the above equation can be simplified as

2H3
1

3

[
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

ρ2

∂2

∂φ2

]
p1 + 2H2

1 ρ
∂ p1

∂ρ
− 2BH1

= ρ (E12 · eρ + E′
12 · eφ ). (A22)

Note that the pressure term does not contain a Z component.
Let

p1 = pa + ps(E12 · eρ ) + pm(E′
12 · eφ ), (A23)
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where pa, ps, and pm are the solutions of Eq. (A22). Inserting
Eq. (A23) into Eq. (A22) we get the equation for the particular
solution as

H2
1

3ρ

∂

∂ρ

(
ρ

∂ pa

∂ρ

)
+ H1ρ

∂ pa

∂ρ
− B = 0. (A24)

This gives us

pa(ρ) = −B

[
3

4H1
+ 3

8H2
1

]
. (A25)

Note that pa has no φ dependency. The second term in
Eq. (A23) (ps) gives us

2H3
1

3

[
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

ρ2

∂2

∂φ2

]
ps(E12 · eρ )

+ 2H2
1 ρ

∂

∂ρ
ps(E12 · eρ ) = ρ(E12 · eρ ). (A26)

Using the relations ∂eρ/∂ρ = 0, eφ = ∂eρ/∂φ, and eρ =
−∂eφ/∂φ, Eq. (A26) can be simplified as

2H3
1

3ρ

∂

∂ρ

(
ρ

∂ ps

∂ρ

)
− 2H3

1

3ρ2
ps + 2H2

1 ρ
∂ ps

∂ρ
− ρ = 0. (A27)

The solution of Eq. (A27) is given by

ps(ρ) = − 6ρ

5(2 + ρ2)2
. (A28)

One can follow a similar procedure to obtain the solution for
pm(ρ) as

pm(ρ) = − 6ρ

5(2 + ρ2)2
. (A29)

Incidentally, the solutions of ps and pm are the same. There-
fore, from Eqs. (A25), (A28), and (A29) we get the solution
for p1 as

p1 = − B

[
3

4H1
+ 3

8H2
1

]
− 6ρ

5(2 + ρ2)2

× [(
βr1

10t1 + βr2
10t2

) · eρ + (
γ r1

10 t1 − γ r2
10 t2

) · eφ

]
.

(A30)

The corresponding velocity field [Eqs. (A17a) and (A17b)] of
swimmer one can be determined in the lubrication region as

uρ,1 = 3
(
Z2 − H2

1

)
10(2 + ρ2)3

[
5Bρ3 + 20Bρ − 4(eρ · E12 + eφ · E′

12)

+ 6ρ2(eρ · E12 + eφ · E′
12)

]

+ Zρ

2H1
D1 + ρ

2
B, (A31a)

uφ,1 = 6(Z2 − H2
1 )

10(2 + ρ2)2
[−eφ · E12 + eρ · E′

12]

+ Zρ

2H1

[
γ r2

10 t23 − γ r1
10 t13

]

− ρ

2

[
γ r2

10 t23 + γ r1
10 t13

]
, (A31b)

uZ,1 = Z

20(2 + ρ2)4
[−5B[(2 + ρ2)2 − 4Z2]

× (−8 + 4ρ2 + ρ4) + 12(2 + ρ2)2(6 + ρ2)

× (X (A1 + C2) + Y (−A2 + C1)) − 40D1Z (2 + ρ2)2

+ 32(−4 + ρ2)(X (A1 + C2) + (−A2 + C1)Y )Z2]

+ 1

2

[
D1 + X

( − βr2
10t21 + γ r1

10 t12 + γ r2
10 t22

)
−Y

(
βr2

10t22 + γ r1
10 t11 + γ r2

10 t21
)+ βr1

10 (t11X + t12Y )
]
,

(A31c)

where B = (βr1
10t13 − βr2

10t23), D1 = (βr1
10t13 + βr2

10t23), A1 =
(βr1

10t11 + βr2
10t21), C1 = (βr1

10t12 + βr2
10t22), A2 = (γ r1

10 t11 −
γ r2

10 t21), and C2 = (γ r1
10 t12 − γ r2

10 t22).
Finally, the force component along the Z direction can be

calculated using the relation dFZ = eZ · (σ1 · n1)dA, where σ1
is the corresponding stress tensor, dA is the area element on
the swimmer surface, and n1 = − cos θeZ + sin θeρ (normal
vector; see Fig. 3). Subsequently, we can calculate the force
component as

FZ = −3πBa2

2

[− ln(2) + ln
(
2 + ρ2

0

)]
. (A32)

Here, ρ0 is the distance up to which the lubrication force is
considerable. Generally, ρ0 = aε−1. Therefore,

FZ ≈ 3πBa2

2
ln ε. (A33)

The corresponding torque along the Y direction can
be calculated using the relation dTY = −(n1 · eX )dFZ + (n1 ·
eZ )dFX . The torque is given by

TY =ε1/2 3π

10

[(
βr1

10t11 + βr2
10t21

) + (
γ r1

10 t11 − γ r2
10 t21

)]

×
[

8

2 + ρ2
+ 3 ln(2 + ρ2) + 4 + ln 8

]
. (A34)

A similar expression for torque can be obtained about the
X direction as well. However, note that torques are of the
order ε1/2, and the contribution of the torques to the rotational
motion of the swimmers is negligible. Thus, we do not include
them in the numerical simulations.

APPENDIX B: χ-χ AND λ-λ STATE DIAGRAMS

As previously mentioned, a pair of chiral swimmers ex-
hibits mainly B, D, and MD states in the presence of the
lubrication forces. Figure 5 depicted these states for the
choice λ1 = λ2 = λ and χ1 = χ2 = χ . However, one can also
vary the parameters λ1, λ2, χ1, and χ2 to study the hy-
drodynamic behavior of two chiral swimmers (see Fig. 9).
With varying λ1, λ2, χ1, and χ2, swimmers mainly exhibit
the D and MD states. Only the asymmetric combination
of pusher- and puller-type swimmers exhibit bounded states
for |λ1| = |λ2| or χ1 = χ2. This means swimmers with the
same V and �, and equal strength of flow field (how-
ever, the sign of λ should be different) exhibit interesting
bounded states. Note that when the swimmers are very
close to each other, due to the lubrication force, swimmers
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FIG. 9. State diagrams generated for varying hydrodynamic field strengths (λ1, λ2) at fixed χ1 = χ2 = χ , and (χ1, χ2) at fixed λ1 = λ2 =
λ. Initial conditions and color codes are given in Fig. 5.

repel each other strongly, and they do not exhibit either
convergence (C) or monotonic convergence (MC) states. Sim-

ilar behavior can be observed in the case of axisymmetric
squirmers.

[1] E. M. Purcell, Am. J. Phys. 45, 3 (1977).
[2] J. Happel and H. Brenner, Low Reynolds Number Hydrodynam-

ics (Springer, New York, 1983).
[3] S. H. Larsen, R. Macnab, and D. E. Koshland, Nature (London)

249, 74 (1974).
[4] M. J. Lighthill, Commun. Pure Appl. Math. 5, 109 (1952).
[5] J. R. Blake, J. Fluid Mech. 46, 199 (1971).
[6] B. M. Friedrich and F. Jülicher, Proc. Natl. Acad. Sci. USA 104,

13256 (2007).
[7] E. M. Purcell, Proc. Natl. Acad. Sci. USA 94, 11307 (1997).
[8] H. R. Jiang, N. Yoshinaga, and M. Sano, Phys. Rev. Lett. 105,

268302 (2010).
[9] E. Lauga, The Fluid Dynamics of Cell Motility (Cambridge

University Press, Cambridge, 2020).
[10] J. R. Platt, Science 133, 1766 (1961).
[11] D. L. Kirchman, Microb. Ecol. 28, 255 (1994).
[12] J. Dunkel, S. Heidenreich, K. Drescher, H. H. Wensink, M. Bar,

and R. E. Goldstein, Phys. Rev. Lett. 110, 228102 (2013).
[13] A. Sokolov and I. S. Aranson, Phys. Rev. Lett. 103, 148101

(2009).
[14] B. M. Haines, A. Sokolov, I. S. Aranson, L. Berlyand, and D. A.

Karpeev, Phys. Rev. E 80, 041922 (2009).
[15] M. J. R. Fasham, H. W. Ducklow, and S. M. McKelvie,

J. Marine Res. 48, 591 (1990).
[16] T. J. Pedley and J. O. Kessler, Annu. Rev. Fluid Mech. 24, 313

(1992).
[17] A. M. Metcalfe and T. J. Pedley, J. Fluid Mech. 445, 121

(2001).

[18] D. Saintillan and M. J. Shelley, Phys. Rev. Lett. 100, 178103
(2008).

[19] T. Ishikawa and M. Hota, J. Exp. Biol. 209, 4452 (2006).
[20] K. Drescher, K. C. Leptos, I. Tuval, T. Ishikawa, T. J. Pedley,

and R. E. Goldstein, Phys. Rev. Lett. 102, 168101 (2009).
[21] T. J. Pedley, D. R. Brumley, and R. E. Goldstein, J. Fluid Mech.

798, 165 (2016).
[22] T. Ishikawa, T. J. Pedley, K. Drescher, and R. E. Goldstein,

J. Fluid. Mech. 903, A11 (2020).
[23] N. Darnton, L. Turner, K. Breuer, and H. C. Berg, Biophys. J.

86, 1863 (2004).
[24] T. Ishikawa, M. P. Simmonds, and T. J. Pedley, J. Fluid Mech.

568, 119 (2006).
[25] T. Ishikawa and T. J. Pedley, Phys. Rev. Lett. 100, 088103

(2008).
[26] I. O. Götze and G. Gompper, Phys. Rev. E 82, 041921 (2010).
[27] C. M. Pooley, G. P. Alexander, and J. M. Yeomans, Phys. Rev.

Lett. 99, 228103 (2007).
[28] J. J. Molina, Y. Nakayama, and R. Yamamoto, Soft Matter 9,

4923 (2013).
[29] P. S. Burada, R. Maity, and F. Jülicher, Phys. Rev. E 105,

024603 (2022).
[30] H. C. Crenshaw, Bull. Math. Biol. 55, 231 (1993).
[31] O. S. Pak and E. Lauga, J. Eng. Math. 88, 1 (2014).
[32] S. Ghose and R. Adhikari, Phys. Rev. Lett. 112, 118102 (2014).
[33] B. U. Felderhof and R. B. Jones, Phys. Fluids 28, 073601

(2016).
[34] B. U. Felderhof, arXiv:1601.00755.

054613-10

https://doi.org/10.1119/1.10903
https://doi.org/10.1038/249074a0
https://doi.org/10.1002/cpa.3160050201
https://doi.org/10.1017/S002211207100048X
https://doi.org/10.1073/pnas.0703530104
https://doi.org/10.1073/pnas.94.21.11307
https://doi.org/10.1103/PhysRevLett.105.268302
https://doi.org/10.1126/science.133.3466.1766
https://doi.org/10.1007/BF00166816
https://doi.org/10.1103/PhysRevLett.110.228102
https://doi.org/10.1103/PhysRevLett.103.148101
https://doi.org/10.1103/PhysRevE.80.041922
https://doi.org/10.1357/002224090784984678
https://doi.org/10.1146/annurev.fl.24.010192.001525
https://doi.org/10.1017/S0022112001005547
https://doi.org/10.1103/PhysRevLett.100.178103
https://doi.org/10.1242/jeb.02537
https://doi.org/10.1103/PhysRevLett.102.168101
https://doi.org/10.1017/jfm.2016.306
https://doi.org/10.1017/jfm.2020.613
https://doi.org/10.1016/S0006-3495(04)74253-8
https://doi.org/10.1017/S0022112006002631
https://doi.org/10.1103/PhysRevLett.100.088103
https://doi.org/10.1103/PhysRevE.82.041921
https://doi.org/10.1103/PhysRevLett.99.228103
https://doi.org/10.1039/c3sm00140g
https://doi.org/10.1103/PhysRevE.105.024603
https://doi.org/10.1007/BF02460304
https://doi.org/10.1007/s10665-014-9690-9
https://doi.org/10.1103/PhysRevLett.112.118102
https://doi.org/10.1063/1.4954918
http://arxiv.org/abs/arXiv:1601.00755


NEAR- AND FAR-FIELD HYDRODYNAMIC INTERACTION … PHYSICAL REVIEW E 106, 054613 (2022)

[35] R. Maity and P. S. Burada, Eur. Phys. J. E 42, 20 (2019).
[36] R. Maity and P. S. Burada, J. Fluid Mech. 940, A13 (2022).
[37] M. Mirzakhanloo, M. A. Jalali, and M. R. Alam, Sci. Rep. 8,

3670 (2018).
[38] M. Theers, E. Westphal, G. Gompper, and R. G. Winkler, Soft

Matter 12, 7372 (2016).
[39] H. A. Stone and A. D. T. Samuel, Phys. Rev. Lett. 77, 4102

(1996).
[40] S. Kim and S. J. Karrila, Microhydrodynamics: Principles and

Selected Applications (Dover, New York, 1991).
[41] R. Di Leonardo, L. Angelani, D. Dell’Arciprete, G. Ruocco,

V. Iebba, S. Schippa, M. P. Conte, F. Mecarini, F. De Angelis,
and E. Di Fabrizio, Proc. Natl. Acad. Sci. 107(21), 9541
(2010).

[42] R. Trouilloud, T. S. Yu, A. E. Hosoi, and E. Lauga, Phys. Rev.
Lett. 101, 048102 (2008).

[43] S. Wang and A. M. Ardekani, Phys. Rev. E 87, 063010
(2013).

[44] R. Di Leonardo, D. Dell’ Arciprete, L. Angelani, and V. Iebba,
Phys. Rev. Lett. 106, 038101 (2011).

[45] N. Yoshinaga and T. B. Liverpool, Phys. Rev. E 96, 020603(R)
(2017).

[46] W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St.
Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi,
J. Am. Chem. Soc. 126, 13424 (2004).

[47] R. F. Ismagilov, A. Schwartz, N. Bowden, and G. M.
Whitesides, Angew. Chem., Int. Ed. 41, 652 (2002).

[48] R. Golestanian, T. B. Liverpool, and A. Ajdari, Phys. Rev. Lett.
94, 220801 (2005).

[49] R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A. Stone,
and J. Bibette, Nature (London) 437, 862 (2005).

[50] T. Hogg, Auton. Agents Multi-Agent Syst. 14, 271 (2007).

054613-11

https://doi.org/10.1140/epje/i2019-11780-4
https://doi.org/10.1017/jfm.2022.239
https://doi.org/10.1038/s41598-018-21832-w
https://doi.org/10.1039/C6SM01424K
https://doi.org/10.1103/PhysRevLett.77.4102
https://doi.org/10.1073/pnas.0910426107
https://doi.org/10.1103/PhysRevLett.101.048102
https://doi.org/10.1103/PhysRevE.87.063010
https://doi.org/10.1103/PhysRevLett.106.038101
https://doi.org/10.1103/PhysRevE.96.020603
https://doi.org/10.1021/ja047697z
https://doi.org/10.1002/1521-3773(20020215)41:4<652::AID-ANIE652>3.0.CO;2-U
https://doi.org/10.1103/PhysRevLett.94.220801
https://doi.org/10.1038/nature04090
https://doi.org/10.1007/s10458-006-9004-3

