
PHYSICAL REVIEW E 106, 054612 (2022)

Signal propagation and linear response in the delay Vicsek model
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Retardation between sensation and action is an inherent biological trait. Here we study its effect in the
Vicsek model, which is a paradigmatic swarm model. We find that (1) a discrete time delay in the orientational
interactions diminishes the ability of strongly aligned swarms to follow a leader and, in return, increases their
stability against random orientation fluctuations; (2) both longer delays and higher speeds favor ballistic over
diffusive spreading of information (orientation) through the swarm; (3) for short delays, the mean change in the
total orientation (the order parameter) scales linearly in a small orientational bias of the leaders and inversely
in the delay time, while its variance first increases and then saturates with increasing delays; and (4) the linear
response breaks down when orientation conservation is broken.
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I. INTRODUCTION

Information exchange in animal groups has been sug-
gested to foster survival by improving foraging [1] and
predator avoidance [2–6]. The emerging collective behavior
is associated with swarm intelligence [7,8] and a collective
mind [9]. Indeed, if short-range interactions between group
members give rise to scale-free correlations [10–12], this al-
lows for an efficient information propagation through large
groups [10,13,14]. And their sensory range is thereby in-
creased way beyond that of its individual members. Inspired
by a historical naval battle, where peer-to-peer signaling was
employed to spy beyond the horizon, this is sometimes re-
ferred to as the Trafalgar effect [15,16]. It is plausible that
animal interactions were evolutionary optimized: too low mu-
tual sensitivity might jeopardize a group’s cohesion, too high
sensitivity could magnify random perturbations into involun-
tary collective spasms. As examples for advanced collective
strategies, previous work has identified leadership [17–20],
collective escape waves [21,22], and hierarchical struc-
tures [17–20]. From a physical perspective, studies of motile
ensembles, ranging from bacterial colonies [23,24] to flocks
of birds [22,25], are often subsumed into the field of active
matter [26–28]. The associated (active) many-body-theory
perspective has already helped to uncover a variety of exotic
nonequilibrium collective phenomena [29–33] and hinted at
potential technological applications [34–37].

A key ingredient in the interactions of living agents is a
time delay between perception and reaction. Signal propaga-
tion and processing, as well as actuation suffer from inevitable
speed limitations. In general, the associated time delay in
the mutual interactions between the agents may enrich the
resulting collective dynamics with a hierarchy of instabilities,
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including oscillations, multistability, and chaos [38–40].
These have been the subject of intense study in the field of
dynamical systems [41]. Conversely, delays have also been
employed to stabilize unstable orbits in chaotic systems, e.g.,
via the Pyragas method [42]. In the context of information
propagation, time delay has moreover been investigated in
connection with sensory [43], social [44] and financial (Bit-
coin) [45] networks, as well as in human traffic [46]. For
self-propelling particles with retarded pairwise attractions,
time delays can trigger behavioral patterns [47,48] reminis-
cent of dynamical regimes known from (linear) stochastic
delay differential equations [38]. Small perception-reaction
delays in a Vicsek model (VM) may foster clustering [49] and
flocking [50], similarly as in the Cucker-Smale model [51]. In
contrast, long delays have the opposite effect [49–51]. From a
more technological perspective, time delays naturally play an
important role in feedback systems [36,37]. Finally, it was re-
cently suggested that retardation induced by inertia [13,52,53]
or by discrete time lags [50] could be the missing link between
the VM and the behavior empirically observed in natural
swarms [54]. In this respect, it was moreover found that the
inertial version of the VM (the so-called inertia spin model)
better describes collective turns as observed in natural swarms
than the standard VM [55]. However, to the best of our
knowledge, there are no other studies of delay effects on the
information propagation and response of motile active matter
systems.

In the following, we therefore study retarded information
spreading and linear response in the two-dimensional delay
VM, defined in Sec. II. First, we focus on the ability of an
aligned system (flock) to perform collective turns (Sec. III),
and its reaction to local perturbations [56] (Sec. IV). For the
former case, we study in Sec. V how the signal spreads in
space and time and determine the corresponding dispersion
relation. In Sec. VI we consider the response of the sys-
tem to an orientational bias applied to a subgroup of agents
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(so-called leaders) and in particular evaluate the conditions for
linearity [57,58]. Finally, Sec. VII summarizes our findings
and gives an outlook to possible extensions of the present
work.

II. TIME DELAY VICSEK MODEL

The VM [59,60] is a paradigmatic model for dry active
matter [28]. Its original version [59] consists of N mobile
spins moving with constant speed v0, and interacting via
alignment interactions. We consider the two-dimensional ver-
sion with time delayed metric interactions [50], where each
particle at time t + 1 assumes the average orientation of all
neighbors at distance less than R at an earlier time t − τ < t ,
up to some noise. Velocities vi(t ) and positions ri(t ) of the
individual particles obey the equations of motion

vi(t + 1) = v0Rη

[
vi(t ) +

∑
j �=i

ni j (t − τ )v j (t − τ )

]
, (1)

ri(t + 1) = ri(t ) + vi(t + 1), (2)

where the noise operator Rηv realizes a uniform random ro-
tation by an angle in the range [−η, η] around its normalized
argument v/|v|. For the chosen metric interactions, the ele-
ments of the connectivity matrix ni j are given by ni j (t ) = 1
if ri j (t ) = |ri(t ) − r j (t )| < R and ni j (t ) = 0 otherwise. We
take R as our length unit, i.e., we set R = 1, and the time
step �t = 1 between two consecutive interactions as the time
unit. In contrast to the closely related XY model [61]
the connectivity matrix is time dependent. In the VM with
topological interactions, which seems more appropriate for
natural bird flocks [62], we expect qualitatively similar results
for information spreading as described below [56].

Without a time delay, the model (1)–(2) is just the standard
VM [59], which exhibits overdamped orientational dynam-
ics of vi(t ) [50,54]. At (imposed) high densities, a highly
aligned phase emerges, reminiscent of flocking birds. The
disordered state found at low densities resembles an insect
swarm. For large particle numbers, the transition between
these two phases is discontinuous (“first order”) [63]. A finite
delay time τ [50] or, alternatively, some finite inertia [64] in
the dynamical equation for the velocity is known to bring the
model predictions closer to the space-time correlations and
finite-size scaling observed in natural swarms [54]. Moreover,
inertia was argued to stabilize the flock phase and improve
the ability of the system to perform collective turns [55]. In
the next section, we show that time delay in the interactions,
which is often likened to inertia, yields different effects.

III. COLLECTIVE MANEUVER

To sustain their cohesion, flocks need to be able to perform
collective maneuvers [55]. We now investigate the ability of
individual members to initiate such maneuvers in the de-
lay VM. Specifically, we consider an initially (t = 0) fully
polarized flock, with all particles moving in the same di-
rection vinit/v0 = (1, 0)ᵀ, corresponding to the polarization
� = (

∑
i vi )2/v0N = 1. The initial positions are distributed

randomly inside a circle of diameter LF around the origin. The
only exception is a single leader placed at the front of the

FIG. 1. Fate of a flock in the delay VM. The flock starts with
identical initial conditions near the lower left end of each graph and
performs 103 time steps with four different values of time delay
(τ = 0, 1, 5, 20) in the mutual interactions. The bold red line shows
the deterministic turn (3) performed by a leader. For τ = 0, the
flock partly follows its turn but eventually looses coherence and
may even break up. For longer delays, the flock coherence weakens,
leading to the delay-induced breaking of the flock. In the limit of
very long delay time τ � LF/v0, the dwell time of the leader in
the flock diminishes, and so does its impact on the flock. This
is accompanied by a nonmonotonic drop in the total polarization
of the flock with increasing τ shown in Fig. 2. Parameters used:
N = 30, LF = 3, v0 = 0.5, ϕ = 5×10−5.

flock, rL(0) = (LF, 0)ᵀ. To initialize the particle velocities,
we assume that the whole flock had evolved along the x axis
according to Eqs. (1) and (2) for t < 0, while, for t � 0, the
leader is constrained to make a deterministic turn

vL(t + 1) = TϕvL(t ). (3)

The operator Tϕ rotates its argument by an angle ϕ. Its
deterministic time evolution acts as a persistent source of
information fed to the flock dynamics. For the sake of clarity,
we neglect the noise, η(t ) = 0, for now. Then the only pertur-
bation in the system is the deterministic motion of the leader,
and the initially fully polarized flock can be understood as a
steady state configuration of the system.

In Fig. 1 we show typical turning events for four different
values of the time delay of a small flock of N = 30 agents
following a slowly turning leader. For short delays, all the
particles turn with approximately the same radius, in a manner
that is loosely reminiscent of natural bird flocks [13,55,65].
However, due to the accumulating mismatch between the
navigation of the flock and its leader, the latter ultimately
escapes its followers for arbitrary nonzero turning speeds ϕ.
Its cumulative impact on the overall flock orientation (the
order parameter) is determined by its dwell time in the flock.
Since the conductive spreading of orientation is diffusive [56]
and thus inefficient, the particles that spend most time in
the vicinity of the leader follow it more closely than the
more remote ones. This leads to a reshuffling of the flock
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FIG. 2. Time evolution of the polarization for the flocks depicted
in Fig. 1, averaged over 100 simulation runs. (a) At short times, the
decay of the polarization monotonously speeds up with the delay,
reflecting the gradual inability of the flock to follow the leader. At
late times, the polarization decays faster for moderate delays than for
longer delays (as indicated by the crossing of the yellow dashed line
for τ = 5 and the purple dotted line for τ = 20). This is caused by the
leader-induced splitting of the flock, which becomes less pronounced
with increasing time delay beyond τ � LF/v0. (b) These two effects
are nicely depicted by times tRs and tRl measuring the polarization’s
decay speed at short and asymptotically long times, respectively.
Specifically, tRs is the time when polarization drops to 0.999993 when
no splitting events occur for the chosen parameters of the model.
tRl is then defined as time when �(tRl ) = 0.9993. We stress that the
depicted drop in polarization is a single particle effect caused by the
leader leaving the flock of the remaining N − 1 agents. The same
phenomenology can be observed for arbitrary N . The magnitude of
the polarization decays as 1/N .

formation and an associated defocusing that can eventually rip
the flock apart. Interestingly, the effect becomes increasingly
pronounced with growing delay τ , but fades again beyond a
certain threshold τ � LF/v0. This nonmonotonicity indicates
a trade-off between the delay-induced increase with τ in the
time spent in the vicinity of the leader needed for successful
alignment, which favors flock break-up, and a correspond-
ingly shortened dwell time of the leader inside the flock,
which reduces its cumulative impact. Taking into account
noise, one finds that the splitting events become more frequent
with increasing noise amplitude. This is expected because
randomly turning particles can act as additional “leaders”
initiating new splitting events. Similarly, increasing the par-
ticle number N for a given v0 while keeping the initial flock
density N/L2

F constant eventually always induces splitting of
the flock as the information reaching distant parts of the flock
during the finite duration of the turn gets strongly damped.
On the other hand, increasing the particle number N while
keeping the initial flock size LF constant (thus increasing the
initial swarm density) stabilizes the flock (splitting gets less
likely) as the relative weight of the individual perturbations
decreases. For the same reason, the ability of the flock to
follow a single leader decreases with increasing density.

In summary, in the VM, flocks thus only follow slowly
turning leaders. Due to the metric interaction rule, better
coherence is naturally achieved by more compact flocks.
However, no matter the conditions, the leader eventually al-
ways leaves a finite flock, as witnessed by the decreasing
polarization in Fig. 2. The generally poor take-up of the
leader’s direction by the VM flocks is a direct consequence

of the averaging interactions, which disperse the information,
preventing a perfect alignment. Recent investigations [55]
show that in the VM augmented with orientational inertia,
the turning information can propagate much more efficiently
due to an additional degree of freedom that (approximately)
conserves the flock’s curvature. As a result, the inertia spin
model allows for coherent collective turns where the leader
stays inside the flock. Contrary to these findings, the time
delay renders the ability of the VM to perform coherent turns
even worse. This striking difference between the effects of
inertia and delay is interesting because other aspects of the
two models, e.g., dynamical critical exponent and shape of
time correlation functions, are similar [25,50].

In Sec. VI the turning scenario is revisited from the per-
spective of the flock’s linear response. Before that, we discuss
another interpretation of the turning event, in which the “poor
obedience” of the flock has a more advantageous connotation.

IV. PERTURBATION

If the leader makes a sudden (or very fast) turn in the
scenario of the preceding section, it can be interpreted as
a random perturbation in the flock rather than an intended
systematic maneuver. In stable systems, such perturbations
should not create a strong response. This again reflects the
necessity for tuning the information propagation in a flock to
an intermediate strength. And, again, delayed interactions can
play a role in this respect. Efficient information propagation
promotes cohesion and a coherent response of the flock to a
stimulus but also tends to make the system overly sensitive to
accidental local perturbations that do not qualify as reasonable
cues for the whole flock.

To study the response of the delay VM to such “accidental
perturbations,” we consider the same noiseless scenario as
in the preceding section—with the important difference that
the leader abruptly turns by an angle ϕ at time t = 0 but
subsequently obeys the dynamic equations (1) and (2), rather
than following an externally prescribed route. In this case, the
system receives information only at time t = 0 and relaxes
freely, thereafter. The response of the flock in terms of its
polarization is plotted in Fig. 3(a), again for four different
values of time delay. Two main effects of the time delay on
the response can be discerned. First, as already gleaned from
the above discussion, delayed interactions cause a lag of the
collective response. This increases the relaxation time tR of
the polarization by the delay time τ , i.e., tR(τ ) = tR(0) + τ .
This ansatz is verified in Fig. 3(c), where we show the relax-
ation time of the polarization as a function of the delay time.
Here the relaxation time tR is defined as the time when the
polarization reaches 99% of its plateau value, i.e., �(tR) =
0.99 �(∞). Second, a sufficiently strong retardation of the
interactions introduces an oscillatory response in the form of
periodic spikes in the polarization dynamics. Their period is
given by τ + 1 and their amplitude increases with growing
τ and decays with growing laboratory time t . Such delay-
induced oscillations are well known to be a hallmark of delay
dynamical systems [38,50]. In the delay VM, they can be
explained as follows. After the leader has been perturbed, it
will spread the perturbation to the rest of the flock but also
tend to realign itself with its (former) neighbors. The leader
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FIG. 3. (a) Relaxation of the flock’s polarization after a sudden
change of the leader’s orientation by the angle ϕ = 1 for four differ-
ent time delays. As in Fig. 2, the depicted effect on flock polarization
is caused by a single leader in the N − 1 particle flock. Therefore its
magnitude decays like 1/N . (b) Decay of the flock’s polarization to
its disordered stationary value for strong noise, η = 0.1. Symbols in
panels (c) and (d) show relaxation times corresponding to (a) and
(b), respectively, as functions of the time delay. The solid line in
(c) depicts the theoretical expectation tR(τ ) = tR(0) + τ . Parameters
used: N = 30, LF = 6, v0 = 0.5, Nruns = 103.

may therefore already have realigned with the initial direc-
tion of its more distant neighbors once these neighbors are
affected by the spreading impulse of the initial perturbation.
Their delayed reaction may then echo back to the leader, after
yet another delay time. This wavelike oscillatory spreading
pattern clearly constitutes a pulse propagation. Apart from
the crucial delay interaction, it is tied to the finite extent of
the perturbing impulse and the subsequent free relaxation of
the leader, so that it could not be observed in the turning
scenario studied further above, where the leader’s dynamics is
at all times determined by Eq. (3), which provides a persistent
information influx preventing the backlash. However, once the
oscillations in the polarization are present, they represent a
robust, time-local effect that does not vanish in large ensem-
bles of particles, not even after averaging over the noise [50],
unless one introduces sufficient dispersion in the reaction-time
delays of the individual particles.

So far, we concentrated on purely deterministic dynamics,
for simplicity. But qualitatively similar behavior can also be
observed for systems affected by noise. One may think of
external noise as consisting of a large ensemble of “acciden-
tal perturbations” of the same type as just discussed. They
permanently trigger random chains of similar orientational
adaptation events as just described, across the whole flock.
Let us now consider an initially fully polarized flock whose
polarization decays (to zero, if the flock is infinitely large)
due to persistent noise. In Fig. 3(b) we show that also in this
case the time delay has a stabilizing effect on the system, as
it in general increases the polarization decay time. However,
the latter does not grow monotonically in τ . Instead, as shown
in Fig. 3(d), the decay time tR, defined in the standard way as

�(tR) = 1/e, exhibits a peak for intermediate delays, and then
decreases to a finite asymptotic value. We conjecture that this
peak results from a competition between the reduced align-
ment strength and the improved stability against perturbations,
caused by the delay. Similar nonmonotonic effects in the delay
VM were previously reported in Refs. [49,50].

V. SIGNAL PROPAGATION

Recent studies have investigated the information spread-
ing in the standard VM [56,66,67] and also in the inertia
VM [25]. In this vein, we now study how information about
the leader’s turn propagates through a flock, in the delay VM.
In our setting, it is not obvious how to employ the usual
information theoretical notions such as entropy or channel
capacity [68,69]. Therefore, our analysis relies on the con-
cept of maximum response [56] or, more generally, maximum
correlation [25].

The change of state of a Vicsek flock is described by the
accelerations ai(t ) = v̇i(t ) or, equivalently, by changes θ̇ (t ) of
the orientations θi(t ) = arctan[vy,i(t )/vx,i(t )] of the individual
particles. Following Ref. [56], we take the turning rate θ̇ (t ) as
a measure for the strength of the signal arriving at the particle
i at time t . For our specific setup, this approach is equiv-
alent to the acceleration-correlation-based approach applied
in Refs. [25,70]. Similarly as in Sec. III, we consider in this
section an initially highly polarized flock with θi(0) = 0 and
a leader performing a deterministic turn. However, in contrast
to the above scenarios we assume that the leader changes its
orientation instantaneously at time t = 0 by an angle ϕ that
remains fixed thereafter. In this setting, the signal source is
better localized in space and time than in the case of the
continuous turn of Sec. III. To minimize boundary effects, we
also initialize the leader in the center of the flock instead of
its front, and we neglect the noise. For a nonvanishing noise,
the system becomes unstable unless it is confined by boundary
conditions.

A. Spatial propagation of a signal

Let us first discuss the signal spreading through the flock
of immobile (v0 = 0) agents with a static interaction network.
In this case the distance to the source of the signal is a well de-
fined quantity and thus we can take the corresponding results
as a standard for further analysis. Besides, since the lattice is
fixed, the information spreads homogeneously and solely by
conduction [56]. For a thorough analysis of this scenario for
the standard VM (τ = 0), see Ref. [56].

In Fig. 4 we show the resulting orientations, θi(t ), and their
rates of change θ̇i(t ), as functions of the distance di from the
leader for τ = 0 and τ = 1. To avoid a dependence on the
initial condition, the shown values are averaged with respect
to Nruns simulation runs as follows. We first collect all data
{di, θi(t ), θ̇i(t )}i=1,...,N from the individual simulations runs
and sort the total data with respect to the distance di. The so
obtained ordered sets of NNruns data points are then smoothed
by calculating a sliding average over Nruns neighboring data
points. The corresponding averages are denoted by the symbol
〈•〉nn.
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FIG. 4. Time evolution of the average orientation θi(t ) (a), (b)
and its rate of change θ̇i(t ) (c), (d) for a stationary flock with v0 = 0
and τ = 0, 1. The signal induced by a leader at the origin spreads in
steps of the size of the interaction radius R = 1. Delay induces os-
cillations of θ̇i(t ) with the period τ + 1. Parameters used: N = 1000,
LF = 20, ϕ = 0.1, and Nruns = 102.

Figures 4(a) and 4(c) show that, for τ = 0, the information
spreads in “steps” of the width of one interaction radius R = 1.
After the first time step, the information is homogeneously
distributed within the interaction radius R = 1 because the
corresponding particles interacted equally with the localized
information source. The rates θ̇i(t ) monotonically decrease
with the distance from the leader, because particles closer
to the leader interact with more neighbors that have already
changed their orientation. For time delay τ = 1, the informa-
tion in Fig. 4(b) starts spreading only at time t = τ + 1 = 2.
Furthermore, temporal oscillations of period τ + 1 are in-
duced in θ̇i(t ), for the same reasons as explained above. In
Fig. 4(d) these oscillations manifest themselves as a large θ̇i(t )
at times t = 2 and 4 and a strongly damped θ̇i(t ) at times
t = 1, 3, and 5. Regardless of the time delay, the orientations
θi(t ) exhibit a discontinuity for di = R that increases with
time, as a result of the continuous influx of information from
the fixed leader.

For moving flocks with v0 > 0, the distance traveled by
the signal is no longer unambiguously defined. Even though
it might seem inadequate, one possible choice of di is still the
distance to the leader at time t = 0 as it gives qualitatively
the same results as other definitions, e.g., one that is based
on a comoving frame [56]. In what follows, we thus stick to
this definition. In Fig. 5 we report again the orientations, θi(t )
and their rates of change θ̇i(t ), as functions of the (initial)
distance di to the leader. The resulting curves are similar to
those for the static network, as shown in Fig. 4. However,
the discontinuity in θi(t ) at the interaction range, di = R, is
now smeared out and the rate θ̇i(t ) exhibits concomitant kinks.
Both effects result from the anisotropy of the “convective”
signal propagation caused by the motion of the leader. For
v0 > 0, both the leader and its “interaction zone” move. This
affects differently particles in the direction of the leader than

FIG. 5. Time evolution of the average orientation θi(t ) (a), (c)
and its rate of change θ̇i(t ) (b), (d) for a moving flock with v0 = 0.5
and τ = 0, 1. Due to the breaking of the rotational symmetry of the
static network (Fig. 4), the spreading is enhanced in the direction of
the leader’s motion. This results in a kink in θ̇i(t ) at di = R. Other
parameters are the same as in Fig. 4.

those in the opposite direction, which we do not distinguish
when evaluating the shown results. The downward kink in
θ̇i(t ) corresponds to the neighbors behind the leader, which
leave its interaction zone, and the upward kink corresponds to
the particles in front, entering its interaction zone. Averaging
these two effects then induces the smearing of the discontinu-
ity of the orientation θi(t ) as a function of distance, at the edge
of the interaction zone.

B. Dispersion relation

A central quantity in the study of signal propagation is the
signal speed, or, equivalently, the dispersion relation. How-
ever, to define these quantities for the VM is neither trivial
nor unique. Consider the typical time evolution of the signal
strength, measured in terms of θ̇i(t ). As shown in Fig. 6(a), the
signal intensity θ̇i(t ) reaching an agent i at some time t > 0 is
initially very low and grows over time until it reaches a max-
imum and starts to decay. For a stationary or slowly moving
flock, for which the information spreading is dominated by
conduction, the time when the signal first reaches a particle
at distance di from its source can roughly be estimated as
di/R. This is the time required for the signal to arrive from the
leader’s initial position, if traveling along the shortest path.
This initial signal gets diluted by a factor 1/Nint after each
time step, since it is distributed among the Nint ≈ NR2/L2

F
nearest neighbors, on average. This explains why it becomes
very weak at its spreading front. As the number of possible
paths connecting the initial position of the leader with the
nearby particles in the flock increases over time, also their
perceived signal intensity, as well as the rate of change θ̇i(t )
of their orientation, grows. Once the particles thereby become
increasingly aligned with the leader, θ̇i(t ) decays again. In
what follows, we identify the time when θ̇i(t ) reaches its
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FIG. 6. (a)–(c) Time evolution of the signal intensity θ̇ (t ), as
perceived at two different particles, bare (blue and red dotted lines)
and smoothed (solid yellow and dashed purple lines) versions, for
τ = 0, 1, 5, and (d) averaged over all N particles and Nruns simulation
runs. Parameters used: N = 103, LF = 20, v0 = 0.5, ϕ = 0.1.

maximum as the (characteristic) signal propagation time Ti.
The corresponding signal speed is di/Ti. For more details
concerning this choice, see Ref. [56].

To inspect the signal propagation more closely, consider
the time evolution of the signal strength at two given parti-
cles, as depicted in Figs. 6(a)–6(c). Each of the three panels
corresponds to a different value of the delay. The most striking
feature of the raw data (dotted blue and red curves) is the
presence of sharp spikes, which become more frequent for
long time delays. We reckon that these “resonances” are due
to random inhomogeneities in the initial conditions. At a first
glance, identifying the time Ti with these spikes might be
feared to lead to erroneous estimates for the signal speed.
Therefore, we alternatively considered the smoothed profiles
depicted by the solid yellow and dashed purple lines. They
were obtained by first performing sliding averages over five
raw data points and then substituting the remaining outliers
(beyond five times the average 〈θ̇i(t )〉t over the shown time in-
terval) with an average value of their neighboring points. But
the results for the dispersion relations remained qualitatively
the same.

Besides the spurious spikes, the curves for time delays
τ > 0 again exhibit oscillations, which can even reach neg-
ative values as the particle orientations tend to align to their
previous values. The period of these oscillations is τ + 1 and
their magnitude increases with growing delay. For sufficiently
long delays, the signal strength exhibits sharp positive and
negative peaks as the particle is either aligned with its own
initial orientation or with the initial direction of the leader.
These sharp peaks are even better visible in Fig. 6(d), where
we show the average of 〈θ̇i(t )〉N,Nruns taken over all N particles
and Nruns simulation runs, for the same values of time delay
as in Figs. 6(a)–6(c). This quantity measures the total rotation
rate in the flock at the given time. For short delays, the signal

FIG. 7. (a)–(c) The dispersion relations obtained as the aver-
age distance from the leader di at time Tiwhen the change of the
orientation θ̇i(t ) peaks for v0 = 0 (a), v0 = 0.1 (b), and v0 = 0.5
(c). With increasing time delay, the signal spreads slower and the
dispersion relation becomes a linear curve overlaid by oscillations.
(d) The direction-resolved dispersion relations for agents in the up-
per (positive direction, red line) and the lower (negative direction,
yellow line) half-plane for v0 = 0.5 and τ = 5. The corresponding
overall dispersion relation (total, blue line) oscillates between the
direction-resolved dispersion relations. Parameters used: N = 103,

LF = 20, ϕ = 0.1, Nruns = 102.

is initially stronger, but the envelopes of the peaks induced by
long delays have the longer decay time.

In Figs. 7(a)–7(c) we show the main results of this sec-
tion, which are the dispersion relations for different speeds
v0 and time delays τ . They were obtained as follows. We
evaluated the times Ti for the maximum signal strength θ̇i(t )
for all NNruns particles in all Nruns simulation runs. Then, we
calculated the distances di(Ti ) from the leader at time t = 0
to particle i. Finally, we averaged the values obtained for
the individual particles over Nruns nearest neighbors (the 〈•〉nn

average introduced in Sec. V). The relation of both averages
is shown in the plot.

For distances di ≈ LF /2 = 10 near the boundary of the
flock, the dispersion relations are strongly affected by bound-
ary effects, leading to a “flattening” of the curves. For all
considered speeds, a retardation of the interactions slows
the signal propagation through the system. In accord with
Ref. [56], the dispersion relations are diffusive (〈di〉nn ∼√〈Ti〉nn) for τ = 0 and small speeds v0. For a positive v0, in-
creasing τ leads to gradually more linear dispersion relations
with slopes of the order of the leader’s speed v0 sin ϕ relative
to the rest of the flock. Specifically, for v0 = 0.1 and ϕ = 0.1
we have v0 sin ϕ ≈ 0.01, and we find the slope 0.01 for τ = 5
and τ = 20. For v0 = 0.5 also the dispersion relation for τ = 0
has a significant linear part. The slopes corresponding to all
measured dispersion relations for this velocity are approxi-
mately 0.4, while v0 sin ϕ ≈ 0.5. The agreement between the
velocity of the leader relative to the rest of the flock and
the slopes of the dispersion relations strongly suggests that the
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spreading of information is, in these regimes, predominantly
due to the convective transport caused by the motion of the
leader and not due to the conductive transport effected by the
interparticle interactions within the flock.

For longer delay times, the dispersion relations exhibit
downward spikes periodically occurring with the period τ +
1, an overall linear increase of the upper envelope, and a
diffusive increase in the lower envelope. In Fig. 7(d) we show
that the dispersion relations roughly oscillate between the
values attained for specific spreading directions of the signal
with respect to the leader. To demonstrate this, we display
dispersion relations calculated from the part of the flock in
the upper (positive) and lower (negative) half-planes. For the
chosen turning angle ϕ = 0.1, the leader moves toward the
former and away from the latter. In accord with the findings
of Ref. [56], the dispersion relation for the positive direction
is, for large enough speed, linear, while the dispersion relation
for the negative direction remains diffusive, regardless of v0

and τ . One can thus conclude that introducing the time delay
induces some filtering out of the conductive component of
the dispersion relation (the weight given to the conductive
component corresponds to the periodically occurring spikes,
which involve only a few data points compared to the regions
between them, corresponding to the convective spreading).
Besides, it was found in Ref. [50] that increasing the time
delay for a nonzero speed v0 increases the effective speed
of the individual agents. As the convective component of the
dispersion relation becomes more pronounced with increasing
speed, these two effects make the dispersion relation gradually
more convective with increasing time delay (except for the
spikes).

Using a simplified spin-wave theory for the (continuous-
time) VM, valid for small perturbations around a common
direction of the whole flock, the dispersion relation for the
delay VM can be obtained analytically. The linearized model
is derived, e.g., in the Supplementary Information of Ref. [50].
It reads

η̃ϕ̇(r, t ) = Jnca2�ϕ(r, t − τ ) + Jnc[ϕ(r, t − τ ) − ϕ(r, t )]

+
√

2Da3ξ (r, t ), (4)

where ϕ(r, t ) describes fluctuations in orientation of the indi-
vidual particles. The positive parameters J and nc determine
the strength of the interparticle interactions, a > 0 denotes
a typical interparticle distance, η̃ > 0 sets the intrinsic re-
laxation timescale, and D determines the amplitude of the
Gaussian white noise ξ (r, t ). The corresponding dispersion
relation can be determined after neglecting the noise and
taking the Fourier transform of the linearized dynamical equa-
tion in space and time [25]. Denoting the Fourier variables
corresponding to space and time as ω and k, respectively, and
assuming just one spatial dimension, we obtain the transcen-
dental equation

η̃ω = −iJnc[(k2a2 − 1) exp(iωτ ) + 1]. (5)

For τ = 0, it yields the purely imaginary dispersion relation
ω(k) = −iJnca2k2, describing an exponentially damped dif-
fusive transport. For a nonzero delay,

ω(k) = i

τ
{−J̃ + Wn[(1 − a2k2)J̃ exp(J̃ )]}, (6)

n = 0,±1,±2, . . ., where Wn(.) is the nth branch of the
Lambert W function, which is a multivalued function fre-
quently entering solutions to time-delay systems [38], and
J̃ = Jncτ/η̃. For n �= 0 the dispersion relation has nonzero
real components which correspond to a damped a wavelike
(ballistic) transport [25]. Unfortunately, all these insights still
do not provide a fully satisfactory intuitive explanation of the
form of the dispersion relation observed in our simulations.
Gaining such an intuition will thus require additional efforts.

To put these results into a broader context, we note that,
from the point of view of natural systems, the spikes may
be considered an artifact of choosing precisely the same de-
lay time for all interactions. In practical applications, the
time delay is more likely to be randomly distributed among
the individuals, so that the spikes are expected to average
out, at least to some extent. With this in mind, the robust
conclusion is that the retarded interactions embodied in the
delay VM induce linear dispersion relations, similarly as to
what inertia does in a generalized VM with underdamped
orientations [25]. In the underdamped variant of the VM, the
dispersion relation can be derived analytically [71] and the
ballistic/convective transport can be intuitively explained as
a result of an additional (approximately) conserved degree of
freedom [25].

VI. LINEAR RESPONSE TO A LEADER

So far we have analyzed the response of a Vicsek flock with
retarded interactions in terms of signal propagation, as appro-
priate in the most general context of its applications. However,
in a more physics-focused context, it may be more natural to
interpret the results within the framework of linear response
theory. Close to equilibrium, noninvasive measurements of
equilibrium correlation functions suffice to know the response
functions for arbitrary weak perturbations [72]. For systems
far from equilibrium, like the VM, such practical relations
are generally unavailable [73–76]. Nonetheless, once the re-
sponse coefficients for a specific perturbation are determined,
the resulting phenomenological law still provides a valuable
description of the system’s response to that perturbation.

In accord with our previous discussion, we will investigate
the response of the delay VM to perturbations induced by a
(or various) leader(s). To provide results independent of initial
conditions, we consider perturbations that bring the system
from one steady state to another perturbed one. The VM
eventually converges to a steady state, which is independent
of the initial conditions, for a nonzero rotational noise and
if the model is solved, e.g., with periodic boundaries. The
collective maneuver scenario of Sec. III requires that the size
of the periodic box is inversely proportional to the curvature
of the leaders’ trajectory (so that it fits in the box), which is not
a suitable situation for computer analysis. On the other hand,
the perturbation scenario of Sec. IV induces a relaxation of
the system to its (slightly rotated) initial steady state, and one
can measure the characteristics of this relaxation, which have
to some extent been discussed in Sec. IV. We now turn to the
scenario of Ref. [58], where one applies a permanent torque
to the leader(s), which induces a steady state with a nonzero
circular flux of the particles.
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FIG. 8. (a) The probability distribution of the curvature (8) for
vanishing bias, σ = 0. (b) Average curvature as function of σ for
four delay times. (c) Corresponding variance. (d) Variance of cur-
vature as function delay time (symbols with error bars) and the
empirical fit aτ/(τ + b) with parameters a = 5.57 and b = 0.5 (solid
line). Parameters used: N = 103, NL = 0.05N, ρ0 = 4, v0 = 0.5, and
η = 0.1.

Specifically, we consider a system of N particles inside a
square box with sides of length L and periodic boundary con-
ditions. We again assume that the individual particles except
for the leader obey Eqs. (1) and (2). However, different from
the previous section, we consider a small but nonzero value
of the noise η, such that the unperturbed system eventually
reaches a highly ordered (yet noisy) nonequilibrium steady
state. We initialize the system at time t = 0 in a polarized
state, let it evolve until time tI when it reaches a steady state
independent of the initial data, and then switch on a pertur-
bation affecting NL randomly chosen leaders. Specifically, we
assume that velocities of the leaders obey the form

vL(t + 1) = v0TϕRη

[
vL(t ) +

∑
j �=i

ni j (t − τ )v j (t − τ )

]
,

(7)

where the operator Tϕ applies a deterministic rotation by an
angle ϕ to its argument. Following Ref. [58], we study how
this perturbation affects the discrete curvature in the overall
velocity, defined as

κ (t ) = �̄(t − 1) × �̄(t ), (8)

where �̄(t ) = 1/(Nv0)
∑

i vi(t ) denotes the mean orientation
of the flock at time t . The resulting dependence of the average
curvature 〈κ〉 on the (relative) strength σ ≡ ϕNL/N of the
perturbation is depicted in Fig. 8. In this section, averages
〈κ〉 ≡ limtI →∞ t−1

∫ tI +t
tI

dt ′κ (t ′) are calculated over time af-
ter the system reached the steady state, with t = 2×104 and
tI = 104. The shown error bars correspond to standard de-
viations of these averages computed from 10 independent
realizations of the numerical experiment.

Figure 8(a) illustrates that, for σ = 0, the flock turns ran-
domly and κ (t ) is a Gaussian random variable with zero
mean, 〈κ〉 = 0. Imposing a small directional bias σ � η to
the leaders induces an overall nonzero mean curvature,

〈κ〉 = ασ, (9)

which increases linearly with σ [see Fig. 8(b)]. On the other
hand, the variance, (�κ )2 ≡ 〈κ2〉 − 〈κ〉2, in Fig. 8(c) remains
constant. For our case of highly aligned flocks (small enough
η and large enough density N/L2), the slope α is approxi-
mately given by (1 + τ )−1. Notice how the individual curves
in Fig. 8(b) depart from the initially common straight line.
The linear-response regime is diminished for both long time
delays and large directional biases, and the expression for α

holds the better the smaller the product στ . The dependence
of the variance on the time delay saturates. Its functional form
is well parametrized by �κ2 ≈ aτ/(τ + b) [see Fig. 8(d)].
Furthermore, for dense flocks, the variance increases with the
noise as (�κ )2 ∝ η2, independent of the perturbation σ (for
the corresponding illustrations, see Ref. [58]).

In the Appendix we show how this behavior can be un-
derstood analytically, based on a simplified model. Here we
provide the emerging intuitive explanation. For vanishing de-
lay and in two dimensions, the curvature (8) can be rewritten
as κ (t ) = sin〈�θ〉N with 〈�θ〉N = N−1 ∑

i[θi(t ) − θi(t − 1)]
denoting the mean change of orientation during one time step.
For small perturbations ϕ, 〈�θ〉N � 1 and thus κ ≈ 〈�θ〉N .
For weak noise, high average density, and vanishing delay, the
local density of the VM is approximately homogeneous [64].
As a result, the total orientation (or information) N−1 ∑

i θi(t )
is for ϕ = 0 approximately conserved [56]. For ϕ > 0, it is
then reasonable to assume that the change in the total orien-
tation is directly given by the directional bias applied to the
leaders, i.e., 〈�θ〉N = 1/N

∑NL
1 ϕ = σ . For a nonzero delay,

the orientational change is stretched out over τ + 1 time steps,
reducing 〈�θ〉N by the factor τ + 1. Figure 8(b) can thus be
regarded as a verification of the (approximate) information
conservation in a highly ordered Vicsek flock. Large biases
ϕ can break the highly ordered state and introduce growing
density fluctuations which cause the breakdown of orienta-
tion conservation [56] and, as a consequence, linear response.
Similarly, as we have demonstrated above, long delays tend
to decouple the leaders from their neighborhoods, which also
induces fluctuations in density, with the same consequences.

In this vein, the variance of the curvature can be approxi-
mated as

�(κ )2 = �

(
1

N

∑
i

κi

)2

= 1

N
�(κi )

2, (10)

where κi = �θi. To expand the square, we assumed that the
orientational fluctuations �θi of individual agents are statis-
tically independent, which is sensible for small perturbations
ϕ of a highly aligned state. Assuming that the fluctuations are
caused solely by the noise, we get 〈�θ2

i 〉 ≈ ∫ η

−η
η̃2 d η̃/(2η) =

η2/3. Altogether, we thus find the variance �(κ )2 ∝ η2/N ,
which explains the findings in Ref. [58]. According to our ar-
gument, this scaling should be a direct consequence of the law
of large numbers. Introducing a finite delay enhances effects
of the noise on the dynamics and triggers oscillations [38].
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As a result, the curvature variance strongly increases with
the delay. Unfortunately we were not able to rationalize the
observed quantitative dependence of the variance on the time
delay, shown in Fig. 8(d), from the equations of motion.

VII. CONCLUSION AND OUTLOOK

In summary, we have studied the response to orientation
perturbations in the two-dimensional delay Vicsek model.
We have found that a time delay diminishes the ability of
strongly aligned systems to follow a leader moving along a
predetermined path (different from what has been reported
for inertia [55]) and increases the stability of these systems
against sudden local fluctuations of orientation. Both effects
are caused by the decreased information (orientation) propa-
gation through the system and the stretched time-correlations
in the system, due to the delay. Their combination explains the
findings in Refs. [49,50] that short delays facilitate and long
delays hinder flocking in the delay VM.

In the scenario of a sudden turning pulse applied to a
leader, the source of information or perturbation is well local-
ized in space and time. Inspired by [25], we used the induced
orientational acceleration as a measure for the signal strength
to study the propagation of information (orientation) through
the system. As typical for delay systems [38], a time delay
causes oscillations. In the present context, they are manifestly
seen in the orientational accelerations. Their amplitude, pe-
riod, and decay time (and thus system memory) all increase
with growing delay [50]. To measure the speed of informa-
tion propagation through the system, we used the maximum
of the acceleration pulse transmitted through the flock. We
found that the dispersion relation for the signal spreading is
diffusive (the distance traveled by the signal ∝ square root
of the traveled time) for small speeds and short time delays,
but becomes increasingly ballistic (linear) for long delays and
high speeds.

We have finally investigated the linear response of highly
ordered systems to a weak orientational bias, applied to a sub-
group of agents (leaders). We found that the overall change of
the flock’s orientation is a linear function of the perturbation
for short enough time delays and weak enough orientational
biases. The linear response regime coincides with the regime
of low density fluctuations, where the total information (or
average orientation) of the flock is (approximately) conserved.
Furthermore, we provided intuitive and analytical arguments
for the observed functional dependencies of the mean total
orientational change and the corresponding variance.

While our work provides a first understanding of retar-
dation effects in active many-body dynamics, it also raises
some further questions. The choice of a universal value of
the discrete time delay for all members of the flock certainly
oversimplifies the conditions prevailing in natural flocks and
swarms, and it would be desirable to get a better under-
standing of the concomitant internal averaging and its role
in suppressing the oscillatory instabilities observed in our
idealized model. Also, the reaction capabilities of natural
agents will usually be described by more complicated memory
functions [38,77]. Further, it could be interesting to investigate
more thoroughly the effects of time delay on the collec-
tive memory of the flock, which is an important ingredient

in the understanding of so-called swarm intelligence [7,34].
Our present results confirm the natural expectation that the
system’s relaxation time is sensitive to the delay time. Another
direction could be to study information spreading in more
complex interaction networks, e.g., with distributed individual
weights for the flock members. Such leadership hierarchies
are often observed in natural groups [17,18], and it has been
argued that they increase the group fitness [18–20]. For in-
stance, it is known that a few (well-connected) agents, known
as superspreaders, lead to a rapid increase in disease (or fad)
spreading in epidemiology [78–80].
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APPENDIX: EXACTLY SOLVABLE MODEL

The dependence of the first two moments of the mean
curvature (8) on the delay time τ , discussed in Sec. VI, can be
obtained using a simple mean-field model. Consider a system
of N mutually interacting particles with a single leader (index
L) that interacts with the average flock orientation θ0(t ) of
the other N − 1 flock members. The orientations obey the
dynamical equations

θL(t + 1) = 1

N
[θL(t ) + (N − 1)θ0(t − τ )] + ϕ + ξL(t ),

(A1)

θ0(t + 1)= 1

N
[θ0(t )+ (N − 2)θ0(t − τ )+ θL(t − τ )]+ ξ0(t ).

(A2)

The symbols ξL(t ) and ξ0(t ) denote independent δ-correlated
angular noises uniformly distributed within the interval
[−η, η]. The mean orientation of the system, O(t ) ≡
〈θi(t )〉N = [θL(t ) + (N − 1)θ0(t )]/N , obeys the equation

O(t + 1) = 1

N
[O(t ) + (N − 1)O(t − τ )] + σ + ξ̂ (t ) (A3)

with σ = ϕ/N . The noise ξ̂ (t ) = [ξL(t ) + (N − 1)ξ0(t )]/N
has variance 〈ξ̂ 2〉 = (N2 − 2N + 2)η2/(3N2).

The difference equation (A3) for the column vector O(t ) ≡
(O(t ), . . . , O(t − τ ))ᵀ can be solved using its matrix repre-
sentation,

O(t + 1) = MO(t ) + σ + ξ̂(t ). (A4)

Here σ ≡ (σ, 0, . . . , 0)ᵀ and ξ̂(t ) ≡ (ξ̂ (t ), 0, . . . , 0)ᵀ are col-
umn vectors of length τ + 1, and M is a (τ + 1) × (τ + 1)
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square matrix with all elements equal to zero except for M11 =
1/N , M1(τ+1) = (N − 1)/N , and M(i+1)i = 1, i = 1, . . . , τ .
The formal solution to this equation is

O(t ) = Mt O(0) +
t−1∑
i=0

Mi[σ + ξ̂(t − i − 1)], (A5)

where O(0) is the initial condition, which we set to 0 (all
particles aligned with the x axis). Our goal is to calculate the
change κ (t ) = O(t ) − O(t − 1) of the mean orientation. The
corresponding vector κ(t ) = (κ (t ), . . . , κ (t − τ ))ᵀ is given
by O(t ) − O(t − 1) and reads

κ(t )=Mt−1[σ + ξ̂(0)] +
t−2∑
i=0

Mi[ξ̂(t − i − 1) − ξ̂(t − i − 2)].

(A6)

At late times, κ (t ) reaches a steady state, in which all elements
of the vector κ(t ) have the same mean and variance, given by
〈κ〉 and 〈�κ2〉. Specifically, we find

〈κ〉 = M∞σ, (A7)

〈κ2〉 − 〈κ〉2 = 〈ξ̂ 2〉R11, (A8)

where M∞ ≡ limt→∞ Mt , R = Mᵀ
∞M∞ + 2S − Mᵀ

∞S −
SM∞, and S ≡ ∑∞

i=0(Mi )ᵀMi. The right-hand side of
Eq. (A8) results from multiplying the sum in Eq. (A6) by
itself and using the Markov condition 〈ξ̂ (t )ξ̂ (t ′)〉 = 〈ξ̂ 2〉δtt ′

for the stationary noise correlation function.
It is straightforward to verify, e.g., by calculating left and

right eigenvectors corresponding to the eigenvalue 1, that the

FIG. 9. Noise-averaged stationary orientational change. Symbols
depict the mean (a) and variance (b) as functions of the delay time.
The dashed line in (a) is the analytical prediction (A9), and the
dashed line in (b) is the empirical fit aτ/(τ + b) with parameters
a = 0.17 and b = 0.93.

stationary matrix M∞ has all elements in its first column equal
to c(N − 1)/N , with c = [(N − 1)/N + τ ]−1. Its remaining
elements are equal to c. Hence, we find that all elements of 〈κ〉
are given by σc, and thus, in agreement with the discussion in
Sec. VI,

〈κ〉 = σ

(N − 1)/N + τ
. (A9)

In Fig. 9(a) we show agreement of this prediction with a
numerical solution to Eqs. (A1) and (A2).

Equation (A8) is a scalar product of two identical vectors
of length (τ + 1) containing in all entries the variance (�κ )2.
Thus we find

(�κ )2 = N2 − 2N + 2

N2

η2

3(τ + 1)
R11. (A10)

While we were not able to extract the τ and N dependence of
the matrix element R11 analytically, Fig. 9(b) shows that the
τ dependence of the calculated (κ )2 is well described by the
empirical formula aτ/(τ + b), already employed in Sec. VI.
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