
PHYSICAL REVIEW E 106, 054611 (2022)

Low-frequency vibrational states in ideal glasses with random pinning
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Glasses exhibit spatially localized vibrations in the low-frequency regime. These localized modes emerge
below the boson peak frequency ωBP, and their vibrational densities of state follow g(ω) ∝ ω4 (ω is frequency).
Here, we attempt to address how the localized vibrations behave through the ideal glass transition. To do this,
we employ a random pinning method, which enables us to study the thermodynamic glass transition. We find
that the localized vibrations survive even in equilibrium glass states. Remarkably, the localized vibrations still
maintain the properties of appearance below ωBP and g(ω) ∝ ω4. Our results provide important insight into the
material properties of ideal glasses.
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I. INTRODUCTION

Recent progress has been made in our understanding of
low-frequency vibration in glasses. Mean-field theories such
as the effective medium theory (EMT) [1] and the replica
theory [2] state that the vibrational density of states (VDOS)
g(ω) follows the non-Debye scaling law of g(ω) ∝ ω2, which
is different from the Debye law of g(ω) ∝ ωd−1 of crystals
(d denotes the spatial dimension) [3]. Numerical simula-
tions verified this theoretical prediction of g(ω) ∝ ω2 in the
large-dimension limit [4,5]. On the other hand, simulations of
finite-dimensional glasses indicated that scaling of the VDOS
g(ω) ∝ ω4 emerges even in the low-frequency regime [6–8].
This ω4 scaling occurs due to the contribution of spatially
localized modes. Most recently, theoretical works [9–11] suc-
cessfully explained this scaling law in the framework of the
EMT.

The localized modes in glasses have been intensively stud-
ied in recent years. First, these modes have a spatial structure
in which the strongly vibrating unstable core is surrounded
by an energetically stable far-field region [6,12]. Therefore,
the modes are referred to as “quasi”-localized vibrations.
Second, simulations of a three-dimensional polydisperse sys-
tem indicated that the coefficient A4 of the ω4 scaling, i.e.,
g(ω) = A4ω

4, significantly decreases as the temperature of
equilibrium configurations is lowered [13–15]. The study used
the swap Monte Carlo (MC) method [16] to anneal the system
down to temperatures far below the mode-coupling temper-
ature [13]. If we extrapolate this result, it might be expected
that the number of localized modes further decreases and even
vanishes as the temperature is lowered toward the so-called
ideal glass transition temperature. In this work, we attempt
to address how the localized vibrations behave through the
thermodynamic (ideal) glass transition.

Proper sampling of glass configurations at low tem-
peratures is challenging. At low temperatures, particularly
below the mode-coupling temperature Tc, the relaxation time
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dramatically increases and exceeds the realistic computational
time with ordinary molecular dynamics (MD) or MC simula-
tions. Even when employing sampling techniques such as the
replica-exchange method [17,18], it is difficult to sample con-
figurations at temperatures far below Tc [19,20]. Even if the
system is tailored to the state-of-the-art swap MC [16,21,22],
the accessible temperature is limited to approximately the
“experimental” glass transition temperature Tg [16], which is
much higher than the “thermodynamic” (ideal) glass transi-
tion temperature that we focus on in the present work.

The method of random pinning can realize the equilibrium
glass states. It has been shown theoretically in the mean-field
framework that freezing a finite fraction of particles’ positions
can shift the thermodynamic glass transition to a relatively
high temperature near Tc [23]. In numerical simulations of
three-dimensional glass formers, thermodynamically equilib-
rium glass configurations were successfully realized with
vanishing configurational entropy [24] and distinctive over-
lap statistics of the thermodynamic glass transition [24,25].
Using the random pinning technique, dynamics have been
studied not only in the supercooled liquid regime [26–31]
but also in the equilibrium glass states [32]. Interestingly,
it was reported that transitions between different basins are
induced by localized excitations even in equilibrium glasses.
Moreover, experimental implementation of random pinning
was successfully achieved by optical tweezers for colloidal
glasses [33].

Vibrational states of randomly pinned systems were stud-
ied by Angelani et al. [34]. They revealed the ω4 scaling law
of the VDOS, but up to 90 % of the particles were pinned
in their systems. In this case, only a small number of un-
pinned particles are distributed among the chunk of pinned
particles, so it is doubtful that these systems are reasonable for
studying vibrational eigenmodes in solid states. In addition,
and much more important, the researchers focused on rela-
tively high temperatures T = 3Tc where the thermodynamic
glass transition never occurs and only a crossover takes place
[23–25]. Thus, it still remains to be addressed whether the
localized vibrations can survive in thermodynamically equi-
librium glasses.
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Here, we deal with a lower temperature around Tc and
generate the equilibrium glass states. We investigate the low-
frequency vibrational properties of ideal glasses. The random
pinning method has the advantage of suppressing phonons
and solving hybridizations between localized vibrations and
phonons [34]. We can therefore focus directly on the localized
modes. Remarkably, we find that localized vibrations and the
boson peak (BP; excess low-frequency modes) survive even in
ideal glasses. In particular, localized vibrations always emerge
below the BP frequency ωBP and maintain the scaling law of
g(ω) ∝ ω4 through the thermodynamic glass transition. Our
findings provide important insight into the material properties
of ideal glasses.

II. METHODS

A. Model

We examine a standard model of amorphous systems:
the Kob-Andersen (KA) model [35,36] in three-dimensional
space (d = 3). Each particle interacts with the Lennard-Jones
potential

φ(ri j ) = 4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6]
. (1)

Since the continuity of the pair force strongly affects the
properties of modes at low frequencies [8], we employ the
force-shifted potential

V (ri j ) = φ
(
ri j ) − φ(rcut

i j

) − φ′(rcut
i j

)(
ri j − rcut

i j

)
, (2)

where rcut
i j = 2.5σi j . Both types of particles (A and B) have the

same mass m, which we set to unity. The interaction param-
eters are chosen as follows: σAA = 1.0, σAB = 0.8, σBB =
0.88, εAA = 1.0, εAB = 1.5, εBB = 0.5. Particles A and B
are mixed in a ratio of 80:20 and are enclosed in a square box
with periodic boundary conditions. The linear size L of the
box is determined by the number density ρ = 1.204. Lengths,
energies, and time are measured in units of σAA, εAA, and
(mσ 2

AA/εAA)1/2, respectively. The Boltzmann constant kB is
set to unity.

B. Preparation of equilibrium configurations

We carry out MD simulations to prepare an equilibrium
(supercooled) liquid state of N particles at temperature Tp

using in-house code. Here, we set Tp to 0.45, which is close
to the mode-coupling temperature Tc = 0.435 [35]. Starting
from the equilibrium configurations at the onset temperature
To = 1.0, we run MD simulations in the NVT ensemble using
the Nosé-Hoover thermostat [37,38] for 50 times the relax-
ation time τα at Tp. The time step of MD is 	t = 0.005.
For the case of N = 1000, we perform this procedure inde-
pendently to sample the configurations at Tp. For the case
of N = 4000, we continue the MD simulation and sample
the configurations after each 2τα elapses, reaching more than
1000τα as the total simulation length. We perform 48 indepen-
dent MD runs for the case of N = 4000. τα is defined by the
self-intermediate scattering function as Fs(k, τα ) = e−1 with
k = 7.25, corresponding to the peak of the structure factor
[35]. We call the equilibrium (unpinned) configurations parent
configurations. We have checked the lack of crystallization

FIG. 1. Static structure factor S(k) of parent configurations. The
system size is N = 4000. The data is calculated for AA correlations.

in parent configurations by calculating static structure factor
S(k) (Fig. 1).

C. Energy minimization and vibrational analysis
with pinned particles

Next, we randomly choose cN particles where c is in a
range of [0, 1] and permanently freeze those cN particles.
Thus, Nup = N − cN unpinned particles can move in the sys-
tem. Note that the system maintains the equilibrium state
and does not go into the nonequilibrium state through the
random pinning operation [23]. The phase diagram of the
model studied in this paper is thoroughly studied by Ozawa
et al. [24]. The thermodynamic glass transition line TK (c) is
determined as entropy vanishing points for each pinning frac-
tion c. The range of the fraction c in the present study is shown
in the phase diagram (Fig. 2), as well as the putative ideal

FIG. 2. Phase diagram of randomly pinned Kob-Andersen sys-
tem. Data of the thermodynamic glass transition line TK (c) of
vanishing entropy is obtained from Ref. [24]. The ideal glass tran-
sition temperature of the Kob-Andersen model without pinning is
estimated as TK ≈ 0.3 [39]. Our work covers both the supercooled
phase and equilibrium glass phase as well as the thermodynamic
glass transition line TK (c) at our parent configuration temperature
Tp = 0.45 (indicated as the red line).
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FIG. 3. Participation ratio pk versus eigenfrequency ωk . Fractions of pinned particles are (a) c = 0.00, (b) 0.05, (c) 0.10, and (d) 0.20.
Present data are constructed from 1000 configurations, each of which is composed of N = 1000 particles. Arrows indicate values of the boson
peak frequency ωBP.

glass transition temperature TK ≈ 0.3 at c = 0.00 [39]. At our
equilibration temperature Tp = 0.45, equilibrium glass states
are clearly observed. As c increases from zero, the system
undergoes the thermodynamic glass transition at c ≈ 0.10, at
which the configurational entropy vanishes [24].

To select pinned particles in parent configurations, we
use configurations with cN particles as “templates” [24,25].
For these template configurations, the same MD simulations
of the KA system are performed at the onset temperature
To = 1.0 for the same number of configurations as parent
configurations. When selecting pinned particles in the parent
configurations, we first rescale the positions of particles in the
template to set the linear size of the simulation box. We sweep
all particles in the parent configuration to find the closest
one for each particle in the template. The cN particles se-
lected by this procedure are the pinned particles of the parent
configuration.

At each value of c, we quench the system to the inherent
structure by minimizing the system potential, where we dis-
place Nup unpinned particles while keeping frozen cN pinned
particles. For the minimization, we use the FIRE algorithm
[40]. Since the positions of the particles do not change if the
forces acting on them are zero, we fill the forces of the pinned
particles with zero after the standard calculation of pair forces
[37]. The convergence of the algorithm is judged by whether
the maximum value of the norms of the forces acting on each
(unpinned) particle is less than 1.5 × 10−12.

We finally perform vibrational mode analysis. After energy
minimization, we calculate the dynamical matrix M, a real
symmetric matrix whose size is d (1 − c)N × d (1 − c)N . Let
P be the set of pinned particle indices. Suppose i /∈ P; then,
the diagonal part of M is

Mii =
∑
j∈P

∂2V

∂ri∂r j
+

N∑
j=1
j �=i
j /∈P

∂2V

∂ri∂r j
, (3)

where V = ∑
i, j V (ri j ) is the potential of the system. The off-

diagonal part of M is

Mi j = ∂2V

∂ri∂r j
, i, j /∈ P. (4)

The eigenvalue problem of M is solved numerically us-
ing the EIGEN package [41] to obtain all eigenvalues λk

and eigenvectors ek = (e1
k, . . . , eNup

k ) for each eigenmode
k = 1, 2, . . . , 3Nup. For the system with N = 40 000, we use
the SCIPY package [42] to obtain the smallest eigenvalue
and the corresponding eigenvector of this sparse matrix. The
eigenfrequency ωk is determined as ωk = √

λk . Note that
Nup unpinned particles participate in the vibrations, while cN
pinned particles are always frozen with no vibrations.

III. RESULTS

We examine the participation ratio pk of each vibrational
eigenmode k, which is defined as pk = 1/(Nup

∑Nup

i=1 |ei
k|4) and

quantifies the fraction of particles that participate in the vibra-
tion (Nup pk quantifies the number of participating particles)
[43,44]. As in the extreme cases, pk = 1 (Nup pk = Nup) for an
ideal mode in which all the unpinned particles vibrate equally,
and pk = 1/Nup � 1 (Nup pk = 1) for an ideal mode involving
only one particle. Figure 3 presents data of pk versus ωk for
the configurations with (a) c = 0.00, (b) 0.05, (c) 0.10, and (d)
0.20. Note that the thermodynamic glass transition occurs at
approximately c = 0.10, and the system of c = 0.20 is located
deep in the ideal glass phase. From the figure, we clearly
recognize that the localized modes survive and do not vanish
through the glass transition. In addition, for all cases of c,
localized modes always exist below the BP frequency ωBP (see
Fig. 7 for the BP and ωBP).

To quantitatively see the changes in the number of these
localized modes with c, particularly across the glass transition,
we measure the VDOS

g(ω) = 1

Nmode

∑
k

δ(ω − ωk ), (5)

where Nmode is the number of all nonzero eigenmodes, and
δ(x) is the Dirac delta function. The number of configurations
used to calculate the VDOS is given in Table I. Figure 4
presents data of g(ω) for several different values of c from the

TABLE I. Number of samples used to calculate the VDOS.

c 0.00 0.03 0.05 0.08 0.10 0.12 0.20

N = 1000 58 800 58 800 58 800 58 800 58 800 58 800
N = 4000 24 080 24 080 24 080 24 080 24 080 24 080 24 080
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FIG. 4. The vibrational density of states for several different
values of c. System is composed of N = 4000 particles. Dashed line
indicates scaling law of g(ω) ∝ ω4.

unpinned case of c = 0.00 to the equilibrium glass cases of
c > 0.10. The figure clearly demonstrates the ω4 scaling law
for all cases of c. Here, we note that there are some finite-size
effects found in the calculation of g(ω) [45]. When c = 0.00,
the VDOS follows g(ω) ∝ ω3.5 for N = 1000 and g(ω) ∝ ω4

for N = 4000 (Fig. 5). However, for the equilibrium glasses
of c > 0.10, we do not see such size effects. It is worth
emphasizing that even deep in the equilibrium glass state at
c = 0.20 (Fig. 2), the VDOS follows g(ω) ∝ ω4.

Since the VDOS always takes the form of g(ω) = A4ω
4, we

measure how the coefficient A4 depends on c. To determine
the value of A4 precisely, we calculate the cumulative distribu-
tion function C(ω) = ∫ ω

0 g(ω′)dω′ (see the inset of Fig. 6). We
evaluate the height of the low-frequency plateau of C(ω)/ω5

in the region of 0.7 < ω < 1.5 as A4. Figure 6 plots A4 as
a function of c. From the figure, we see that A4 decreases
monotonically with increasing c. Note that the dependence of
A4 on c is always continuous without any signal of disconti-
nuities, although the system crosses the thermodynamic glass
transition to the ideal glass state. Therefore, we conclude that
the localized vibrations change continuously while maintain-

FIG. 5. The vibrational density of states for the cases of (a) N =
1000 and (b) N = 4000. Solid and dashed lines indicate g(ω) ∝ ω3.5

and g(ω) ∝ ω4, respectively.

FIG. 6. Coefficient A4 in ω4 scaling law, g(ω) = A4ω
4. A4 is plot-

ted as a function of c. Inset shows reduced cumulative distribution
function C(ω)/ω5 for several values of c.

ing the ω4 scaling law. This behavior also indicates that the
bottom of the potential energy landscape deforms smoothly
through the thermodynamic glass transition. In Ref. [46], it is
revealed that the increase in the fraction of pinned particles
corresponds to the change in the global landscape from a
multiple-metabasin structure to a single-funnel structure. Our
result suggests that the local structure of the bottoms of basins
is shared throughout this change in the landscape structure,
reflecting the thermodynamic glass transition.

Next, we focus on the BP, the excess of the vibrational
modes to the Debye prediction, which is recognized as the
excess value in the reduced VDOS g(ω)/ω2 and is ubiqui-
tously observed in many glasses [47–49]. Figure 7 presents
data of the reduced VDOS and demonstrates that the BP
always persists through the thermodynamic glass transition,
as do the localized modes. As shown in Fig. 7, the peak height
gradually decreases, and the peak frequency ωBP increases
as c increases. This behavior is consistent with observations
at higher temperatures Tp = 3Tc [34], but the present case
crosses the glass transition (Fig. 2). An experimental study
of polymeric glass formers reported that the BP can disappear

FIG. 7. Reduced vibrational density of states g(ω)/ω2 for several
values of c. Data exhibit the boson peak for all cases of c.
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FIG. 8. Decay profile d (r) of the lowest localized mode for sev-
eral values of c. System is composed of N = 40 000 particles. Note
that when c = 0.00, we pick the sixth lowest frequency mode with
pk = 2.99 × 10−4. Dashed line indicates the power-law behavior of
d (r) ∝ r−2.

in the ideal glass states [50]. However, our result suggests that
BP can persist even in ideal glass states.

It has been understood that the localized modes originate
from BP [51,52]. The vibrational modes in the BP regime
decrease to the lower-frequency regime to become the local-
ized modes due to the effects of the repulsive interactions
between particles. Thus, the BP and localized modes exist
concurrently, and the localized modes appear below the BP
frequency [7]. From Figs. 3 and 7, we can confirm this feature
is also true for the present equilibrium glasses. Note that in
particulate gels that are low-density amorphous solids, neither
the BP nor the localized modes are observed [53].

Finally, we probe the spatial structure of the localized
modes. We pick up the “core” particle that vibrates with the
largest displacement |ei

k| and then measure how displacements
|ei

k| of the other particles decay with distance r from the
core particle defined by argmaxi|ei

k|. Therefore, we calculate
d (r) = |ei

k|/ maxi |ei
k| as a function of r. (Note that we take

the median of each contribution |ei
k| from particles inside a

shell with radius r.) Figure 8 plots d (r) as a function of r
for several different values of c. It is well known that for the
unpinned system of c = 0.00, the localized modes hybridize
with phonons, which leads to the power-law decay of d (r) ∝
r−2 (see the dashed line; note that this behavior is obscured by
the finite-size effect in Fig. 8) [6]. However, in the pinned sys-
tems of c > 0, d (r) follows rather steep, exponential decay.
This is because phonons are suppressed in the pinned systems
due to the break of translational invariance [34]. (This point
can be recognized in data of the participation ratio in Fig. 3,
i.e., we observe a “tip” at c = 0.00 that corresponds to the
phonons, whereas the tip is totally absent at c = 0.20.) Thus,
we can confirm from the data of d (r) that the pinned systems
show “bare” or “truly” localized modes without hybridization
with phonons.

IV. SUMMARY AND DISCUSSION

In summary, we study ideal glasses using the random pin-
ning method. We find that the localized vibrational modes

and the BP continuously evolve through the thermody-
namic glass transition and survive even in ideal glass states.
Remarkably, the ω4 scaling law is robust through the glass
transition. Additionally, the localized modes always exist be-
low the BP frequency ωBP, indicating that they originate from
the BP modes.

In the present work, we used the random pinning method,
which possesses two advantages. First, it can shift the glass
transition to a higher temperature region [23–25] such that
we can simulate the system experiencing the thermody-
namic glass transition within a reasonable computational cost.
Second, it can suppress phonons in the system and solve
hybridizations of localized vibrations with the phonons [34]
such that we can analyze the bare localized vibrations. This
second point is important since hybridization with phonons
can induce harmful consequences, e.g., finite-size effects in
the calculation of the VDOS [45] (see also the most recent
remark [54]).

In addition, thanks to the suppression of phonons, we can
focus directly on effects from the bare localized modes in
glasses. Recent work on plasticity [55] indicated that the
yielding of pinned glasses is governed by intensive events
without brittle stress drops. They also found that system-
spanning rearrangement events are totally absent during
plastic events. These properties of yielding, which are caused
by the bare localized modes, are markedly different from those
in the unpinned glasses where the localized modes hybridize
with phonons. It will be interesting in the future to study the
role of bare localized vibrations in other properties, e.g., the
anharmonic contribution of entropy [32] and phonon transport
[56]. Additionally, to disentangle localized vibrations from
phonons, another method was proposed to implement an ar-
tificial potential that acts as a high-pass filter [57].

We emphasize that the ω4 scaling law is very robust, per-
sisting in the ideal glass states. This scaling persists whether
the localized vibrations hybridize with the phonons (as in
unpinned systems) or not (as in pinned systems). We can
also find ω4 scaling in many types of glasses [58–60]. This
robustness may occur because the ω4 scaling can be explained
by simple phenomenological arguments [61,62] as well as the
EMT framework [9–11].

As a final remark, the present results provide useful insight
into the material properties of equilibrium glasses. Many past
works studied experimental, nonequilibrium glasses and elu-
cidated that the low-frequency vibrational modes play central
roles in, e.g., responses under shear deformations [63–65],
heterogeneous thermal relaxations [66], nonaffine responses
of elasticity [67,68], and two-level systems [69–71]. Since the
low-frequency modes also survive in ideal glasses, we expect
that equilibrium glasses share the properties of nonequilib-
rium glasses.
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