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Effect of boundaries on displacements and motion in two-dimensional fluid
or elastic films and membranes
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Thin fluid or elastic films and membranes are found in nature and technology, for instance, as confinements of
living cells or in loudspeakers. When applying a net force, the resulting flows in an unbounded two-dimensional
incompressible low-Reynolds-number fluid or displacements in a two-dimensional linearly elastic solid seem
to diverge logarithmically with the distance from the force center, which has led to some debate. Recently, we
have demonstrated that such divergences cancel when the total (net) force vanishes. Here, we illustrate that
if a net force is present, the boundaries play a prominent role. Already a single no-slip boundary regulates
the flow and displacement fields and leads to their decay to leading order inversely in distance from a force
center and the boundary. In other words, it is the boundary that stabilizes the system in this situation, unlike
the three-dimensional case, where an unbounded medium by itself is able to absorb a net force. We quantify
the mobility and displaceability of an inclusion as a function of the distance from the boundary, as well as
interactions between different inclusions. In the case of free-slip boundary conditions, a kinked boundary is
necessary to achieve stabilization.
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I. INTRODUCTION

In the past, several studies addressed the scenario of impos-
ing locally concentrated forces on the bulk of incompressible
fluids under low-Reynolds-number conditions [1,2] and lin-
early elastic solids [3]. Mainly, this is achieved by inserting
discrete objects into continuous media. External forces are
exerted on these objects that transmit these forces to their
surroundings. If other immersed or embedded discrete objects
are present, they are exposed to the flow or deformation fields.
Corresponding interactions between the inclusions as medi-
ated by their environment result. Overall, such situations were
investigated for viscous fluids [1,2,4,5], elastic solids [6–10],
and, to some degree, viscoelastic media [11–13].

In three-dimensional bulk systems, the flows or displace-
ments introduced by a localized force center decay inversely
with the distance from that force center. This spatial de-
pendence is reflected by the associated Green’s function
for the underlying equations, which vanishes at infinite dis-
tance [1,2,14]. Remarkably, the situation is different for
two-dimensional systems. Effectively, the equations of motion
for thin fluid films can be reduced to two-dimensional in-plane
spatial variations [15]. Moreover, such situations arise when
the equations of linear elasticity for thin elastic membranes
are, in effect, reduced to two dimensions [3], specifically when
assuming so-called plane stresses. Apart from such systems of
small thickness, the description of three-dimensional systems
of vanishing spatial derivatives along the third dimension also
reduces to two dimensions in states of so-called plane strain.
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In contrast to the three-dimensional case, a two-
dimensional system is not stable against a net force acting
on its inside. Specifically, the flows or displacements diverge
logarithmically with the distance from a concentrated force
center [16], which is also reflected by the associated Green’s
function [17]. Previously, it was argued that this signals a
breakdown of the linear theory and that nonlinear contribu-
tions then become important [18]. In a previous work, we
have taken a different point of view and demonstrated that
the logarithmic divergence does not appear if the net forces
on the system sum up to zero [19]. An example are inclu-
sions that pairwise exert forces onto each other according to
Newton’s third law, which they then transmit to the fluid or
elastic two-dimensional environment, implying vanishing net
force.

Here, we address what actually happens in two-
dimensional situations when a net force does act at a certain
position onto the two-dimensional system. In fact, it turns out
that the boundaries play a central role in this case. Naturally,
any real system has a boundary and needs to be fixed or
clamped in some way if overall displacement is to be avoided.
The diverging Green’s function in two dimensions indicates
that the fixed boundary becomes crucial, no matter how far
away the force center is located. At the same time, we show
that one fixed no-slip boundary in an otherwise infinitely
extended two-dimensional system is sufficient to stabilize the
situation and to cancel the divergence. In other words, there
is no divergence in the two-dimensional half space under no-
slip boundary conditions. Fluid flows or displacements vanish
at infinite distance from the boundary and the force center.
Still, the underlying equations remain completely linear and
nonlinearities are not necessary to regulate the system. Similar
regularization is achieved for free-slip boundary conditions if
a kink is introduced at the boundary.
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We begin with an overview of the underlying equations for
the continuous medium in Sec. II, where we also intro-
duce the appropriate Green’s function in the presence of one
no-slip boundary for an otherwise infinitely extended two-
dimensional system. Next, we interpret in Sec. III the result
concerning the mobility and displaceability of one inclusion
within the system as a function of the distance from the bound-
ary and the direction of displacement. In Sec. IV, we address
the mutual interactions between inclusions mediated through
the fluid or elastic environment. We add related remarks con-
cerning free-slip boundary conditions at a kinked boundary
in Sec. V. In Sec. VI, we evaluate mediated interactions in
the case of the free-slip geometry. Finally, we conclude in
Sec. VII.

II. GREEN’S FUNCTION FOR THE TWO-DIMENSIONAL
HALF SPACE

In the following, we present the solution by analyzing the
underlying equations for displacements in an isotropic, homo-
geneous, linearly elastic medium. The solution for flows in an
incompressible fluid under low-Reynolds-number conditions
is formally obtained in these results by setting the Poisson
ratio, associated with the compressibility of linearly elastic
materials, to ν → 1/2. Moreover, the shear modulus μ in the
elasticity solution needs to be replaced by the viscosity η

and the displacement field u(x) by the velocity field of the
fluid flow v(x) in transferring the results to low-Reynolds-
number hydrodynamics. In these expressions, x refers to the
spatial position as measured from the origin of our coordinate
system.

We start from the Navier-Cauchy equations,

∇2u(x) + 1

1 − 2ν
∇ · ∇u(x) = − 1

μ
f (x), (1)

so that f (x) represents the force density acting on the inside
of the elastic material. In the following, we interpret these
equations strictly in two dimensions, so that x marks the posi-
tion vector in the Cartesian xz plane. Likewise, both u(x) and
f (x) are considered as two-dimensional in-plane vector fields.
The associated Green’s function follows by solving Eq. (1) for
f (x) = F δ(x − x0), where δ denotes the Dirac delta function
and F is a force vector.

The elastic system fills the half space z � 0. A no-slip
boundary is introduced at z = 0, that is,

u(z = 0) = 0. (2)

The point force F is positioned at a distance h from the
boundary, which implies ẑ · x0 = z0 = h. Figure 1 illustrates
the geometry that we envision. Additionally, we set

r = x − x0, (3)

so that r actually measures the spatial position relative to the
position of the point force. We introduce the image location
that results from mirroring the position x0 at z = 0. To this
end, we employ the reflection operator Î − 2ẑẑ, where Î de-
notes the unit matrix. Thus, the position of the image beyond
the boundary at z = 0 becomes (Î − 2ẑẑ) · x0 = x0 − 2hẑ. By

FIG. 1. Illustration of the geometry considered for a no-slip
boundary at z = 0. A force F acts at a pointlike force center at
position x and distance h from the boundary on a semi-infinite
elastic medium that occupies the half space z � 0. We obtain the
image position of the mirrored force (Î − 2ẑẑ) · F via (Î − 2ẑẑ) · x0.
In addition, we introduce the abbreviations r and R as defined in
Eqs. (3) and (4), respectively.

further definition,

R = r + 2hẑ = x − (Î − 2ẑẑ) · x0 = x − x0 + 2hẑ (4)

measures the spatial positions relative to the location of the
image.

To derive the Green’s function B(r), we follow the scheme
outlined for three-dimensional systems [20]. We split the
Green’s function as

B(r) = G(r) − G(R) + W(R), (5)

where G(r) denotes the Green’s function for the infinitely
extended two-dimensional system,

G(r) = 1

8π (1 − ν)μ

[
−(3 − 4ν) ln(r) Î + rr

r2

]
. (6)

Here, rr marks the dyadic product and r = |r|. The displace-
ment field follows as u(x) = B(x − x0) · F.

Equation (5) first includes through G(r) the consequences
of the physically present pointlike force center acting at po-
sition x0 on the elastic material. Next, through −G(R), we
include the mirrored pointlike counterforce center. That is, we
mirror the position x0 at z = 0 to x0 − 2hẑ and there locate
a counterforce of equal magnitude but opposite orientation.
Yet, the displacements induced by the physical and the image
force do not satisfy the no-slip boundary conditions at z = 0.
We therefore introduce via W(R) an additional image system
at x0 − 2hẑ to ensure that the no-slip boundary condition
at z = 0 is met. W(R) must, for z � 0, satisfy Eq. (1) for
f (x) = 0. We obtain W(R) by Fourier transforming Eq. (1) as
well as the boundary condition with respect to the transverse
coordinate [21]. In this context, we benefit from introducing
an auxiliary field P(R) = ∇ · W(R) [20]. In Fourier space,
we can solve for the searched-for quantities and determine the
remaining coefficients from the boundary conditions [20]. The
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final result is obtained after inverse transformation as

B(r) = 1

8π (1 − ν)μ

[
−(3 − 4ν) ln(r) Î + rr

r2

+ (3 − 4ν) ln(R) Î − R R
R2

]

+ h

4π (1 − ν)μ

1

R2

[
(ẑx̂ + x̂ẑ)Rx

− Rz − h

3 − 4ν

{
− R2

x − R2
z

R2
Î + 2(x̂ẑ − ẑx̂)

RxRz

R2

}]
.

(7)

From here, we see that the overall expression decays with
the inverse distances at least as ∼r−1 and ∼R−1 for r, R � h.
This follows for the logarithmic terms from inserting Eq. (4)
and combining

ln(r) − ln(R) = ln
r

R
= ln

|x − x0|
|x − x0 + 2hẑ| . (8)

By Taylor expansion with respect to h, we find that this ex-
pression drops with increasing distance from the force center
to leading order as ∼h/r, that is, ∼r−1. Therefore, we have
formally demonstrated that it is the image counterforce that
stabilizes the solution and suppresses the logarithmic diver-
gence. The image provides the necessary counterforce so that
for the whole system, real and image contributions together,
the net force exerted onto the two-dimensional system van-
ishes. Physically, it is the boundary that absorbs the net real
force and keeps the medium in place.

III. EFFECT OF THE NO-SLIP BOUNDARY ON THE
DISPLACEABILITY AND MOBILITY OF AN INCLUSION

Here we assume a rigid spherical (actually disklike) inclu-
sion in the surrounding two-dimensional continuous medium
with no-slip surface conditions. In principle, this means that
infinitely large mechanical moduli are assumed for the in-
clusions. Often, this is a reasonable approximation for hard
inclusions in soft surroundings. Considering inclusions of fi-
nite elasticity will be an important and interesting, yet much
more challenging, future task [22].

In an unbounded system, we can formally calculate the
displacement field u(x) in the elastic environment in response
to a force F acting on the rigid inclusion centered at x0 via

u(x) =
(

1 + a2

4
∇2

)
G(x − x0) · F, (9)

where a is the radius of the disk [19]. The expression satisfies
Eq. (1). Moreover, it is constant on the circumference of
the rigid disk, that is, when evaluated for |x − x0| = a. This
is a necessary requirement to satisfy the no-slip boundary
condition on the surface of the inclusion. According to the
no-slip condition, the elastic material attached directly to the
surface of the disk needs to displace in the same way as the
inclusion itself, and, since the inclusion is rigid, the displace-
ment field must be constant along the circumference of the
disk. Together, as both Eq. (1) and the surface condition are
satisfied, Eq. (9) represents the formal solution. Furthermore,
this expression serves to calculate the contribution U(0) to the

displacement of the inclusion that results from the term G(r)
in Eq. (5). To this end, Eq. (9) is evaluated on the surface of
the disk, which leads to [19]

U(0) = 1

8π (1 − ν)μ

[
1

2
− (3 − 4ν) ln(a)

]
F. (10)

In the presence of the boundary, the inclusion is addition-
ally exposed to the influence of the image system as given
by the terms −G(R) and W(R) in Eq. (5). We evaluate the
resulting fields at position x0 to obtain the corresponding
contribution U(1) to the displacement of the disk. To lowest
order in a/h, we find

U(1) = 1

8π (1 − ν)μ

{
(3 − 4ν) ln(2h) Î − ẑẑ

− 1

2(3 − 4ν)
Î
}

· F + O
[(

a

h

)2]
. (11)

Equations (10) and (11) both formally contain logarithmic
functions of unscaled lengths. However, this ambiguity is
resolved when combining the two contributions. We then find,
for the displacement U of the disk,

U= U(0)+U(1)= 1

8π (1 − ν)μ

{
(3−4ν) ln

(
2h

a

)
Î+1 − 2ν

3 − 4ν
Î

− ẑẑ
}

· F + O
[(

a

h

)2]
. (12)

Therefore, we observe that the image system and thus the
boundary does not only stabilize the induced displacement
field [see Eq. (8) and comments thereafter], but also renders
the expression U(0) for the initial displacement of the disk
meaningful. By this statement, we refer to the now dimension-
less argument of the logarithm. Formally and illustratively,
it is the counterforce contained in the image system and in-
cluded by the contribution −G(R) in Eq. (5) that leads to this
regularization.

For elastic systems, the displaceability matrix M is de-
fined via U = M · F [9,23] (in analogy to the mobility matrix
in low-Reynolds-number hydrodynamics [2,24–28]). In the
present context, it is diagonal, that is, Mxz = Mzx = 0. From
Eq. (12), we read off

Mxx = 1

8π (1 − ν)μ

{
(3 − 4ν) ln

(
2h

a

)
+ 1 − 2ν

3 − 4ν

}

+ O
[(

a

h

)2]
, (13)

Mzz = 1

8π (1 − ν)μ

{
(3 − 4ν) ln

(
2h

a

)
+ 2

ν − 1

3 − 4ν

}

+ O
[(

a

h

)2]
. (14)

First, we note that the displaceability of the inclusion rises
as the distance from the no-slip boundary h/a increases. Qual-
itatively, this behavior is expected because the pinning impact
of the no-slip boundary decreases with increasing distance of
the inclusion from this boundary. Second, we infer that the
displaceability Mxx associated with forces F = F x̂ parallel to
the no-slip boundary is always larger than Mzz linked to forces
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FIG. 2. Displaceability Mxx for the displacement of a rigid disk
within a two-dimensional elastic membrane of shear modulus μ

and Poisson ratio ν; see Eq. (13). The disk of radius a is located
at a distance h above a flat no-slip boundary. Mxx quantifies the
displacement parallel to the boundary in response to a force applied
to the disk parallel to the boundary.

F = F ẑ perpendicular to it. The displaceabilities are plotted in
Figs. 2 and 3 for various values of the Poisson ratio ν.

(To obtain the corresponding mobilities in low-Reynolds-
number fluid flows of incompressible liquids, we have to
select the value ν = 1/2.)

IV. ROLE OF THE NO-SLIP BOUNDARY CONCERNING
MEDIATED INTERACTIONS BETWEEN INCLUSIONS

A similar picture emerges when we consider the dis-
placement Upair that a force F acting on one disk located
at position x0 induces on another inclusion positioned at x.
Since the elastic environment is distorted by the action on
the first disk, other inclusions confined by the membrane
are exposed to these distortions and subject to associated
displacements. Thus, they are relocated by the interactions
mediated by the elastic surroundings. This effect is quan-
tified by the so-called pair displaceabilities Mpair defined
via Upair = Mpair · F [9,20,23]. (In low-Reynolds-number hy-
drodynamics, the analogous quantities are the common pair
mobilities [2].)

We determine the pair displaceabilities by evaluating
the displacement field u(x) at the position x of the
second inclusion as induced by the force F acting at
position x0 on the first inclusion. From Eqs. (5)–(7),

FIG. 3. Same as in Fig. 2, but for the displaceability Mzz; see
Eq. (14). Mzz quantifies the displacement perpendicular to the no-slip
boundary in response to a force applied to the disk perpendicular to
the boundary.

we find

u(x) = 1

8π (1 − ν)μ

[
−(3 − 4ν) ln

(
r

R

)
Î + rr

r2
− RR

R2

]
· F

+ h

4π (1 − ν)μ

1

R2

[
(x̂ẑ + ẑx̂)Rx − Rz − h

3 − 4ν{
−R2

x − R2
z

R2
Î + 2(x̂ẑ − ẑx̂)

RxRz

R2

}]
· F

+ O
[(

a

h

)2

,

(
a

r

)2]
. (15)

In this case, r denotes the distance vector between the two
inclusions; see Eq. (3). We therefore can read off the following
pair displaceability matrices from Eq. (15),

Mpair
xx = 1

8π (1 − ν)μ

[
−(3 − 4ν) ln

(
r

R

)
+ r2

x

r2
− R2

x

R2

+ 2h

3 − 4ν

Rz − h

R2

R2
x − R2

z

R2

]
+ O

[(
a

h

)2

,

(
a

r

)2]
,

(16)

Mpair
xz = 1

8π (1−ν)μ

[
rxrz

r2
−RxRz

R2
+2h

Rx

R2
−4h(Rz − h)

3 − 4ν

RxRz

R4

]

+ O
[(

a

h

)2

,

(
a

r

)2]
, (17)

Mpair
zx = 1

8π (1 − ν)μ

[
rxrz

r2
−RxRz

R2
+2h

Rx

R2
+4h(Rz−h)

3 − 4ν

RxRz

R4

]

+ O
[(

a

h

)2

,

(
a

r

)2]
, (18)

Mpair
zz = 1

8π (1 − ν)μ

[
−(3 − 4ν) ln

(
r

R

)
+ r2

z

r2
− R2

z

R2

+ 2h

3 − 4ν

Rz − h

R2

R2
x − R2

z

R2

]
+ O

[(
a

h

)2

,

(
a

r

)2]
.

(19)

Once more, we infer that the counterforce provided by the im-
age system rescales the argument of the logarithm so that the
resulting expressions are well defined. And again, we find that
to leading order in h/r, the magnitudes of the pair interactions
decay ∼r−1; see, also, Eq. (8) and the comments thereafter. It
is obvious that the presence of the no-slip boundary breaks the
symmetry of the pair displaceability matrix. For two nearby
inclusions, both located at a distance h above the no-slip
boundary, we plot the pair displaceabilities for increasing r/h
in Figs. 4–7 for various values of the Poisson ratio. We note
the negative values of Mpair

zz close to incompressibility, when
ν tends towards 1/2. There, the upward displacement of one
disk away from the boundary requires an influx of materials
from the sides to approximately maintain the volume, which
drags the other disk towards the boundary.

V. FREE-SLIP BOUNDARY CONDITIONS

A second type of boundary condition that is frequently
considered is the free-slip case [20,29–31]. That is, the fluid
or elastic material may not detach from or move into the
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FIG. 4. Pair displaceability Mpair
xx quantifying the displacement of

one inclusion located at r = rx̂ from another inclusion within a two-
dimensional elastic membrane of shear modulus μ and Poisson ratio
ν; see Eq. (16). Both inclusions are positioned at a distance h above
a flat no-slip boundary. Mpair

xx quantifies the displacement parallel to
the boundary when the force applied to the other inclusion is likewise
oriented in a parallel direction.

boundary, but may freely slip along it without any restriction.
In our case, we formulate it as

uz(z = 0) = 0. (20)

In this situation, the overall Green’s function reads

C(r) = G(r) + G(R) · (Î − 2ẑẑ). (21)

For our purposes below, we note that the operator Î − 2ẑẑ in
Eqs. (4) and (21) simply implies that the real force and the
location of its action are mirrored at the free-slip boundary to
form a genuine mirror image system.

As described above, the logarithmic divergence cancels for
force configurations in which no net force is exerted on the
medium [19]. However, under free-slip boundary conditions,
the no-net-force condition when combining real and image
forces only applies if the real force is oriented perpendicular
to the boundary, meaning that F = F ẑ. In that case, the first
contribution U(0) to the displacement U of the inclusion is
associated with the first term G(r) on the right-hand side
of Eq. (21). It has already been listed in Eq. (10). The sec-
ond term on the right-hand side of Eq. (21) results from the
image force, and it leads to a contribution U(1). Since here
r = x − x0 = 0, we obtain

U(1) =− 1

8π (1 − ν)μ
[1 − (3 − 4ν) ln(2h)] · F ẑ +O

[(
a

h

)2]
.

(22)

FIG. 5. Same as Fig. 4, but for the pair displaceability Mpair
xz ; see

Eq. (17). Mpair
xz quantifies the displacement parallel to the boundary

when the force applied to the other inclusion is oriented in the normal
direction.

FIG. 6. Same as Fig. 4, but for the pair displaceability Mpair
zx ; see

Eq. (18). Mpair
zx quantifies the displacement normal to the boundary

when the force applied to the other inclusion is oriented in a parallel
direction.

Combining Eqs. (10) and (22) leads to the displaceabilities

Mxz = 0, (23)

Mzz = 1

8π (1 − ν)μ

[
−1

2
− (3 − 4ν) ln

(
a

2h

)]

+ O
[(

a

h

)2]
. (24)

Still, the Green’s function in Eq. (21) contains the logarith-
mic dependence ∼ ln(r), if any boundary-parallel component
is involved. The mirror image of a real boundary-parallel force
component is equal in both magnitude and orientation to the
real force component, formally resulting in a net boundary-
parallel force of twice the magnitude instead of a vanishing
net force. (Physically, this reflects the ease of slip along the
free-slip surface when compared to the situation in which the
half-space membrane was anchored at z = 0.)

To stabilize the system, we therefore introduce a second
free-slip boundary, here chosen at x = 0. The system now
fills the quarter space for x � 0 and z � 0, see Fig. 8. In that
case, we obtain the Green’s function in the form

Cquart(r) = G(r) + G[x − (Î − 2x̂x̂) · x0] · (Î − 2x̂x̂)

+ G[x − (Î − 2ẑẑ) · x0] · (Î − 2ẑẑ)

+ G[x − (Î − 2x̂x̂) · (Î − 2ẑẑ) · x0]

· (Î − 2x̂x̂) · (Î − 2ẑẑ). (25)

Here, the leading term G(r) refers to the displacements
induced by the real, physical force acting on the material in

FIG. 7. Same as Fig. 4, but for the pair displaceability Mpair
zz ; see

Eq. (19). Mpair
zz quantifies the displacement normal to the boundary

when the force applied to the other inclusion is likewise oriented in
the normal direction.
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FIG. 8. Illustration of the geometry considered in the case of
two orthogonal free-slip boundaries at x = 0 and z = 0. A disklike
inclusion at the position x0 = (g, h) is embedded in a continuous
medium that fills the quarter space described by x � 0 and z � 0.
When illustrating the pair displaceabilities in Fig. 12 below, we
introduce another inclusion located at a distance vector r = rx̂ from
the first one.

the quarter space of x � 0 and z � 0. The next term in G
introduces the consequences of an image force generated by
mirroring the physical force at the plane x = 0, to satisfy the
free-slip boundary condition at x = 0. Third, the subsequent
contribution in G refers to an image force obtained by
mirroring the physical force at the plane z = 0, to satisfy
the free-slip boundary condition there. Both of these image
forces constructed by mirroring the physical force at the
planes x = 0 and z = 0 are then additionally mirrored at the
mutually other plane to also satisfy the free-slip boundary
condition there. Both mirroring steps lead to the same
additional image force center with the same additional image
force in the quarter space x < 0 and z < 0. Its consequences
are included by the last term in G in Eq. (25). In this way,
the image system is closed and complete. All boundary
conditions are satisfied [31].

This setup generates a force configuration of zero net force,
regardless of the orientation of the point force in the real
quarter space. Any pair of real force and its image across the
z = 0 boundary are counterbalanced by the respective images
across the x = 0 boundary. Likewise, any real force and its
image across the x = 0 boundary are counterbalanced by the
respective images across the z = 0 boundary. In other words,
any force component parallel to x̂ or ẑ is perpendicular to
ẑ or x̂, respectively, which guarantees the overall force-free
nature of the combination of all four real and image forces
and cancels the logarithmic divergence.

Next, we consider a disklike inclusion located in the mem-
brane at position x0 = (g, h), as illustrated in Fig. 8. Thus, g
and h measure the distances relative to the two perpendicular
free-slip boundaries. Moreover, we introduce the abbrevia-
tions

Rg = r + 2gx̂, (26)

Rh = r + 2hẑ, (27)

Rgh = r + 2gx̂ + 2hẑ. (28)

We determine the displacement U of the disk when subject
to a net force F in such a geometry. The first contribution

U(0) resulting from the term G(r) in Eq. (25) is not related
to the presence of the boundaries and therefore takes the
same form as in Eq. (10). Contrarily, the remaining terms in
Eq. (25) describe the influence of the image system, which
we summarize by the contribution U(1). Explicitly, we derive,
from the remaining terms in Eq. (25),

U(1) = 1

8π (1 − ν)μ

[
−(3 − 4ν)

{
ln(2g)

(−1 0
0 1

)

+ ln(2h)

(
1 0
0 −1

)
+ ln(2g + 2h)

(−1 0
0 −1

)}

− Î − g2x̂x̂ + h2ẑẑ + gh(x̂ẑ + ẑx̂)

g2 + h2

]
· F

+ O
[(

a

g

)2

,

(
a

h

)2]
. (29)

Together, from Eqs. (10) and (29), as well as from the
definition U = M · F, we find the entries of the displaceability
matrix,

Mxx = 1

8π (1 − ν)μ

[
−1

2
− g2

g2 + h2

− (3 − 4ν)

{
ln

(
a

2g

)
+ ln

(
h

g + h

)}]

+ O
[(

a

g

)2

,

(
a

h

)2]
, (30)

Mxz = Mzx = − 1

8π (1 − ν)μ

gh

g2 + h2
+ O

[(
a

g

)2

,

(
a

h

)2]
,

(31)

Mzz = 1

8π (1 − ν)μ

[
−1

2
− h2

g2 + h2

− (3 − 4ν)

{
ln

(
a

2h

)
+ ln

(
g

g + h

)}]

+ O
[(

a

g

)2

,

(
a

h

)2]
. (32)

Again, the influence of the image system via U(1) rescales
the argument of the logarithm in U(0). Moreover, we observe
that Mxx and Mzz follow from each other by switching g and
h, which is consistent with the underlying geometry. If in
Eqs. (29), (31), and (32) we let g/h → ∞, meaning that our
force center is located infinitely far away from the free-slip
boundary at x = 0 relative to the boundary at z = 0, then, for
a force F = Fz, we correctly obtain as a limit Eqs. (22), (23),
and (24), respectively. In other words, we correctly recover
the situation of only one free-slip boundary in the presence of
a boundary-normal force.

We illustrate in Figs. 9–11 the form of Mxx as a function
of a, g, and h for various Poisson ratios ν. In Figs. 9 and
10, the distances from both free-slip boundaries increase with
increasing 2g/a because h/g is kept constant. The considered
displacement is normal to the boundary at x = 0, which con-
fines the displaceability. Thus an increasing distance from x =
0 supports Mxx. Simultaneously, an increasing distance from
z = 0 reduces displacements parallel to this free-slip bound-
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FIG. 9. A membrane is confined by two free-slip boundaries
located at x = 0 and z = 0, while it contains a rigid disklike inclusion
of radius a positioned at (g, h). We depict as a function of 2g/a
the displaceability Mxx of the disk along the x direction for a force
likewise applied along the x direction, while we fix h/g = 2. That is,
the disk is positioned closer to the free-slip boundary at x = 0 than
to the free-slip boundary at z = 0.

ary because more elastic material needs to be taken along.
Apparently, from Figs. 9–10, both effects together lead to an
increase in Mxx. Figure 11 exposes the second effect, where
we keep g constant and only increase the vertical distance h
from the free-slip boundary at z = 0. Then, the mobility Mxx

decreases as described above.
For Mxz = Mzx, the Poisson ratio only affects the magni-

tude of the displaceability. Since, in general, Mxz = Mzx �= 0,
the two orthogonal free-slip boundaries induce displacements
normal to the boundary-parallel force components. The max-
imum of this effect occurs for g = h. Finally, the behavior of
Mzz is identical to the one of Mxx for switched g and h.

VI. MEDIATED INTERACTIONS BETWEEN INCLUSIONS
NEAR PERPENDICULAR FREE-SLIP BOUNDARIES

In analogy to Sec. IV, we calculate the displacement Upair

of an inclusion at position x in response to the force F act-
ing on another disk located at position x0. Again, the pair
displaceabilities Mpair are defined via Upair = Mpair · F. For
reference, we begin as in Sec. V by considering just one free-
slip boundary located at z = 0, so that the Green’s function
C(r) in Eq. (21) applies, together with a boundary-normal
force F = F ẑ. r now marks the distance vector from the first
inclusion, onto which the force F is acting, to the second
inclusion, which is exposed to the resulting displacements in
the surrounding medium.

FIG. 10. Same as in Fig. 9, but for h/g = 0.5. That is, the disk is
positioned closer to the free-slip boundary at z = 0 than the free-slip
boundary at x = 0.

FIG. 11. For the same geometry as in Figs. 9 and 10, we now
plot Mxx for fixed 2g/a = 20 but varying h/g. That is, the vertical
distance above the boundary at z = 0 is increased, while the distance
from the boundary at x = 0 is kept constant.

As in Sec. IV, we determine the pair displaceabilities from
the displacement field u(x) at position x as induced by the
force F acting on the disk at position x0. Specifically, from
u(x) = C(r) · F and Eq. (21), we find

u(x) = 1

8π (1 − ν)μ

[
−(3 − 4ν) ln

(
r

R

)

+ rr
r2

− RR
R2

]
· F ẑ + O

[(
a

h

)2

,

(
a

r

)2]
. (33)

From this equation, we directly read off the displaceabilities,

Mpair
xz = 1

8π (1 − ν)μ

[ rxrz

r2
− RxRz

R2

]
+ O

[(
a

h

)2

,

(
a

r

)2]
,

(34)

Mpair
zz = 1

8π (1 − ν)μ

[
−(3 − 4ν) ln

r

R
+ rzrz

r2
− RzRz

R2

]

+ O
[(

a

h

)2

,

(
a

r

)2]
, (35)

where R was defined in Eq. (4).
Next, we turn to the two free-slip boundaries located at

x = 0 and z = 0. Thus, we proceed in the analogous way,
but now determine the displacement field u(x) induced by a
force F of arbitrary orientation within the two-dimensional
plane. We calculate u(x) = Cquart(r) · F from Eq. (25) and
obtain

u(x) = 1

8π (1 − ν)μ

[
−(3 − 4ν)

{
ln(r)

(
1 0
0 1

)

+ ln(Rg)

(−1 0
0 1

)
+ ln(Rh)

(
1 0
0 −1

)

+ ln(Rgh)

(−1 0
0 −1

)}
+ rr

r2
·
(

1 0
0 1

)

+ RgRg

R2
g

·
(−1 0

0 1

)
+ RhRh

R2
h

·
(

1 0
0 −1

)

+ RghRgh

R2
gh

·
(−1 0

0 −1

)]
· F

+ O
[(

a

g

)2

,

(
a

h

)2

,

(
a

r

)2]
. (36)
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Again, here r denotes the distance vector between the
disk exposed to F and the inclusion subject to the resulting
displacement in the elastic medium. Thus we directly obtain,
from Eq. (36),

Mpair
xx = 1

8π (1 − ν)μ

[
− (3 − 4ν)

{
ln

(
r

Rg

)
+ ln

(
Rh

Rgh

)}

+ rxrx

r2
−Rg,xRg,x

R2
g

+ Rh,xRh,x

R2
h

−Rgh,xRgh,x

R2
gh

]

+ O
[(

a

g

)2

,

(
a

h

)2

,

(
a

r

)2]
, (37)

Mpair
xz = 1

8π (1−ν)μ

[
rxrz

r2
+ Rg,xRg,z

R2
g

−Rh,xRh,z

R2
h

−Rgh,xRgh,z

R2
gh

]

+ O
[(

a

g

)2

,

(
a

h

)2

,

(
a

r

)2]
, (38)

Mpair
zx = 1

8π (1−ν)μ

[
rzrx

r2
−Rg,zRg,x

R2
g

+ Rh,zRh,x

R2
h

−Rgh,zRgh,x

R2
gh

]

+ O
[(

a

g

)2

,

(
a

h

)2

,

(
a

r

)2]
, (39)

Mpair
zz = 1

8π (1 − ν)μ

[
−(3 − 4ν)

{
ln

(
r

Rh

)
+ ln

(
Rg

Rgh

)}

+ rzrz

r2
+ Rg,zRg,z

R2
g

−Rh,zRh,z

R2
h

−Rgh,zRgh,z

R2
gh

]

+ O
[(

a

g

)2

,

(
a

h

)2

,

(
a

r

)2]
. (40)

One final time, we remark that the argument of the log-
arithm in Eq. (6) gets rescaled through the presence of the
counterforces of the image system. The resulting expressions
are well defined. Moreover, to leading order, the magnitudes
of the pair interactions decay as ∼g/r and ∼h/r; see, also,
Eq. (8) and the comments thereafter. For F = F ẑ, letting
g/h → ∞, Eqs. (36), (38), and (40) turn into Eqs. (33), (34),
and (35), respectively, for just one free-slip boundary at z = 0
and Rh ≡ R, as expected.

For illustration, we again consider two nearby inclusions,
both located at a distance h above the free-slip boundary at
z = 0. Thus, the first inclusion is centered at x0 = (g, h), while
the second one is found at x = (g + r, h); see Fig. 8. We plot
the pair displaceability Mpair

xx for increasing r/g for g/h = 1
in Fig. 12. Concerning Mpair

xz = Mpair
zx , the Poisson ratio in

the expression of Eq. (38) only scales the magnitude. In the
expression for Mpair

zz in Eq. (40), the roles of g and h are again
switched when compared to Mpair

xx .

VII. CONCLUSIONS

In summary, we have addressed the issue of apparent
logarithmic divergence of flow and displacement fields in two-
dimensional fluid or elastic systems, when they are exposed
to concentrated net forces. Example situations are given by
small inclusions on which external forces are exerted. Due to
the confinement by the continuous environment, these forces

FIG. 12. Pair displaceability Mpair
xx describing displacements of

an inclusion located at r = rx̂ from another inclusion positioned
at x0 = (g, h) within a two-dimensional elastic membrane of shear
modulus μ and Poisson ratio ν; see Eq. (37). The membrane is con-
fined by two free-slip boundaries at x = 0 and at z = 0. Considered
displacements along the x direction here are induced by a force acting
on the inclusion at x0 = (g, h) likewise along the x direction. In the
depicted case, we set g/h = 1, that is, x0 is located on the diagonal
between the two orthogonal free-slip boundaries.

are transferred to the surrounding medium. We keep to strictly
linear media, that is, linearly elastic systems or incompressible
liquids under low-Reynolds-number hydrodynamics.

In fact, the formal logarithmic divergence of the associated
Green’s function at the end does not constitute a weakness of
the linear description. It rather expresses that even an infinitely
extended system in two dimensions cannot compensate for a
net force. Instead, the net force is transmitted to and compen-
sated by the boundaries of a necessary confinement.

As we demonstrate, already one no-slip boundary, for
example, when clamping a thin elastic membrane, is suf-
ficient for stabilization. The net force transmitted to the
boundary is compensated by counterforces emerging from
the boundary. In the method of images, it is represented
by a suitable image system. In addition, in the case
of a free-slip boundary, a kink must be introduced for
stabilization.

Consequently, the mobilities or displaceabilities of inclu-
sions in the medium are affected. Details depend on the
nature of the boundaries, the distance(s) from the boundaries,
and whether forces are applied alongside or normal to the
boundaries. Likewise, the mutual interactions mediated be-
tween inclusions through the fluid or elastic surroundings are
affected by the boundaries.

On the one hand, our results are conceptually important
concerning the theoretical description of (flat) thin fluid films
and elastic membranes when subject to net forces. They indi-
cate that no unnatural behavior emerges that would point to a
problem with the underlying linear equations [18]. Instead, the
role of the boundaries cannot be neglected any longer for such
geometries. An interesting question is in which way a flexible,
nonlinearly elastic no-slip boundary is likewise capable of
stabilizing the logarithmic divergence [32]. Another aspect
concerns further types of boundary condition, particularly
of the partial-slip type [33]. Although mathematically more
involved, the key concept that the boundary needs to stabilize
the system in the presence of a net force acting on the material
should remain, at least as long as a physically stable situation
is addressed and the dynamics remains overdamped.
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On the other hand, our results will support the quantifica-
tion of the behavior of inclusions in real setups, for instance,
in flat anchored or clamped biological or artificial membranes
[34–40]. Particularly, we hope to stimulate by our work quan-
titative experimental investigations and confirmation of our
results. To this end, thin freestanding fluid films or elastic
membranes of little compressibility along their surface nor-
mal, but fluidlike behavior or low to moderate magnitude of
elastic moduli in the in-plane directions represent promising
candidates. Freestanding smectic-A liquid-crystalline films
[41] or membranes of smectic-A liquid-crystalline elastomers
[42] of homeotropic director alignment may be used for this
purpose. Our results should further be helpful to quantify
and optimize the performance of new types of composite
membrane materials. For instance, magnetic inclusions in

elastic membranes respond directly to additional magnetic
field gradients. Thus, the membranes do not require excita-
tion by additional mechanically coupled actuators [43] and
could be used as loudspeakers by themselves. Yet, the induced
magnetic forces between the inclusions will affect the overall
mechanical properties and deformation of the materials as
well.
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